
����������
�������

Citation: Jeong, S.-Y.; Kim, Y.-K.

Deep Learning-Based Context-Aware

Recommender System Considering

Contextual Features. Appl. Sci. 2022,

12, 45. https://doi.org/10.3390/

app12010045

Academic Editors: Vassilis Charissis

and Dimitris Drikakis

Received: 20 September 2021

Accepted: 18 December 2021

Published: 21 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Deep Learning-Based Context-Aware Recommender System
Considering Contextual Features

Soo-Yeon Jeong and Young-Kuk Kim *

Department of Computer Science & Engineering, Chungnam National University, Daejeon 34134, Korea;
susan92@cnu.ac.kr
* Correspondence: ykim@cnu.ac.kr

Abstract: A context-aware recommender system can make recommendations to users by considering
contextual information such as time and place, not only the scores assigned to items by users.
However, as a user preferences matrix is expanded in a multidimensional matrix, data sparsity is
maximized. In this paper, we propose a deep learning-based context-aware recommender system
that considers the contextual features. Based on existing deep learning models, we combine a neural
network and autoencoder to extract characteristics and predict scores in the process of restoring input
data. The newly proposed model is able to easily reflect various type of contextual information and
predicts user preferences by considering the feature of user, item and context. The experimental
results confirm that the proposed method is mostly superior to the existing method in all datasets.
Also, for the dataset with data sparsity problem, it was confirmed that the performance of the
proposed method is higher than that of existing methods. The proposed method has higher precision
by 0.01–0.05 than other recommender systems in a dataset with many context dimensions. And it
showed good performance with a high precision of 0.03 to 0.09 in a small dimensional dataset.

Keywords: recommender systems; context-aware; deep learning; autoencoder; neural network

1. Introduction

A recommender system is used to give recommendations to allow users who desire
information to quickly find such information when given lots of information. When e-
commerce services were newly emerging, users had to invest a significant amount of time
to find what they wanted from lists of products or services. However, as recommender
systems became available, and users found the technology very useful, and the services
were able to increase their revenues. At present, recommender systems are adopted by e-
commerce services in various fields such as Netflix, Amazon, and YouTube. Many ongoing
researches are exploring how to apply them to each field [1–3].

Before smartphones became widely available, recommender systems were mainly ap-
plied to accessed on desktop computers. They operated based upon basic information—users’
purchase history or evaluation scores—and in the early days, recommender systems were
modeled by focusing only on users and items only. Considering that contextual factors
can impact users’ preferences when they select an item, such information can further im-
prove the performance of such systems. For instance, if users watch a movie alone, then
it is acceptable to apply the existing recommender system, but if they watch it with their
kids, then it is more likely that they will choose to watch G-rated or animated movies in
the future. When recommending music to users at home, focus can be placed on either
the latest music or their favorite music. However, if users listen to music when they are
near the sea, then exciting music or music related to the sea could be recommended. As
mentioned earlier, depending on whom they are with or where they are, their preference
can be changed. This is called a context-aware recommender system [4], and it is assumed
that users’ specific context can affect their preferences. At present, contextual information
can be collected from users’ smartphones or Internet of Things (IoT). The main types of

Appl. Sci. 2022, 12, 45. https://doi.org/10.3390/app12010045 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010045
https://doi.org/10.3390/app12010045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8329-9348
https://doi.org/10.3390/app12010045
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010045?type=check_update&version=2

Appl. Sci. 2022, 12, 45 2 of 12

contextual information that are used include time, weather, and place. Depending on the
recommended content, traffic conditions or companion information can be also used [5,6].
Categories like weather and location are referred to as contextual dimensions, and infor-
mation such as sunny, rainy, or gloomy weather, or presence at home or a movie theatre,
are called contextual conditions [7]. For a context-aware recommender system, we can
use smartphones or IoT to gather various contextual information, but the more contextual
information we consider to predict preferences, the more severe data sparsity becomes.
In addition, if there is no data regarding a user’s context, a context-aware recommender
system makes a recommendation based on similar users’ contextual data. However, it is
difficult to find reliable similar users in the case of data sparsity. The method to solve this
problem is matrix factorization (MF), which shows high performance in cases of sparse
data [8–12]. MF finds the factors that are assumed to potentially exist in the data based
on the latent factor model. It is highly effective for predicting empty values that are not
evaluated in the user/Item matrix.

