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Abstract: The in-situ measurement of the content and orientation of steel fibres in concrete structures
is of great importance for the assessment of their specific mechanical properties, especially in the
case of repair. For existing structures, the actual fibre content as well as the orientation of the fibres,
which is based on many factors such as casting or compacting direction, is typically unknown.
For structural maintenance or rehabilitation, those factors have to be determined in order to apply
meaningful structural design calculations and plan necessary strengthening methods. For this reason,
a new method based on the analysis of drilling cores of concrete structures has been established.
The newly developed non-destructive test setup used in this research consists of a framework for
cylindrical specimens in combination with an LCR meter to determine the electrical resistance of the
fibre reinforced concrete. In combination with a suitable FEM model, concretes with fibre contents
up 80 kg/m3 were analysed to derive a first model to assess the actual fibre content of steel fibre
reinforced concretes. After a calibration of the literature’s equation by use of an adjusted aspect ratio
for the analysis of drilling cores, the estimation of the fibre content is possible with high accuracy for
the tested material combination. The results show that the newly developed test method is suitable
for the rapid and non-destructive structural diagnosis of the fibre content of steel fibre reinforced
concrete based on drilling cores using electrical resistivity measurements.

Keywords: steel fibre reinforced concrete; electrical resistivity; fibre content; non-destructive test method

1. Introduction

Based on a recently developed easy-to-use test setup [1], a new application to assess
the steel fibre content of existing structures based on the electrical resistivity analysis
of drilling cores is described in this two-part study. Therefore, in the first part (see [2]),
the test setup was adapted. A new numerical model was also generated to simulate the
flow of the alternating current, which enables the calculation of the electrical resistivity in
different specimen directions. An in-depth literature review on the methods concerning
the determination of the steel fibre content is presented in [1,2].

Both parameters, fibre content and fibre orientation, are tremendously important for
influencing the mechanical parameters of steel fibre reinforced concrete (SFRC) (see [3–6]).
In general, a higher fibre content and fibres, oriented in direction of the tensile forces, lead
to very ductile material behaviour and an increase in the tensile strength of the composite
material (see [4,7–13]). In the case of new structures, the global fibre content can easily be
determined and monitored during the mixing process by the mass of the fibres that are
added to the concrete or alternatively by washing the fibres out of a fresh concrete sample.
After the casting process, the determination of the fibre content and the detection of areas
with locally lower fibre contents or an unfavourable fibre orientation is no longer possible
via an easy method. Hence high safety factors are required for the structural design of
SFRC (see [6,14–16]. Additionally, the repair and restoration of SFRC buildings only can
only be planned and realised in a safe way when the fibre content of the existing structure
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is known (see [10,17]). In case it is not possible to determine the actual fibre content of
concrete structures, a repair process is only possible with very pessimistic assumptions
for the flexural strength of the SFRC elements. Based on this, an economical method
of construction is not possible, and additionally, areas with a very low percentage of
reinforcement cannot be detected and could lead to a local collapse of the whole structure.
Electrical resistivity measurements are one possible non-destructive test method for this
analysis. This approach is beneficial since it is easier to apply and less costly compared to
other methods such as CT-scanning, cross-sectional analysis via microscope or inductive
techniques (see [12,18–29]). With the help of an optimised experimental setup, this study
focuses on the validation of electrical resistivity as a novel approach to assess the fibre
content and orientation of drilling cores extracted from concrete plates with fibre contents
up to 80 kg/m3. Correlations between the electrical resistivity and the fibre content and
fibre orientation are derived, which enable a later non-destructive use of adjusted electrode
configurations on structural elements and buildings.

2. Materials and Methods
2.1. Concrete Mix Design

The concrete mix design was already used in earlier studies of the authors such as [1].
The design focussed on sufficient workability for plain concrete (PC) and fibre contents up
to 80 kg/m3 in steel fibre reinforced concretes (SFRC). The concrete mix design presented in
Table 1 enables the analysis of both PC and SFRC without the addition of a superplasticizer.
For the SFRC hooked end, macro steel fibres with a length of 60 mm and a diameter of
1 mm were added to the plain concrete after mixing. The fibres thus had an aspect ratio of
60 and were produced out of steel wire.

Table 1. Concrete mix design of the basic concrete.

