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Abstract: Nanostructured metal oxide semiconductors (MOS) are considered proper candidates to
develop low cost and real-time resistive sensors able to detect volatile organic compounds (VOCs),
e.g., diacetyl. Small quantities of diacetyl are generally produced during the fermentation and
storage of many foods and beverages, conferring a typically butter-like aroma. Since high diacetyl
concentrations are undesired, its monitoring is fundamental to identify and characterize the quality
of products. In this work, a tin oxide sensor (SnO2) is used to detect gaseous diacetyl. The effect of
different working atmospheres (air, N2 and CO2), as well as the contemporary presence of ethanol
vapors, used to reproduce the typical alcoholic fermentation environment, are evaluated. SnO2 sensor
is able to detect diacetyl in all the analyzed conditions, even when an anaerobic environment is
considered, showing a detection limit lower than 0.01 mg/L and response/recovery times constantly
less than 50 s.

Keywords: nanomaterials; MOS; resistive sensor; tin oxide; fermentation; diacetyl

1. Introduction

Gas sensors are of great interest due to their numerous applications and the possibility
for a real-time analysis of several analytes [1–3]. Among these, resistive gas sensors exhibit
attractive advantages compared with other gas sensors, such as fast and accurate gas
detection, flexibility, low cost and small size [4]. The development of high-performance
resistive gas sensors requires suitable gas-sensing materials in terms of both physical
and chemical properties, such as morphology, crystalline structure, specific surface area
and active sites. Since, as is well known, these characteristics all affect the performance
of gas sensors, exploring and developing innovative materials has received attention in
scientific research in recent years [5]. Attention is concentrated on the development of
nanostructured materials, endowed with better sensing properties if compared to the same
bulk material, such as carbon-based materials (in the form of carbon dots, nanotubes and
graphene) [6–9], polymeric fibers (hybrid nanofibers) [10,11] and metal oxides semiconduc-
tor (MOS, as nanospheres, nanowires and nanosheets) [12–17]. Indeed, the large surface
areas of nanomaterials ensure more active sites, enabling fast charge transfers and efficient
gas-sensitive reactions [4].

Due to their widespread use in a variety of applications, in the recent years time-
consuming, complex, and expensive traditional techniques have been substituted by these
types of sensors. It has been especially evident in the field of volatile organic compound
(VOC) detection, where traditional techniques, such as chromatography-mass spectrome-
try [18–21], generally lack ease of use, need specialized personnel and elaborate protocols,
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and are characterized by high cost of the devices and insufficient flexibility. When early
warning and quality monitoring applications are requested, resistive sensors are valuable
alternatives. Indeed, in some specific applications, VOCs, such as diacetyl, need to be
continuously monitored [22]. During the alcoholic fermentation processes of wine, beer
and distilled beverages, diacetyl is naturally produced in small quantities, and it confers a
characteristic butter-like aroma [23–27]. However, high diacetyl concentration (>5 mg/L)
imparts an undesirable flavor indicating an alteration in the production or storage pro-
cess. The time-monitoring of diacetyl concentrations can contribute to identifying and
characterizing the quality of products [22]. Moreover, during this process, the so-called
alcoholic fermentation, carbon dioxide and ethanol are produced too, and the influence
of the atmosphere composition was reported to be fundamental in diacetyl detection and
monitoring [28]. Till now, few works reported the detection of gaseous diacetyl mainly
by means of complex array sensors [27,29,30]. Itoh et al. used variously-doped SnO2 and
CeO2 to detect diacetyl among other volatile compounds [27], whereas PPy–V2O5 and
PPy–ZnO nanocomposite fibers were successfully used by Pirsa et al. to discriminate the
presence of diacetyl in fermented products [29]. Bailey et al. used an array of conducting
polymers mounted on an electronic chip to discriminate between beers and to recognize
the presence of volatile compounds, such as diacetyl [30].