Due to recent exponential increases in the amount of data that can be utilized, as
well as with rapid developments in PC hardware, deep learning has been applied to
various fields with excellent results [13–16]. Several ongoing researches are exploring
how to apply deep learning to recommender systems. More specifically, some researches
are exploring how to improve performance by integrating the main feature of existing
recommender systems, collaborative filtering, with deep learning [17–19]. A deep learning-
based recommender system has successfully improved an existing recommender system’s
performance and accuracy by extracting meaningful features from various data, such as
images and review texts [20,21]. However, there is not yet sufficient research on a deep
learning-based context-aware recommender system. Since the amount of context type to
consider keeps increasing, there is a need for a recommender system that can easily reflect
contextual information while alleviating sparsity issues. When there are similar users or
items, there can be similar contextual information. In such cases, it is possible to improve
the existing recommender system’s performance by reflecting the context features. In this
paper, we would like to propose a context-aware recommender system that integrates a
neural network and an autoencoder. MF, which shows great performance in the existing
context-aware recommender system cannot resolve nonlinear problem such as XOR. We
can use deep learning to resolve issues that could not be classified in the past. In addition,
to reflect contextual features other than user and item characteristics, an autoencoder
is combined with a neural network, enabling us to improve the accuracy of prediction
scores while extracting contextual features. The accuracy of performance evaluations will
be measured using music, food, and movie recommendation dataset. For comparison
purposes, the previously mentioned other models are subject to comparison.

The paper is organized as follows. Section 2 describes ongoing researches on the
existing context-aware recommender system and a deep learning-based recommender
system. Section 3 describes a deep learning-based context-aware recommender system
that considers contextual features, which is a newly proposed model. In Section 4, the
performance of newly proposed method and existing method will be evaluated. Finally, in
Section 5, conclusions will be drawn, and future research direction will be discussed.

2. Related Works

Earlier, it was mentioned that a context-aware recommender system requires various
type of contextual information. In the past, date and time information were mainly used
because of their easy availability. Nowadays, it is possible to gather contextual information,
such as place, time, and mood, from various users via IoT device sensors or smartphones.
As the amount of contextual information to consider increases, it becomes possible to
provide more detailed recommendations. At the same time, users are required to provide
detailed contextual data, and it is highly unlikely that they will evaluate every item in
every context. For this reason, in most cases, contextual data are sparse. To reduce the data
sparsity problem, we can use matrix factorization, a latent factor model based collaborative

Appl. Sci. 2022, 12, 45 3 of 12

filtering [22,23]. matrix factorization can be used effectively to predict that scores of items
not evaluated by users by finding the latent factors that exist between users and items.
Since matrix including contextual data are multidimensional, tensor factorization (TF) is
possible [24,25]. Although TF shows better performance than MF, due to its high complexity,
one can apply the weights of contextual features and maintain the user/item matrix. In this
model, multidimensional data, including context are expressed in a matrix. Item splitting,
in which an item and the contextual condition are handled as one fictious item, is used to
create a matrix [26,27]. However, there are many items and many contextual conditions for
each item. Thus, due to complexity and data sparsity in the item splitting process, not every
context is reflected. Factorization machine (FM) is more suitable when the dataset has many
features, such as tags and genres [28]. FM can be used to insert many features into a model
and then model the correlation among variables. Although it shows high performance
even with scarce data, it has only one latent vector for one feature. Thus, assuming there
are latent vectors A, B, and C, it is unable to distinguish between the impacts of A and B or
A and C.

As deep learning has become more popular, researchers have begun to successfully
apply deep learning models to recommender systems and utilize various data types to
improve performance. NN applied Neural Collaborative Filtering is simple and effective
network. To model interactions between users and items, a dual neural network has been
constructed [29]. NCF is characterized by the use of a latent vector obtained by applying
MF to user/item matrix. Autoencoder is an unsupervised learning algorithm with no
label. The model is run to reduce the input data to optimal dimensions and restore the
original data. The input and output of the model dimensions are same. An autoencoder’s
hidden layer is expressed by the characteristics of input data. The autoencoder is used
for matrix completion, as it can fill empty data (i.e., those that used to be null) within
the recommender system based on user/item characteristics. In addition, I-AutoRec and
U-AutoRec can restore original inputs by using user/item rating as inputs [30]. Recently,
there has been an increase in research on deep learning recommender systems that improve
accuracy is improved by reflecting the impacts on the user/item using the additional
information. Deep learning is useful for processing unstructured data such as text review
data or image data. Compared to the existing recommender system, it is possible to
handle a greater variety of data and assess the complex relationships among such data.
However, there is a lack of current research on the characteristics of contextual information
in the context-aware recommender system. In the past, recommendations were based on
the impacts of context on items or users. In some cases, the ratings evaluated by users
in a specific context are densely located near a certain rating. It can be high or low in
the users’ preference, depending on the other contexts. This means that there may be
correlation between contextual condition. An autoencoder can be used to automatically
find the correlation of contextual information without designating it in advance. There is
a recommender system using the characteristics of users or items using AE, and there is
a recommender system using AE for the characteristics of social networks of SNS [31,32].
Therefore, the proposed method utilizes AE to reflect the characteristics of the context. To
predict scores based on the contextual features obtained from an autoencoder, the newly
proposed model is trained by using scores as target while adjusting weights. This model in
the research will be discussed in detail in Section 3.