Parameter Unit 32-60-300-00

CEM I 32.5 R kg/m3 300.0
Water kg/m3 180.0

Sand 0–4 mm kg/m3 845.5
Gravel 4–16 mm kg/m3 1004.0

Water/cement ratio - 0.60
Grain size distribution - A/B16

Steel fibre type - Macrofibre 60 mm
Steel fibre content kg/m3 0, 40, 80

The mixing process was performed according to the following scheme: First, the solid
components, cement and aggregates, were mixed in a compulsory mixer with a nominal
volume of 170 L for 30 s to obtain a homogenous mixture. In the next step, the water
was added to the solids while the mixing process was still ongoing, followed by a mixing
phase of two minutes. After a visual inspection of the concrete, adhering components
were removed from the mixer walls, followed by a final mixing process of one minute.
On the final PC mixture, fresh concrete tests, such as the flow table test as well as the
density and the air content in accordance with EN 12350-5 [30], EN 12350-6 [31], and EN
12350-7 [32], were assessed. In the case of the SFRC with fibre contents of 40 kg/m3 and
80 kg/m3, the fibres were added after the fresh concrete tests, and the concrete was mixed
for another minute.

In total, three concrete batches were produced. Out of each concrete batch three
cubic specimens with an edge length of 150 mm as well as one plate with dimensions
of 500 × 500 × 212 mm3 were cast, each in two layers with subsequent compaction on
a vibrating table. A height of 212 mm was chosen to enable grinding of both the bottom
and surface of the later extracted drilling cores and gain specimens of a height of 200 mm.
The specimens were covered with foil to inhibit dehydration of the surface. After 24 h, the
specimens in steel formworks (cubes) were demoulded. Moreover, the upper surface was
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ground to ensure a flat surface with a good connection to the electrodes and afterwards
stored underwater. The plates were left in the formwork to simulate a hardening of
structural elements such as floor plates or walls and were stored at a climate of 20 ◦C
and 65% relative humidity. After 14 days, nine drilling cores with diameters of 100 mm
were extracted out of each concrete plate. Thereby two different edge distances were
used. The first six specimens were drilled with edge distances to the formworks of 60 mm,
appropriate to the length of the fibres, while the last three cores were drilled with edge
distances of 30 mm, appropriate to half of the fibre length. A schematic figure of the
arrangement of the drilling cores is presented in Figure 1. After drilling, the lower and
upper surfaces of the cores were ground analogue to the cubic specimens and the specimens
were stored underwater.
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rent of 100 Hz, 120 Hz, 1 kHz, 10 kHz, and 100 kHz. The setup is presented in Figure 2. 

  
(a) (b) 
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Figure 1. Schematic figure of the arrangement of the drilling cores in the concrete plates.

2.2. Experimental Setup
2.2.1. Basic Setup

The basic setup of the measurements is described in [1] and consists of two stainless
steel electrodes with dimensions of 200 × 200 mm2, which are connected to an LCR meter.
The LCR meter used for the impedance measurements was Extech Instruments LCR 200
with a voltage amplitude of 600 mV rms and variable frequencies of the alternating current
of 100 Hz, 120 Hz, 1 kHz, 10 kHz, and 100 kHz. The setup is presented in Figure 2.
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2.2.2. Advanced Test Setup for Cylindrical Specimens

For the investigation of drilling cores, an advanced test setup was developed and
tested in [2] based on the existing equipment and the extended setup. The LCR meter was
connected to a breadboard (see [2]), which could be used for various electrode configura-
tions with several numbers of electrodes.

After extensive tests of the setup for cylindrical concrete specimens in combination
with the breadboard [2], a cylindrical frame for the analysis of drilling cores was developed
(see Figure 3a). The frame was applicable for concrete specimens with different dimensions,
such as a diameter of 100 mm or less. The setup consists of stainless steel electrodes with
dimensions of 40 × 10 mm2 in three heights, which are arranged in angular distances
of 90◦. Those electrodes were covered with sponge cloths and isolated with insulating
tape to inhibit a short circuit (see Figure 3b). The electrodes were fixed with screws to
a circular frame, so they could be adjusted to the specimen’s dimensions, and a reproducible
contact pressure could be ensured. The whole setup can be connected to the breadboard, so
measurements of various combinations of the twelve electrodes are possible.
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2.3. Modelling of the Current Flow

To analyse different electrode configurations and different specimens, the LCR mea-
surements, which give the electrical resistance, as a result, have to be further converted
into electrical resistivities, which are independent of geometry. As for trivial electrode
configurations (two parallel plates of basic setup, see Section 2.2.1) the geometry factors for
the conversion of resistance into resistivity can be easily calculated; for the advanced test
setup with a more complex structure, FEM modelling of the test setup and the current flow
is needed. The software Comsol Multiphysics (version 5.3a, build version 229) enables the
generation of a network model and thus the simulation of the current flow between several
electrodes in various configurations.