In this work, tin oxide (SnO2) is used to develop a high-performance resistive MOS
sensor for the detection of VOCs [17,31], diacetyl in particular, thanks to the peculiar elec-
trical properties of its microsphere structure [13]. The detection of diacetyl is performed
by sampling the head space above the liquid solutions at different diacetyl concentrations
(0.2–3.2 mg/L). The sensor has been tested using both aqueous and alcoholic (5% ethanol)
diacetyl solutions in different carrier/regeneration gases, able to reproduce the typical
alcoholic fermentation environment, rich in carbon dioxide (CO2) and poor of oxygen. The
revealed performance shows the promising ability of the of SnO2 sensor to discriminate
between different diacetyl concentrations in anaerobic atmospheres and in the contempo-
rary presence of ethanol, generally characterized by a strong signal, identified as the major
constituent of the headspace of alcoholic beverages [32]. Response and recovery time are
also considered for a better investigation.

2. Materials and Methods
2.1. Tin Oxide Preparation and Charactetrization

A facile hydrothermal procedure was used to prepare SnO2 powder, as reported
elsewhere [13]. In detail, SnCl2(II), used as the tin oxide precursor, was solubilized in
ethanol (7.57 g/L). In order to fully dissolve SnCl2, the mixture was firstly sonicated for
20 min and then it was transferred into a Teflon-lined stainless-steel autoclave at 200 ◦C for
6 h and 40 min. The solution was finally cooled down to room temperature. The obtained
yellow solid was collected by centrifugation and washed in ethanol until the total removal
of chloride ions. After ethanol washing the sample was dried at 80 ◦C overnight. The
sample preparation procedure is schematically depicted in Figure 1.
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Figure 1. Synthesis procedure of SnO2 metal oxide.

The sample was investigated using X-ray diffraction (XRD) analysis in the 2θ range
from 10◦ to 65◦ (Cu Kα λ = 1.54056 Å) using steps of 0.02◦ and a count time of 5 s per step,
with a temperature effect evaluation within 25–500 ◦C by using a PANalytical Empyrean
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diffractometer equipped with an Anton Paar heat chamber. Peaks were attributed in accor-
dance with the Crystallography Open Database (COD). The microstructure’s morphology
was studied by scanning electron microscopy, SEM, (Phenom Pro X).

2.2. Sensor Preparation and Testing

The sensing film was realized using a tin oxide/ethanol mixture sonicated for 15 min,
in order to obtain a homogeneous paste, and deposited on an alumina planar substrate
(6 mm × 3 mm) supplied with interdigitated Pt electrodes on the front side and a heating
element on the back side [33]. The paste was dried at room temperature and finally
annealed at 80 ◦C for 1 h. Before measurements, in order to improve the deposited film
stability, the sensor was conditioned in air at 400 ◦C for 2 h. Tests were performed by
positioning the sensor in a testing cell and flowing a total gas stream of 100 sccm. To assess
the different working conditions’ effects on the performance of the SnO2 sensor, different
pure gas atmospheres, namely Air, N2 and CO2 were evaluated. Diacetyl was chosen as
the target analyte, both in aqueous and in alcoholic (5% ethanol) solutions. Analyte vapor
was obtained by bubbling carrier gases in the solution that was maintained at 20 ◦C during
the tests. All gas fluxes were measured by computer-controlled mass flow meters, and
humidity was monitored and controlled to oscillate between 5% and 10%. The sensors’
resistance data were collected in four-point mode by an Agilent 34970A (Santa Clara, CA,
USA) multimeter, while sensor temperature was controlled by using a dual-channel power
supplier instrument (Agilent E3632A, Santa Clara, CA, USA).

The sensor working temperature was fixed at 200 ◦C. Sensor response was defined as
R/R0 when the sensor showed an n-type response and the sensor resistance R measured
in the presence of the reducing analyte gas decreased in respect to the sensor resistance
R0 of the sensor exposed to the carrier flow. Differently, when the sensor showed a p-type
response and the sensor resistance R in the presence of the same analyte gas increased, the
response was defined as R0/R [34]. The response and recovery time of the sensor were
defined as the time needed for the sensor to reach 90% of its saturation limit after the
exposure to the analyte gas and as the time needed for the sensor to reach the 10% of its
original resistance value once the target gas was switched off and the sensor was exposed
to the carrier gas only, respectively [14].