3. Proposed Model

This section discusses the proposed model, a deep learning-based context-aware
recommender system that integrates an autoencoder and neural network. First, a general
Autoencoder used to reveal the characteristics of context feature is explained. After that,
the proposed model is presented and its learning process are discussed.

Appl. Sci. 2022, 12, 45 4 of 12

3.1. Learning Context Using Autoencoder

In most cases, in a recommender system, collaborative filtering is classified into user-
based CF and item-based CF. After measuring each user’s (item’s) similarity, user (item)
correlations are assessed to make a proper recommendation. In prior research on recom-
mender systems, relatively limited focus was placed on the contextual feature. Additionally,
the contextual information applied to recent recommender systems mainly concerns time
and weather. In this paper, we aim to reflect contextual features and much more diverse
information by utilizing autoencoder. Within a recommender system, an autoencoder is
mainly used to reduce the dimension of input data or extract the characteristics of input
data. Focus is placed on the latter in the autoencoder used in the proposed model. Figure 1
illustrates a general autoencoder model in which context is used as an input data.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 13

3.1. Learning Context Using Autoencoder
In most cases, in a recommender system, collaborative filtering is classified into user-

based CF and item-based CF. After measuring each user’s (item’s) similarity, user (item)
correlations are assessed to make a proper recommendation. In prior research on
recommender systems, relatively limited focus was placed on the contextual feature.
Additionally, the contextual information applied to recent recommender systems mainly
concerns time and weather. In this paper, we aim to reflect contextual features and much
more diverse information by utilizing autoencoder. Within a recommender system, an
autoencoder is mainly used to reduce the dimension of input data or extract the
characteristics of input data. Focus is placed on the latter in the autoencoder used in the
proposed model. Figure 1 illustrates a general autoencoder model in which context is used
as an input data.

Figure 1. Context based Autoencoder.

In Figure 1, according to the left input, the contextual dimension is composed of
vector 𝑣௖೙, where 𝑛 is the number of contextual dimensions. The more layers that are
present, the higher the accuracy. However, the presence of more layers does not always
result in better performance; experimentation is required to set the proper number of
layers. The formulas used to train autoencoder and minimize errors are described in the
next sub-section. 𝑚𝑖𝑛ఏ ෍‖𝑋 − 𝑋ᇱ‖ଶ௩∈௏ (1)

X indicates input data. Input data X is passed through AE and comes out as the output 𝑋ᇱ. Formula (1) indicates learning while reducing errors between X and 𝑋ᇱ. 𝜃 = {𝑤, 𝑏}
indicates the model parameters. 𝑘th layer output 𝑥௞ can be formulated as follows.

𝑥௞ = 𝜎൫𝑤௞𝑥௞ିଵ + 𝑏௞൯ (2)

𝑤௞ represents weight and 𝑏௞ represents bias. 𝜎(𝑥) is the activation function and we
applied Exponential Linear Unit (ELU). ELU is the solution for dying ReLU problems
where 0 is outputted when it has a negative value.

Figure 1. Context based Autoencoder.

In Figure 1, according to the left input, the contextual dimension is composed of vector
vcn , where n is the number of contextual dimensions. The more layers that are present, the
higher the accuracy. However, the presence of more layers does not always result in better
performance; experimentation is required to set the proper number of layers. The formulas
used to train autoencoder and minimize errors are described in the next sub-section.

min
θ

∑
v∈V
‖X− X′‖2 (1)

X indicates input data. Input data X is passed through AE and comes out as the output
X′. Formula (1) indicates learning while reducing errors between X and X′. θ = {w, b}
indicates the model parameters. kth layer output xk can be formulated as follows.

xk = σ
(

wkxk−1 + bk
)

(2)

wk represents weight and bk represents bias. σ(x) is the activation function and we applied
Exponential Linear Unit (ELU). ELU is the solution for dying ReLU problems where 0 is
outputted when it has a negative value.

σ(x) =
{

x i f x > 0
α(ex − 1) i f x ≤ 0

(3)

In Figure 1, the hidden layer in the middle represents the context when the input
data is context. Focusing on this, parts of the newly proposed model in Section 3.2 will
be learned.

Appl. Sci. 2022, 12, 45 5 of 12

3.2. Deep Learning

Basically, our motivation is to capture the contextual features to improve the rec-
ommender system with neural networks. The newly proposed framework is illustrated
in Figure 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 13

𝜎(𝑥) = ൜𝑥 𝑖𝑓 𝑥 ൐ 0𝛼(𝑒௫ − 1) 𝑖𝑓 𝑥 ൑ 0 (3)

In Figure 1, the hidden layer in the middle represents the context when the input data
is context. Focusing on this, parts of the newly proposed model in Section 3.2 will be
learned.