For the analysis of the specimens in this study, the model of [2] was used, but because
effects of surface pressure of the electrodes and electrical conductivity of the sponge cloths
contacts cannot directly be considered, different electrical material parameters for the
electrodes have been analysed to find the optimum accordance of the model and the
real experiment. The drilling core inside the model was represented by a cylinder with
a diameter of 100 mm and a height of 200 mm. The electrical resistance was set to 100 Ωm,
which fits the experimental data. Similar to the cylindrical frame of the test setup, also
in the model, twelve electrodes were added as stainless steel elements with an area of
40 × 10 mm2 and a thickness of 1 mm. The electrodes were placed on three height levels
with 20 mm in between each level and angular distances of 90◦ as segments of a circle. This
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way, a good connection of the specimen’s surface and the electrode was guaranteed. The
grid size of the single elements in the simulation was set to extremely fine because a high
accuracy was needed for the simulation of the current flow. For the modelling, the following
assumptions have been made: The behaviour of all materials, such as concrete and steel, is
presumed as homogeneous and isotropic. Polarization effects on the electrodes have been
disregarded because of the use of alternating current. The simplification of homogeneity
of the materials, especially the concrete, was conducted to keep the numerical model as
easy as possible to reduce computing time and not predictable results based on a presumed
inhomogeneity which is not well known. It was decided that the inaccuracy of the model
based on this simplification is better to accept than the assumption of any parameters
to describe an inhomogeneity of the concrete, especially in the context of unknown fibre
distribution and orientation that lead to another inhomogeneity and will not be constant
for different specimens with varying fibre content.

This FEM model makes it possible to simulate the current flow and the resulting electric
current of several configurations and thus calculate the geometry factors of those electrode
configurations. For the simulations, the electric potential of the contacted electrodes was
set to 0 V respectively 600 mV. Thus, the current flow between a pair of electrodes or
a group of electrodes was simulated. The chosen values of 0 V and 600 V at this juncture
represented the real experimental setup with the LCR meter, which uses a voltage amplitude
of 600 mV rms. The simulations were carried out with two different electrical parameters
for the electrodes. First, the electrical conductivity of the electrodes was set to the one
of stainless steel with 1.4 × 106 S/m to represent a perfect connection between concrete
and electrodes. In this case, the not contacted electrodes show conduction effects and
thus have a great influence on the current flow. The second set of simulations has been
carried out with an electrical resistivity of 100 Ωm of the electrodes (corresponding to the
resistivity of the concrete), which was meant to represent a bad connection of the electrodes
and thus nearly neglects the influence of uncontacted electrodes. By use of Equation (1)
then the k-factors can be calculated for each electrode configuration and assumption of the
electrode’s electrical behaviour.

k =
I ∗ ρ

U
(1)

with k: geometry factor in m
I: electric current in A
ρ: electrical resistivity (set to 100 Ωm)
U: electric potential (set to 1 V)
The visualisation in Figure 4a shows that not connected electrodes (in the middle

height level) have an impact on the isosurfaces of the current, which represent locations
with identical electric potential in case of a good electrical connection of the concrete and
the electrodes. The current flow can be supposed to be orthogonal to those isosurfaces.
In the case of a low conductivity between concrete and electrodes (Figure 4b), there is
no influence of the current flow by unconnected electrodes, which is visible through the
constant isosurfaces around the mid-level electrodes. Since those results illustrate the
marginal principles, both are used for the subsequent discussions.
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2.4. Evaluation of the Results

The fibre content of the specimens, as already presented in [2], was calculated from
the electrical resistivity of the SFRC specimens in relation to one of the PC specimens by
the equation of [11] (see Equation (2)).

σ

σm
= 1 + [σ]∆ ∗ Φ (2)

with: σ: electrical conductivity of the SFRC in Ωm
σm: electrical conductivity of the PC in Ωm
Φ: fibre volume fraction
[σ]: intrinsic conductivity (Equation (3))
∆: ratio of conductivity of fibres and PC
The intrinsic conductivity in Equation (2) was calculated in dependence of the aspect

ratio of the fibre by an empiric equation in accordance with [11]:

[σ]∞ =
1
3

(
2 ∗ (AR)2

3 ∗ ln[4(AR)]− 7
+ 4

)
(3)

with: AR: aspect ratio of the fibres.
The aspect ratio of the fibres in this study was 60, and thus the intrinsic conductivity

of 255.5 resulted. With this factor, the fibre volume fraction of each concrete specimen
could be calculated by Equation (2). As several directions of the specimens were analysed,
a global conductivity value had to be determined for each kind of specimen. For the cubic
specimens, it was calculated as a mean value of the three pairs of parallel surfaces, while
for cylindrical specimens, several configurations have been checked to find an optimum
according to the real behaviour of the material.