3. Results and Discussion
3.1. SnO2 Powder Characterization

The crystalline microstructure of the prepared SnO2 was studied by XRD analysis, as
shown in Figure 2a. The main characteristic peaks are centered at 26.7◦, 34.2◦, 37.8◦, and
51.9◦ and correspond to the (110), (101), (200), and (211) SnO2 crystal planes, respectively.
The peaks appeared broad and with weak intensity, thus resulting with small average crys-
tallite size and low crystallinity. This latter one was ascribed to the presence of defects on
the material surface, which greatly affect the reactive sensing sites and electronic structure
of gas-sensing material, influencing the gas sensing properties [35]. XRD spectra acquired
at increasing temperatures, from 25 ◦C up to 500 ◦C, proved the high stability of the sample,
being all the registered patterns superimposable.

The morphology of the powder was studied by SEM analysis. Figure 2b shows that
sample is composed of homogeneous small particles of spherical form with size distribution
ranging from 0.8 to 2.1 µm. A compact oxide thin film was used as the sensing layer.
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Figure 2. (a) XRD diffractograms versus temperatures and (b) SEM image of SnO2 synthesized
sample.

3.2. Gas Sensor Measurements

First, to study the behavior of the tin oxide sensor in different working atmospheres,
the sensing properties toward vapors of diacetyl in aqueous solution (0.4 mg/L) were
tested in oxidant, inert and reducing atmospheres, using as carrier and regeneration flow
air N2 and CO2.

Tin oxide is well known as an MOS whose behavior is n-type. Indeed, the electrical
resistance of the layer decrease when the sensor is exposed to reducing gas such as NH3 [36],
CO [37], CH4 [38], H2S [39] or SO2 [40] due to the oxidation of the target gas on the SnO2
surface. Measurements carried out under air and N2 atmospheres (Figure 3a), confirmed
the n-type behavior of the SnO2 sensor with R < R0, whereas the measurement carried out
in CO2 ambient showed an inverse behavior, with R > R0, proving indeed that in CO2, tin
oxide worked as a p-type sensor.

3.2.1. Sensor Response in Air Atmosphere

SnO2 response in air was widely studied and reported in literature [14]. Generally,
in air the surface of SnO2 is covered with negatively charged oxygen adsorbates (O−

2 , O−,
and O2− ). The formation of such oxygen adsorbates extracts electrons from the conduction
band of SnO2, bulk forming an electron depletion layer on the SnO2 grains surface (space-
charge region) and a potential barrier at the grain boundaries (Figure 3b) [41]; the sensor
has a high resistance value (~30 MΩ). As soon as the sensor interacts with the analyte vapor,
the diacetyl molecules are oxidized by oxygen species on the surface and the depleted layer
electrons are fed back into SnO2 bulk, thus a narrowed depletion layer and a reduction
of the space-charge region is detected. Therefore, the sensor resistance decrease. In this
case, exposing the sensor to 0.4 mg/L diacetyl solution vapors, the sensor response is equal
to 1.43 and it results faster in the first seconds after the exposure, with a total response
time of 3.0 min. Despite a very fast response being first observed, a delay in the sensor
signal rise is detected; it demands a longer time to reach the final value. Indeed, the
recording of the dynamic behavior of a sensor can be confusing, because the measured
change in signal depends both on the intrinsic reaction of the gas sensing mechanism and
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on a delayed change in test gas concentration [42]. Moreover, it should be highlighted that
response/recovery times may be dependent on the measurement procedure.

On the contrary the recovery time is constant and slow (10.2 min).
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0.4 mg/L diacetyl in aqueous solution in air, N2 and CO2 environments; (b) schematic illustration of
the sensing mechanism of SnO2 powder to diacetyl in carrier and analyte exposure.

3.2.2. Sensor Response in N2 Atmosphere

Under N2 atmosphere the sensor showed a lower baseline resistance than in air
(~3 MΩ). This result is compatible with the reduction of the density of oxygen species
bound to the surface and then the increment of free carrier electrons into the conduction
band that reduce the space-charge region at SnO2 grains boundaries. The response to
0.4 mg/L diacetyl exposure confirms a typical n-type sensing, with a resistance decrement
due to the interaction of diacetyl molecules with the surface. In addition, sensors tested
under N2 conditions shows a response comparable in terms of shape and magnitude with
that observed under air, even if the sensor in N2 atmosphere do not show a complete recov-
ery. A similar trend was already observed with a SnO2 sensor in argon atmosphere [43].
Measurements performed in air and N2 appeared with the same shape. Previews works
indicated that despite a traditional n-type response was observed, in absence of oxygen the
sensing mechanism is related to the direct adsorption of VOC on the MOS surface [43].