3.2. Deep Learning
Basically, our motivation is to capture the contextual features to improve the

recommender system with neural networks. The newly proposed framework is illustrated
in Figure 2.

Figure 2. Neural Context-aware Recommender Systems.

The proposed model is formed by connecting multiple AEs and NN. The input data
include multiple feature vectors. The input and output data for the autoencoder
(discussed in Section 3.1) include user vectors, item vectors and context vectors. The
neural network is trained by using score as targets from the hidden layer in the middle.
When the dataset has n (x, y) pairs, x represents the data record containing users, items
and contextual dimension, and y represents the score given by the user. Each field of x is
expressed as a binary vector with one-hot encoding. This is similar to that of factorization
machine. In Figure 2, 𝑦௨௜௖ is the actual score obtained from the evaluation of item 𝑖 by
user 𝑢 in the context 𝑐, while 𝑦ො௨௜௖ is the predicted score. 𝑦ො௨௜௖ = 𝜎(𝑤𝑥௞/ଶ + 𝑏) (4)

Assuming the total number of layers is 𝑘, then 𝑦ො௨௜௖ can be obtained from layer 𝑘/2.
Also, 𝑥௞/ଶ can be obtained from formula (2). To train the proposed model, there are two
processes one must go through. Frist, as shown in Figure 2, it must minimize the
difference between output’s s 𝑣௨ᇱ, 𝑣௜ᇱ, and 𝑣௖ᇱ and input’s 𝑣௨, 𝑣௜ and 𝑣௖ where context
which is the input data is separated as the context dimension. This process can be
illustrated by formula (5). 𝐿஺ா = minఏ ෍‖𝑋 − 𝑋ᇱ‖ଶ௩∈௏ + α ෍(‖𝑤஺ா‖ଶ + ‖𝑏஺ா‖ଶ)௟ (5)

To prevent overfitting, regularization terms are added in Formula (1).

Figure 2. Neural Context-aware Recommender Systems.

The proposed model is formed by connecting multiple AEs and NN. The input data
include multiple feature vectors. The input and output data for the autoencoder (discussed
in Section 3.1) include user vectors, item vectors and context vectors. The neural network is
trained by using score as targets from the hidden layer in the middle. When the dataset has
n (x, y) pairs, x represents the data record containing users, items and contextual dimension,
and y represents the score given by the user. Each field of x is expressed as a binary vector
with one-hot encoding. This is similar to that of factorization machine. In Figure 2, yuic is
the actual score obtained from the evaluation of item i by user u in the context c, while ŷuic
is the predicted score.

ŷuic = σ
(

wxk/2 + b
)

(4)

Assuming the total number of layers is k, then ŷuic can be obtained from layer k/2.
Also, xk/2 can be obtained from formula (2). To train the proposed model, there are two
processes one must go through. First, as shown in Figure 2, it must minimize the difference
between output’s vu

′, vi
′, and vc

′ and input’s vu, vi and vc where context which is the input
data is separated as the context dimension. This process can be illustrated by formula (5).

LAE = min
θ

∑
v∈V
‖X− X′‖2

+ α∑
l

(
‖wAE‖2 + ‖bAE‖2

)
(5)

To prevent overfitting, regularization terms are added in Formula (1).
Second, using the feature obtained from formula (5), ŷuic is obtained. Training is

performed to minimize the difference between yuic and ŷuic, as expressed as Formula (6).

LNN = min
θ

∑
y∈Y

(yuic − ŷuic)
2 + β∑

l

(
‖wNN‖2 + ‖bNN‖2

)
(6)

The newly proposed model learns by applying Formulas (5) and (6) at the same time
as well as Adaptive Moment Estimation (Adam). Adam is one of the most frequently used
optimization methods. The Algorithm 1 is summarized based on the above derivation.

Appl. Sci. 2022, 12, 45 6 of 12

Algorithm 1 Algorithm of Proposed Model

Input: User vector U, Item vector I, Context vector Cn, Learning rate N, number of iterations k
Output: parameter wAE, wNN , bAE, bNN , Rating vector Y

Randomly initialize parameters wAE, wNN , bAE, bNN
for i = 1 to k do

for u ∈ U do
Update wAE, bAE using LAE

′

Update wNN , bNN using LNN
′

end for
end for

It is necessary to verify whether our newly proposed method, which includes both
autoencoder and neural network, is better than the existing method, which using either
autoencoder or neural network. Therefore, to compare the proposed and existing model,
Section 4 measures the performance of a context-aware recommender system that uses
neural network and compares it to the context-aware recommender system that excludes
the steps in Formula (5). The input data is those shown in Figure 2. The only output data is
ŷuic, which is learned by using Formula (6).

4. Experiments
4.1. Datasets

To test the newly proposed method, a total of 3 datasets in Table 1 are used. The
datasets are provided by CARSKit [33], and DePaulMovie, InCarMusic and Res-taurant
(Tijuana) were used.