The use of Equation (2) in different directions, such as only one pair of parallel surfaces
of the cubic specimens, in relation to two orthogonal directions, enables the calculation
of orientation factors for the single directions. It is summarized that the three orientation
factors of one concrete specimen give 100%; therefore, each of the factors is between 0
and 100%.
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3. Results and Discussion
3.1. Tests on Concrete Cubes as Additional Specimens
3.1.1. General Evaluation of the Cubic Specimens

In addition to the production of the concrete plates, where the drilling cores were
extracted, three cubic specimens with edge lengths of 150 mm were produced out of each
concrete batch to analyse the electrical behaviour of the concrete in the early age and the
changes with ongoing aging. For this purpose, the cubes were analysed via the basic test
setup (Section 2.2.1) in concrete ages of 7, 28, and 135 days. The electrical resistivity was cal-
culated, and the fibre content and fibre orientation were estimated according to Section 3.2.
Since the specimens were stored underwater for the duration, a good conductivity of the
concrete was reached, and thus no negative effects of the coupling of the electrodes to
the concrete surface were observed. Figure 5 shows the results of the measurements. As
already explained, the resistivity of the PC, as well as of the SFRC, increases with increasing
concrete age and a higher fibre content results in a significantly lower resistivity due to the
conductivity of the fibres inside the concrete matrix (see [1,21,33]).
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3.1.2. Estimation of the Fibre Content and Orientation

Based on these results, it was possible to calculate both the fibre content and the fibre
orientation inside of each specimen, whereby it must be said that the electrical resistivity
of the PC was averaged to have an ascertained reference value for the calculations. The
calculated fibre content of the series of specimens is shown in Figure 6.

One can see that a higher concrete age results in a slightly higher value for the fibre
content, as well as a higher frequency of the alternating current. These effects can be
explained by the higher differences of conductivity of the concrete and the fibres in higher
age, based on the hydration process and thus the refinement of the pore structure as well
as changes in the pore chemistry. The differences in the results for varying frequencies
are a result of the missing information for the phase angle of the current, which makes
the calculation of the real part of the impedance impossible (see [1,11]). Nevertheless, it is
clear to see that the graph of the fibre content versus the inverse of the square root of the
frequency can be described by a logarithmic function a ∗ ln(x) + b, where the constant b can
be used as an indicator for the fibre content of the material, where a higher concrete age
gives a better coefficient of determination as well as a better fit of the calculated fibre content
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to the expectations based on the composition of the concrete. Therefore, an extrapolation of
the graph infinity, which would mean a frequency of 0 Hz or direct current (DC), would
lead to the corresponding fibre content of 39.427 kg/m3 and 86.912 kg/m3, respectively, for
a concrete age of 135 days. For a concrete age of 28 days and a fibre content of 80 kg/m3, the
calculated fibre content would be 76.350 kg/m3 and significantly lower than after 135 days.
For the analysis of existing structures, a positive effect can be seen because the concrete
is much older, and the hydration process has been completed. Looking at the results of
the single specimens for the fibre content of 80 kg/m3 shows that specimen 1 must contain
a much higher amount of fibres than the other two, and thus leads to an overestimation of
the fibre content (see Figure 7). For the other two specimens, the calculated fibre content
fits almost perfectly to the fibre content that was mixed in the PC. Even if the extrapolation
of the curve to the infinite represents the use of DC, a test setup using DC cannot be
recommended because of polarisation effects on the electrodes and thus time-depending
results for the measurements.
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Figure 6. Calculated fibre content of the cubic specimens at varying frequencies of the alternating
current depending on the age of the concrete and the actual fibre content of the samples (dotted lines
represent the fitted trend lines according to the equations given in the corresponding graph).

While the frequency of the alternating current, as well as the age of the specimens,
showed an influence of the calculated fibre content, for the fibre orientation, both parame-
ters seem to be independent, as it was already occupied in the earlier tests (see [2]). Both
the age of the specimen and the frequency of the alternating current led to results for the
fibre orientation inside the concrete cubes with no significant variations. For a fibre content
of 40 kg/m3, much more fibres are oriented in the horizontal directions with a proportional
distribution of approximately 42% in each of the horizontal directions (see Figure 8). Since
the concrete was compacted by a vibration table in a vertical direction, this result was
expected. In addition, it can be analysed that there is a higher scatter in the horizontal
directions than in the vertical one with fibre orientation coefficients of 35% to 50%.
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Figure 7. Calculated fibre content of the cubic specimens at varying frequencies of the alternating
current of the samples with a fibre content of 80 kg/m3 (dotted lines represent the fitted trend lines
according to the equations given in the corresponding graph).
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Figure 8. Calculated fibre orientation of the cubic specimens with a fibre content of 40 kg/m3, based
on the electrical resistivity measurements on specimens with different concrete ages at a frequency of
the alternating current of 1 kHz.

In contrast to this, the concrete with a higher fibre content of 80 kg/m3 shows lower
variations even in the horizontal direction, which is based on the higher fibre content where
fibres are expected to be oriented more uniformly (see Figure 9). This hypothesis can be
verified by comparing to the vertically oriented fibres in both concretes, where in the SFRC,
with a higher fibre content, more fibres are oriented in a vertical direction. Overall, a more
3-dimensional orientation of the fibres is detected. One explanation can be the size of the
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specimens. Due to the ratio of fibre length to smallest specimen dimension, in smaller
specimens, a free distribution and orientation of the fibres with ongoing compaction process
can be hindered by the formwork, and edge effects are the main influencing parameter for
small specimens. In contrast to this, inside the cubes, there seems to be a volume in the
middle, where the fibres are able to freely orientate themselves and only interact with the
large grains, but no interaction with the edges of the formwork occurs.
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Figure 9. Calculated fibre orientation of the cubic specimens with a fibre content of 80 kg/m3, based
on the electrical resistivity measurements on specimens with different concrete ages at a frequency of
the alternating current of 1 kHz.

3.2. Testing of Drilling Core Samples
3.2.1. Effect of the k-Value Based on the FEM Model

The first important step was to identify which parameters of the FEM model result in
the most realistic and accurate geometry factors. On the one hand, simulating the electrodes
with the electrical conductivity of stainless steel represents a good connection between
concrete and electrode with no isolation. On the other hand, using the electrical resistivity
of concrete represents an isolating effect by the wet sponge cloths that are soaked with
pore solution and thus will have nearly the same resistivity as the concrete itself. Both
possibilities have been tested, and the electrical resistivity of the PC was analysed with the
help of both k-factors, given in Tables A1 and A2. As a measurement from the bottom of
the cylinder to its top was performed with the electrical conduction of the whole upper and
lower surface, where the k-factor can be calculated by the surface area and the specimen
length, the real values of the electrical resistivity of the concrete are well known.

Figure 10 shows the comparison of the vertical resistivity, calculated with the easily
calculated k-factor, and the vertical and horizontal resistivities of the drilling cores, calcu-
lated of the results of the FEM analysis, with the electrodes, simulated with the electric
parameters of stainless steel. It is clear to see that the electrical resistivity of the nine drilling
cores in a vertical direction, measured with the basic test setup, is approximately 68 Ωm
with a very low deviation. The Comsol model with the electrodes’ electrical conductivity
set to the one of stainless steel with 1.4 × 106 S/m results in calculated resistivities that
are significantly higher, and additionally have a higher scatter, based on a large number of
test directions and the fact that only a part of the inhomogeneous specimen is analysed.
Due to the good conductivity of the electrodes in the model, in this case, the geometry
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factors that are calculated are too high and do not represent the realistic behaviour of
the test setup and the specimen. In particular, the vertical resistivity and the horizontal
one with single electrodes show the largest deviations, which can be explained by the
higher number of possible measurement directions and the lower specimen volume that is
observed each time.
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Figure 10. Calculated electrical resistivity of PC drilling cores in different electrode configurations,
simulated with the conductivity of steel.

In contrast to this, setting the electrical resistivity of the electrodes in the FEM model
to the one of concrete with 100 Ωm gives perfectly fitting results of the PC specimens in
comparison to the real values of the measurement from bottom to the top of the specimen
(see Figure 11). The scatter of the results is comparable to the results with the other k-factors,
which means that the variation is based on the measurement results and not on the FEM
modelling. Based on those results, it seems that there is only a marginal influence of the
electrodes that are connected to the surface of the specimen but not electrically conducted
for single measurements. Thus, the lower k-factors of the model, where the electrodes were
simulated as concrete, are used for the further examination of the results. This observed
behaviour of the results with the newly developed test method shows the opportunity to
directly measure the electrical resistance of drilling cores instead of preparing expensive
specimens by high effort to determine the fibre content. Here, the full area measurement in
a horizontal direction and the vertical resistance, measured by the side electrodes, have
sufficient accuracy and can later be used to build an estimation model.
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Figure 11. Calculated electrical resistivity of PC drilling cores in different electrode configurations,
simulated with the resistivity of concrete.

3.2.2. Statistical Analysis of the Test Results

After optimising the FEM model, the electrical resistivity of the concrete specimens in
different directions, as well as the variation for different specimens, were analysed.