Table 1. Context-aware Datasets.

Movie Music Restaurant

#of users 123 42 50
#of items 79 139 41

#of ratings 5043 4013 896
Dimension 3 8 1

Rating Scale 1–5 0–5 1–5
Data sparsity 94.5 99.9 93.4

• DePaulMovie dataset has a total of 3 contextual dimensions—Time, Location and
Companion. Time has a total of 2 contextual conditions—Weekend and Weekday.
Location has a total of 2 contextual conditions—Home and Cinema. Companion has
a total of 3 contextual conditions—Alone, Family and Partner. DePaulMovie has the
smallest set of context features.

• InCarMusic dataset has a total of 8 contextual dimensions—Driving Style, Road type,
Landscape, Sleepiness, Traffic conditions, Mood, Weather and Natural Phenomena. In
total, there exist a total of 26 contextual conditions.

• Restaurant (Tijuana) dataset is formed by combining time (Weekday, Weekend) and
location(School, Home, Work).

5-fold cross validation is performed, 80% of users are used as training sets while 20%
are used as test sets.

4.2. Evaluation Measures

There are many types of evaluation measures for evaluating the performance of a
recommender system. For example, there are RMSE (Root Mean Square Error) and MAE
(Mean Average Error) that are used to measure the errors of predicted scores. Methods for
making a recommendation based on preferences, not scores, include the precision and recall
methods. The dataset is expressed as scores, not preferences, but in the actual recommender
system, users do not see scores. Instead, based on the ranking of predicted scores, the best

Appl. Sci. 2022, 12, 45 7 of 12

item is recommended. To measure performance based on ranking, the precision and MAP
(Mean Average Precision) methods are used. Precision@N is shown as follows.

Precision@N =
|{relevant items} ∩ {top− N items}|

N
(7)

Precision represents the ratio of the items in which the user is interested to the rec-
ommended items. The list of items recommended based on the <User, Context> pair is
provided to measure the hit ratio. To determine a preference, a score of 4 or high is set as the
threshold. relevant items means items with a rated score of 4 or more, and items common
to relevant items and top− N items are included in the molecule. When recommending
an item in a recommender system, which item is at the top of the list is critical. However,
the precision measurement method does not take the order of appearance into account.
MAP can be used to measure accuracy while considering the order of appearance. Before
performing MAP, AP (Average Precision) should be obtained. AP@N can be obtained
from Formula (8).

AP@N = 1
m

N
∑

k=1

(
P(k)i f kth item was relevant

)
= 1

m

N
∑

k=1
P(k)rel(k)

rel(k) =
{

1, i f relevant
0, otherwise

(8)

In the above formula, m represents the number of relevant items, and P(k) is the
precision value up to index k. In addition, rel(k) can be either 1 or 0 depending on whether
the item was relevant or not. AP measures the accuracy of recommendations to one user,
while MAP pertains to all users, U. MAP@N can be obtained via Formula (9). In the
experiment for the newly proposed method, N is set to 10.

MAP@N =
1
|U|

|U|

∑
u=1

(AP@N)u (9)

4.3. Compared Methods

Non-contextual algorithms, User KNN, SVD++ and PMF (Probabilistic Matrix Factor-
ization), are included. The neighbor of userKNN was set to 10, the number of factors was
set to 50 for SVD, and 100 for PMF.

We selected CAMF (Context-aware Matrix Factorization), ItemSplitting-BiasdMF, and
CSLIM (Contextual Sparse Linear Method) as state-of-the-art context-aware recommenda-
tions to compare with the proposed model. CAMF set the factor to 200 and ItemSplitting-
BiasdMF and CSLIM to 100. FM set the factor to 300 and PMF to 50. In addition, it is
necessary to verify whether a method combining AE and NN offers better performance
than the existing deep learning method in terms of accuracy of predicting scores. For
comparison purposes, NN that outputs score only without restoring input data is used.

4.4. Results of the Experiments

In the development environment, the operating system was windows10, RAM was
16G, the language was Python, and the development tool was a Jupyter notebook.

The following figure shows the experiment result to see the precision depending on
learning rate.

We use the Music, Restaurant, and Movie datasets. The results are shown in Figure 3.
Although the best value is different for each dataset, most of them showed good results
when the learning rate was 0.001.

Appl. Sci. 2022, 12, 45 8 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 13

4.3. Compared Methods
Non-contextual algorithms, User KNN, SVD++ and PMF (Probabilistic Matrix

Factorization), are included. The neighbor of userKNN was set to 10, the number of factors
was set to 50 for SVD, and 100 for PMF.

We selected CAMF (Context-aware Matrix Factorization), ItemSplitting-BiasdMF,
and

(a) Music

(b) Restaurant

(c) Movie

Figure 3. Precision on Music, Restaurant, and Movie datasets.