As already seen for the cubic specimens, an increase of the fibre content results in
a lower electrical resistivity (see Figure 12). In contrast to the prior results, the difference
between the results of different fibre contents and the PC is much lower for the drilling
cores. As one can see, a fibre dosage of 40 kg/m3 only decreases the electrical resistivity
by about 20 Ωm, while another 40 kg/m3 lead to a decrease by about 10 Ωm. For the
cubic specimens cast together with the plates, where the drilling cores were extracted, the
electrical resistivity was determined to 29 Ωm for a fibre content of 40 kg/m3 respectively
18 Ωm for fibre content of 80 kg/m3. This fact is expected to lead to a lower accuracy of
discrimination of different concretes based on resistivity measurements. Since the electrical
resistivity of the PC is exactly in the same range for the drilling cores as for the cubic
specimens, and the results of the basic test setup fit those of the vertical advanced setup,
both factors, the test setup as well as the k-values by the Comsol model, can be eliminated
as reasons for the unexpected high resistivity values. A possible reason could be the
unknown fibre distribution inside the plates and so local deviations in the fibre content,
which would lead to higher resistivities based on lower fibre contents for some specimens.
On the other hand, in this case, there should also be some specimens with very high fibre
contents and thus very low electrical resistivity what is not the case here. The second
possible explanation of the high results could be the size of the specimens compared to
the fibre length and thus the high probability of truncated fibres by the drilling process,
while for the earlier tests, only complete fibres were present. Another thing that can be
seen in the results is a differing fibre orientation, compared to the cubic specimens, that can
be estimated by the similarity of the resistivity in a horizontal and vertical direction for the
SFRC drilling cores.

Regarding the variations of the different specimens, it was expected that the variations
for PC would be the lowest because, for SFRC, the inhomogeneity and anisotropy of
both concrete and fibres can be superpositioned and thus result in a higher variation. As
presented in Figure 13, the expected behaviour can be observed, especially for a fibre
content of 40 kg/m3, which shows the highest variations with up to 16%, while the PC
samples only show COVs of less than 8%. For specimens with a higher fibre content of
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80 kg/m3, the inhomogeneity of the fibres is tendentially lower than for lower fibre content,
and thus the COV is also lower, but still not on the level of PC.
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Figure 12. Calculated electrical resistivity of drilling cores depending on the fibre content.
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Figure 13. Coefficient of variation of the calculated electrical resistivity of drilling cores depending
on the fibre content.

Comparing the variations in different directions of the specimens, it can be concluded
that the variation in the vertical direction is slightly higher than for the horizontal direction.
An explanation could be the possible segregation processes through the compaction even
for robust concrete compositions, which result in small differences of the local water–cement
ratio in different heights of the specimens as well as in a higher number of large aggregates
in the lower zone of the specimen. In the horizontal direction for full area measurements
and single electrode measurements, no significant differences regarding the variations
can be detected, but it has to be considered that for the single electrode configuration, the
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number of measurements is three times higher than for the full area configuration because
of the different height levels of the test setup. In summary, the results show that, especially
for low fibre contents, but also for higher ones, several samples have to be analysed to gain
robust results that allow the calculation of the fibre content and orientation of a concrete
element, while for single specimens a comparably high inaccuracy can be expected.

3.2.3. Estimation of the Fibre Content

Based on the electrical resistivity, the fibre content of the concrete specimens was
calculated with Equation (2). While for the cubic specimens (Section 3.1.2) for a frequency
of the alternating current of 1 kHz, the fibre content was tendentially overestimated. For the
drilling cores, a massive underestimation can be observed (Figure 14). For the specimens
drilled of a plate with a fibre content of 40 kg/m3, a fibre content of 20.4 kg/m3 was
calculated, which corresponds to 51% of the actual mixed in fibres. Furthermore, for the
specimens, with a mixed fibre content of 80 kg/m3, the difference between the result and
expectation is even higher with a calculated fibre content of 28.1 kg/m3, representing 35%
of the expected content.
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Figure 14. Calculated fibre content of the drilling cores as a function of the actually added fibre content.

Both values are much too low, which is a result of the too high electrical resistivities
of the specimens that were already described in Section 3.2.2 and could not be explained.
In comparison to the results of earlier studies of the authors (see [2]) on casted cylindrical
specimens, where the fibre content has been overestimated by trend, it seems that the
open fibre ends and the cutting process of single fibres through the drilling process is
the reason for this behaviour. The presumably best explanation could be the number of
truncated fibres that lead to changes in the effective aspect ratio, which is used for the
calculations. Truncated fibres thus could be calculated with a different aspect ratio, and so
the estimation of the fibre content would be possible again. In this case, for the specimens
with a fibre content of 40 kg/m3, a resulting aspect ratio of 39.9 can be calculated by use
of Equation (3), when it is assumed that the fibre content inside the specimens is really
40 kg/m3. Concerning the fibre diameter of 1 mm, this can be interpreted as an average
fibre length of 39.9 mm, which means a huge number of the fibres were cut by the drilling
process. For the specimens with a fibre content of 80 kg/m3, the resulting fibre length to
have a correct estimation of the fibre content is even smaller, with approximately 31.4 mm.
Therefore, it can be concluded that the fibre length used for Equation (3) has to be adjusted
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and is a function of the fibre content itself with a decrease of the value by increasing fibre
content or decreasing specimen size. As an asymptotic behaviour of this correlation can be
assumed, an exponential curve was used to adjust Equation (3) based on the fibre content
and the smallest dimension of the specimen. In this case, a factor could be derived from the
results of the measurements that can be calculated by Equation (4) and has to be used to
calculate the adjusted aspect ratio for Equation (3).