The following table shows the test results for the music, restaurant, and movie
datasets obtained from the proposed method and the compared method.

Figure 3. Precision on Music, Restaurant, and Movie datasets.

The following table shows the test results for the music, restaurant, and movie datasets
obtained from the proposed method and the compared method.

Tables 2 and 3 show the MAP and precision for the dataset obtained from the proposed
method and the compared method. If the datasets are sorted in decreasing order of
contextual dimensions, they are sorted as restaurant, movie and music. For the restaurant
dataset, the non-contextual algorithm (i.e., in other words, the user KNN) yields similar
results to those obtained from the proposed method. However, for the movie and music
datasets, which have relatively higher contextual dimensions, the proposed method yields

Appl. Sci. 2022, 12, 45 9 of 12

much better performance than the user KNN. In addition, the proposed method for the
restaurant dataset yields precision that are about 6% higher than the PMF. Similar to the
user KNN, the proposed method yields better performance than the PMF for the movie
and music datasets. For the restaurant dataset, the neural network-based method with
deep learning technology and the proposed method yields better performance than other
MF based methods, except for the PMF based method. The restaurant dataset has fewer
contextual dimensions, so there is no significant difference in performance between the
proposed method and other methods. However, the movie dataset has relatively higher
contextual dimensions than the restaurant dataset, so for the movie dataset, the proposed
method yields much better performance than other methods. Also, the music dataset with
the highest contextual dimensions, shows much better performance than the other models.
From this, we can conclude that for the dataset with the highest contextual dimensions, the
proposed method yields much better performance than the existing methods. Finally, if the
NN based method is compared to the proposed method, it seems that for every dataset,
the proposed method yields higher precision and MAP. For the music dataset with high
data sparsity, the proposed method yields about 17% higher precision than PMF’s and
shows about 4% higher MAP than ItemSplitting’s. For the movie dataset, the proposed
method yields about 5% higher precision than PMF’s and shows about 2 times higher MAP
than userKNN’s. For the restaurant dataset, the proposed method yields about 6% higher
precision than PMF’s and shows about 8% higher MAP than ItemSplitting’s. From these
results, we can conclude that the proposed method is more effective than the context-aware
recommender system in which deep learning-based techniques are applied.

Table 2. Performance comparison result in Precision.

Precision@10 Music Restaurant Movie

UserKNN 0.010082 0.062889 0.063732
SVD++ 0.045452 0.062174 0.059719

CAMF_CI 0.024234 0.050423 0.058384
ItemSplitting-

BiasedMF 0.045365 0.06249 0.054859

CSLIM_CI 0.003996 0.012763 0.004598
PMF 0.048151 0.068362 0.06807
FM 0.010663 0.047136 0.027956

NN based model 0.050387 0.059913 0.076811
Proposed model 0.056760 0.072748 0.102263

Table 3. Performance comparison result in MAP.

MAP@10 Music Restaurant Movie

UserKNN 0.036538 0.110237 0.107568
SVD++ 0.171105 0.17123 0.070776

CAMF_CI 0.070767 0.121712 0.087723
ItemSplitting-

BiasedMF 0.188662 0.175772 0.07685

CSLIM_CI 0.006741 0.066281 0.011318
PMF 0.179647 0.203266 0.095294
FM 0.037309 0.086927 0.073874

NN based model 0.147583 0.175486 0.224978
Proposed model 0.196248 0.190286 0.268133

The proposed method shows better performance than the existing recommender
system in datasets with high data sparsity, so it can be said to be a supplementary model
for the problem of data sparsity. Also, considering that the accuracy of the recommender
system is high, it can be seen that it is effective for nonlinear data by using deep learning.

Appl. Sci. 2022, 12, 45 10 of 12

5. Conclusions

In the paper, we propose a deep learning-based context-aware recommender system
for capture context feature. Also, a method for learning sparse data that employs autoen-
coder and neural network is proposed to overcome, the data sparsity problem faced by
the existing context-aware recommender system. To learn contextual features, a method
for integrating autoencoder for users, items and context is proposed. The model combines
autoencoder, a non-supervised learning model that finds input characteristics by learning
model and neural network, a supervised learning method that uses score output as targets.
Users, items and context dimension are set as inputs and outputs so that the scores reflect
each one’s characteristics and relationships. This method can be easily applied when there
is additional contextual information. The performance results of the proposed method
show that it performs better on all datasets compared to most of the comparisons. In
addition, it performs better than the comparison target for a dataset with a large amount
of contextual information, since the proposed model further reduces the data sparsity
problem. Because the proposed model is further reduced to the data sparsity problem. Also,
the proposed model was better than only using the deep learning based neural network.
It can be seen as a prediction of users’ preference while capturing the context feature.
Although the proposed method showed good results, there are some limitations. First,
the proposed method has a slower response time than the existing recommender system.
It was faster than user KNN, which measures similarity with FM, but slower than other
methods. Second, an experiment was conducted using a data set suitable for the purpose of
this paper, but the amount of data was small. In the future, we plan to conduct experiments
by selecting a larger dataset.