ARad = AR ∗
((

1 −
l f

dmin

)
+

( l f

dmin

)
∗ Vf

−Φ∗(dmin−l f )
)

(4)

with: ARad: adjusted aspect ratio of the fibres
lf: fibre length in mm
dmin: smallest specimen dimension
Vf: fibre volume, calculated by lf and dmin in mm3

Φ: expected fibre volume fraction
For the use of Equation (4), several parameters of the fibres, such as the fibre reinforced

concrete, must be known or alternatively estimated. If there is no documentation of the fibre
type and planned fibre content available, a small sample of concrete has to be crushed, and
fibres have to be extracted to measure the actual fibre diameter and length. Additionally,
the equation has to be used iteratively in combination with Equation (3) and adapted to
determine the fibre content.

The calculation with the adjusted aspect ratio leads to significantly improved results
for the fibre content (see Figure 15). For the lower fibre content of 40 kg/m3 large variations
are visible with a minimum value of 25.1 kg/m3 and a maximum value of 50.5 kg/m3,
which gives an accuracy of approximately ±35% for single measurements, but a very
accurate value for a number of nine specimens. In contrast, for the higher fibre content of
80 kg/m3, the variations are smaller, with a minimum value of 67.8 kg/m3 and a maximum
value of 88.0 kg/m3. This results in an accuracy of ±15% for single specimens.
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Effects of the positions of the specimens inside the concrete plates, for example,
specimen 5 in the middle and specimens 7 to 9 with low edge distances, can only marginally
be detected, although the specimens 7 to 9 of both concretes show high values for the
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calculated fibre content, what could be a hint for fibre accumulations near the edges, which
lead to a higher fibre content near the corners. However, the small number of samples and
especially the inconsistent results for the other specimens makes it hard to decide if this
observation is just a random phenomenon or if the position of the specimen really has an
influence on the fibre content of the specimens.

One problem for future analysis is that either there must be an expected value for the
fibre content to calculate the adjusted aspect ratio, or the specimen dimensions have to be
chosen big enough to inhibit the problems with truncated fibres. Additionally, Equation (4)
has to be reviewed with a large database of different SFRCs. After the revision of equation
(4) based on an enlarged database, the test setup in combination with the FEM model
will give the opportunity to estimate the fibre content of concrete structures by extracting
drilling core samples, which only causes small damage to the whole structure.

3.2.4. Estimation of the Fibre Orientation

Although the determination of the fibre content seems to be problematic when no
information about the concrete is available, the fibre orientation can be calculated without
changes to any equations based on the electrical resistivity in different directions. As
presented in Figure 16, for fibre content of 40 kg/m3, an unexpectedly high orientation
factor in a vertical direction (mean value of 41%) is observed, while for each specimen, the
factor in a vertical direction is above 1/3, so most of the fibres are detected in a vertical
direction. In comparison to the cubic specimens, this behaviour is contrary but could be
based on the large dimensions of the concrete plate where the drilling cores have been
extracted from. The large dimensions lead to a high volume of concrete and thus a lower
effectivity of the compaction by the vibration table, which for smaller specimens is the most
influencing parameter for the fibre orientation. In addition, one can see a high scatter in
orientation that reaches from 34% to 50% for the vertical and 20% to 38% for the horizontal
direction. One interesting fact can be identified by comparing Figures 15 and 16. Where
a fibre orientation in a vertical direction of more than 40% is calculated, the calculated
fibre content is significantly lower than the expected value of 40 kg/m3, which also is the
mean value of all specimens. The same can be seen for specimen 8, which has the highest
calculated fibre content and the lowest fibre orientation coefficient in a vertical direction.
This correlation leads to the assumption that either the calculation of the global fibre
content based on the three directions is slightly inaccurate, or the higher vertical orientation
coefficient is a result of lacking horizontal fibres inside of single specimens. Again, a small
influence of the specimen position inside the concrete plate could be assumed by looking
at the results of specimens 7 to 9 with lower edge distances that show a higher horizontal
orientation factor. Based on the compaction process, perhaps some fibres tend to orientate
themselves on the walls of the formworks and thus are detected as horizontal fibres in the
specimens near the formwork. Vertical fibres near the formwork are not detected because
the distance between the drilling core and the formwork with half of the fibre length was
chosen high enough not to be influenced by the walls.