In future research, efforts will be made to study a deep learning context-aware rec-
ommender system that reflects reliability. At present, the deep learning recommender
system shows good performance, but it is impossible to interpret the results. In the case
of a deep learning-based context-aware recommender system, it is impossible to know
what kind of context affects the user’s preference. The existing recommender system
measures the reliability of the recommendation list (number# of similar users and data
distribution/concentration), reduces the score of an item with lower reliability even if it
received a high score, and recommends items with higher reliability and higher scores. The
main limitation of the deep learning context-aware recommender system is that it is unable
to logically explain why the recommendation is made only when the result is delivered.
Therefore, we plan to study how to reflect the reliability measured based on errors between
the data restored with AE and the actual input data in the proposed model.

Author Contributions: Conceptualization, S.-Y.J. and Y.-K.K.; methodology, S.-Y.J.; investigation,
S.-Y.J.; validation S.-Y.J. and Y.-K.K.; writing—review and editing, S.-Y.J.; supervision Y.-K.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by research fund of Chungnam National University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/irecsys/CARSKit (accessed on 15 July 2020).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/irecsys/CARSKit

Appl. Sci. 2022, 12, 45 11 of 12

References
1. Covington, P.; Adams, J.; Sargin, E. Deep Neural Networks for YouTube Recommendations. In Proceedings of the 10th ACM

Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 191–198. [CrossRef]
2. Esmaeili, L.; Mardani, S.; Golpayegani, S.A.H.; Madar, Z.Z. A novel tourism recommender system in the context of social

commerce. Expert Syst. Appl. 2020, 149, 113301. [CrossRef]
3. Jiang, P.; Zhu, Y.; Zhang, Y.; Yuan, Q. Life-stage prediction for product recommendation in e-commerce. In Proceedings of the

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia,
10–13 August 2015; pp. 1879–1888. [CrossRef]

4. Adomavicius, G.; Tuzhilin, A. Context-aware recommender systems. In Recommender Systems Handbook; Springer: Boston, MA,
USA, 2011; pp. 217–253.

5. Li, J.; Sun, C.; Lv, J. TCMF: Trust-Based Context-Aware Matrix Factorization for Collaborative Filtering. In Proceedings of the 2014
IEEE 26th International Conference on Tools with Artificial Intelligence, Limassol, Cyprus, 10–12 November 2014; pp. 815–821.
[CrossRef]

6. Verbert, K.; Manouselis, N.; Ochoa, X.; Wolpers, M.; Drachsler, H.; Bosnic, I.; Duval, E. Context-aware recommender systems for
learning: A survey and future challenges. IEEE Trans. Learn. Technol. 2012, 5, 318–335. [CrossRef]

7. Zheng, Y.; Mobasher, B.; Burke, R.D. Incorporating Context Correlation into Context-aware Matrix Factorization. In Proceedings
of the 2015 International Conference on Constraints and Preferences for Configuration and Recommendation and Intelligent
Techniques for Web Personalization, Buenos Aires, Argentina, 25–27 July 2015; Volume 1440.

8. Akhmatnurov, M.; Ignatov, D.I. Context-Aware Recommender System Based on Boolean Matrix Factorization. CEUR Workshop
Proc. 2015, 1466, 99–110.

9. Hu, Y.; Koren, Y.; Volinsky, C. Collaborative filtering for implicit feedback datasets. In Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 263–272. [CrossRef]

10. Liu, Q.; Wu, S.; Wang, L. Cot: Contextual operating tensor for context-aware recommender systems. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 203–209.

11. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]
12. Bokde, D.; Girase, S.; Mukhopadhyay, D. Matrix factorization model in collaborative filtering algorithms: A survey. Procedia

Comput. Sci. 2015, 49, 136–146. [CrossRef]
13. Xue, H.J.; Dai, X.; Zhang, J.; Huang, S.; Chen, J. Deep Matrix Factorization Models for Recommender Systems. In Proceedings of

the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; Volume 17,
pp. 3203–3209. [CrossRef]

14. Mu, R.; Zeng, X.; Han, L. A survey of recommender systems based on deep learning. IEEE Access 2018, 6, 69009–69022. [CrossRef]
15. Tay, Y.; Luu, A.T.; Hui, S.C. Multi-Pointer Co-Attention Networks for Recommendation. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2309–2318. [CrossRef]
16. Frank, M.; Drikakis, D.; Charissis, V. Machine-learning methods for computational science and engineering. Computation 2020, 8,

15. [CrossRef]
17. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput.

Surv. (CSUR) 2019, 52, 1–38. [CrossRef]
18. Kim, D.; Park, C.; Oh, J.; Lee, S.; Yu, H. Convolutional matrix factorization for document context-aware recommendation. In

Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 233–240.
[CrossRef]

19. Bobadilla, J.; Alonso, S.; Hernando, A. Deep Learning Architecture for Collaborative Filtering Recommender Systems. Appl. Sci.
2020, 10, 2441. [CrossRef]

20. Shoja, B.M.; Tabrizi, N. Customer reviews analysis with deep neural networks for e-commerce recommender systems. IEEE
Access 2019, 7, 119121–119130. [CrossRef]

21. Tuinhof, H.; Pirker, C.; Haltmeier, M. Image-based fashion product recommendation with deep learning. In Proceedings of the
International Conference on Machine Learning, Optimization, and Data Science, Volterra, Italy, 13–16 September 2018; Springer:
Cham, Swizerland, 2018; pp. 472–481. [CrossRef]

22. Wang, H.; Wang, N.; Yeung, D.Y. Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015; pp. 1235–1244.

23. Baltrunas, L.; Ludwig, B.; Ricci, F. Matrix factorization techniques for context aware recommendation. In Proceedings of the Fifth
ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011; pp. 301–304. [CrossRef]

24. Rendle, S.; Schmidt-Thieme, L. Pairwise interaction tensor factorization for personalized tag recommendation. In Proceedings of
the Third ACM International Conference on Web Search and Data Mining, New York, NY, USA, 3–6 February 2010; pp. 81–90.
[CrossRef]

25. Karatzoglou, A.; Amatriain, X.; Baltrunas, L.; Oliver, N. Multiverse recommendation: N-dimensional tensor factorization for
context-aware collaborative filtering. In Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain,
26–30 September 2010; pp. 79–86. [CrossRef]

26. Baltrunas, L.; Ricci, F. Experimental evaluation of context-dependent collaborative filtering using item splitting. User Modeling
User-Adapt. Interact. 2014, 24, 7–34. [CrossRef]

http://doi.org/10.1145/2959100.2959190
http://doi.org/10.1016/j.eswa.2020.113301
http://doi.org/10.1145/2783258.2788562
http://doi.org/10.1109/ictai.2014.126
http://doi.org/10.1109/TLT.2012.11
http://doi.org/10.1109/icdm.2008.22
http://doi.org/10.1109/MC.2009.263
http://doi.org/10.1016/j.procs.2015.04.237
http://doi.org/10.24963/ijcai.2017/447
http://doi.org/10.1109/ACCESS.2018.2880197
http://doi.org/10.1145/3219819.3220086
http://doi.org/10.3390/computation8010015
http://doi.org/10.1145/3285029
http://doi.org/10.1145/2959100.2959165
http://doi.org/10.3390/app10072441
http://doi.org/10.1109/ACCESS.2019.2937518
http://doi.org/10.1007/978-3-030-13709-0_40
http://doi.org/10.1145/2043932.2043988
http://doi.org/10.1145/1718487.1718498
http://doi.org/10.1145/1864708.1864727
http://doi.org/10.1007/s11257-012-9137-9

Appl. Sci. 2022, 12, 45 12 of 12

27. Phuong, T.M.; Phuong, N.D. Graph-based context-aware collaborative filtering. Expert Syst. Appl. 2019, 126, 9–19. [CrossRef]
28. Rendle, S.; Gantner, Z.; Freudenthaler, C.; Schmidt-Thieme, L. Fast context-aware recommendations with factorization machines.

In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing,
China, 24–28 July 2011; pp. 635–644. [CrossRef]

29. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.

30. Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th
International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 111–112. [CrossRef]

31. Zhong, S.-T.; Huang, L.; Wang, C.-D.; Lai, J.-H.; Yu, P.S. An autoencoder framework with attention mechanism for cross-domain
recommendation. IEEE Trans. Cybern. 2020, 1–13. [CrossRef] [PubMed]

32. Pan, Y.; He, F.; Yu, H. Learning social representations with deep autoencoder for recommender system. World Wide Web 2020, 23,
2259–2279. [CrossRef]

33. Zheng, Y.; Mobasher, B.; Burke, R. Carskit: A java-based context-aware recommendation engine. In Proceedings of the 2015 IEEE
International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015; pp. 1668–1671.
[CrossRef]

http://doi.org/10.1016/j.eswa.2019.02.015
http://doi.org/10.1145/2009916.2010002
http://doi.org/10.1145/2740908.2742726
http://doi.org/10.1109/TCYB.2020.3029002
http://www.ncbi.nlm.nih.gov/pubmed/33156800
http://doi.org/10.1007/s11280-020-00793-z
http://doi.org/10.1109/icdmw.2015.222

	Introduction
	Related Works
	Proposed Model
	Learning Context Using Autoencoder
	Deep Learning

	Experiments
	Datasets
	Evaluation Measures
	Compared Methods
	Results of the Experiments

	Conclusions
	References