For the specimens with a higher fibre content of 80 kg/m3, the expected orientation of
more than 2/3 of the fibres in the horizontal direction is detected with maximum values up
to 44% and minimum values of about 28% (Figure 17). In addition, the uniformity of the
specimens is much higher, and only specimen number 5 shows a significantly lower vertical
orientation coefficient. A correlation of the calculated fibre content and orientation factors
was observed for the lower fibre content. In this case, it cannot be seen, probably based on
the more uniform fibre distribution and orientation and thus the better acceptance of the
calculated global values. Compared to the orientation of separately cast SFRC specimens,
the difference in the fibre orientation is clearly visible which means that the orientation of
fibres inside SFRC in contrast to the fibre content cannot be determined on such specimens
and a direct analysis of structural elements is necessary. Here, no big influences of the
specimen’s position inside the concrete plate can be observed because of the relatively
homogenous results in total. Only specimen number 5, which is in the centre of the plate,
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shows a significantly lower vertical fibre orientation factor, which can be explained by the
flow process of the concrete through the compaction.
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4. Conclusions

This paper presents the results of the evaluation phase of a newly developed non-
destructive test setup for the determination of the fibre content and orientation of steel fibres
in concrete based on electrical resistivity measurements by the investigation of drilling
cores. The basic test setup was already developed, and the FEM model was constructed in
the first part of this research project (see [2]). This part of the study contains the validation
process, which was performed on drilling core samples to enable statistical analysis and, of
course, conclusions regarding the accuracy of the method. The main findings of this work
can be summarised as follows:
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• In contrast to AC-IS, the used method, based on electrical resistivity measurements, is
much easier to use. However, similar models can be adapted to calculate both fibre
content and orientation. One limitation in the application is the small amount of data
that is used to calibrate the equations for the calculation of the fibre content for drilling
cores which are needed to analyse structural elements or buildings.

• Based on the data gained in this study, a coefficient dependent on the expected
value was found to calculate an adjusted fibre aspect ratio as a new coefficient for
the literature’s model for specimens with small dimensions where probably a huge
number of fibres are truncated through the drilling process and thus the effective fibre
length is much smaller than the original one.

• With this coefficient, the fibre content of drilling cores can be estimated in a satisfying
way, and thus the basis for the analysis of the fibre content of existing structures in
an easy way has been provided. Independent of such a factor, the orientation of the
fibres inside a specimen can be calculated comparative from the electrical resistivity in
different directions, which can be measured with the cylindrical test setup very easily
and fast.

• The results show that the newly developed method is suitable for rapid and non-
destructive structural diagnosis based on drilling cores using electrical resistivity mea-
surements.

• In further studies, the authors will focus on the verification of the correlation between
the fibre content and the coefficient for adjusting the aspect ratio, especially by a variety
of specimen size and fibre lengths. Additionally, different concretes with deviant
compositions will be analysed to see if those calculations are applicable in a universal
way or if additional adjustments are needed in some cases. Finally, the test setup
and the models will be adjusted for several geometries in case of precast elements or
existing structural elements.
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Appendix A

Table A1. Geometry factors k for the drilling core analysis, calculated by Comsol with an electrode
array with angular distances of 90◦ and electrical conductivity of the electrodes in Comsol model of
stainless steel: 1.4 × 106 S/m.

Electrode A Electrode B
k-Value

Height Level Angle Height Level Angle

all 0◦ all 180◦
0.071866

all 90◦ all 270◦
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Table A1. Cont.

Electrode A Electrode B
k-Value

Height Level Angle Height Level Angle

1 0◦ 1 180◦

0.026653
1 90◦ 1 270◦

3 0◦ 3 180◦

3 90◦ 3 270◦

2 0◦ 2 180◦
0.027555

2 90◦ 2 270◦

1 all 2 all
0.086957

2 all 3 all

1 all 3 all 0.054714

Table A2. Geometry factors k for the drilling core analysis, calculated by Comsol with an electrode
array with angular distances of 90◦ and electrical resistivity of the electrodes in the Comsol model of
concrete: 100 Ωm.

Electrode A Electrode B
k-Value

Height Level Angle Height Level Angle

all 0◦ all 180◦
0.063497

all 90◦ all 270◦

1 0◦ 1 180◦

0.023066
1 90◦ 1 270◦

3 0◦ 3 180◦

3 90◦ 3 270◦

2 0◦ 2 180◦
0.023768

2 90◦ 2 270◦

1 all 2 all
0.076614

2 all 3 all

1 all 3 all 0.048069
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