The sensor response in N2 is 1.60, but both response and recovery time result longer
than in air measurements cause the poor interaction between N2 carrier and the sensor
surface.

3.2.3. Sensor Response in CO2 Atmosphere

In a pure-CO2 atmosphere the resistance R is greater than R0, revealing a p-type
behavior. In this condition the sensor is able to detect diacetyl and shows a total recovery
in short time.

In a CO2 atmosphere R resulted smaller than both in air and N2 (~30 kΩ). Indeed,
according to Wang et al., when SnO2 works at 240 ◦C in high CO2 concentrations and
less than 14% relative humidity conditions, CO2 acts as an electron donor, as a weak
reducing agent [14]. Such a response-type transition is also observed for other materials,
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and it is due to the inversion of the conduction type of major carriers, which limits the
dynamic range of the sensor at high concentration [44]. In the pure-CO2 atmosphere the
sensor response to 0.4 mg/L diacetyl exposure is 1.13, with response and recovery times of
5.5 min and 7.8 min, respectively. Recovery time results are shorter than in air and in N2
atmosphere cases.

3.2.4. Sensor Response towards Diacetyl in Aqueous and Alcholic Solutions

Once the effect of the different carrier/regeneration atmospheres on the performance of
SnO2 towards diacetyl was evaluated, just oxygen-deficient atmospheres were considered.
Indeed, alcoholic fermentation, producing ethanol and carbon dioxide, usually occurs
in anaerobic environments, since it does not require oxygen. Hence, tests were further
performed in oxygen-deficient atmospheres, N2 and CO2, in: (i) aqueous diacetyl solution
(0.4 mg/L); (ii) alcoholic (5% ethanol) diacetyl solution (0.4 mg/L), and (iii) alcoholic (5%
ethanol) solution, for comparison purposes. The response values along with the response
and recovery time are summarized in Figure 4.
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Figure 4. (a) Sensor response in N2 and CO2 to alcoholic (5% ethanol) solution, aqueous diacetyl
solution (0.4 mg/L) and alcoholic (5% ethanol) diacetyl solution (0.4 mg/L). Error bars are calculated
on three runs; (b) response and recovery times of sensor exposed at different concentration of diacetyl
in aqueous and alcoholic solutions in CO2 and N2 ambient. Error bars are calculated on three runs.

The sensor in both N2 and CO2 environments shows a higher response to ethanol than
diacetyl, reaching 1.80 and 1.22, respectively, with shorter response and recovery times. In
alcoholic diacetyl solution, the response in N2 ambient registers a value of 1.61, similar to
the value found with the only-diacetyl solution, and response and recovery time results
are similar, showing that under N2 atmosphere it is very difficult to distinguish diacetyl
effects in aqueous or alcoholic solutions. Instead, in a CO2 atmosphere an increment in
the response towards diacetyl alcoholic solution, with a final value of 1.27, is detected.
In turns, the sensor, despite the lower response than in CO2, succeeds in distinguishing
diacetyl under fermentation conditions. Moreover, response time in CO2 shows a marked
decrement (46%) compared to only diacetyl. Similarly, recovery time is reduced too.

3.2.5. Effect of Diacetyl Concentrations in Alcholic and Aqueous Solutions

The fabricated SnO2 sensor was investigated by varying the diacetyl concentration
both in aqueous and alcoholic solutions in a CO2 environment (Figure 5). The response
curves for different diacetyl concentrations (0.05–3.2 mg/L) are reported in Figure 5a,b.
It can be seen that the response of the SnO2 sensor increases by increasing diacetyl con-
centration with an exponential trend. The response of the sensor (Y) can be fitted as a



Appl. Sci. 2022, 12, 367 7 of 10

logarithmic function of Y = 1.14 + 0.07logX with X representing the diacetyl concentration
in mg/L and with a regression coefficient R2 of 0.97, as shown in the inset of Figure 5a.
An exponential trend of the response depending on the diacetyl concentration in alcoholic
solution is instead reported in Figure 5b. The sensor response in the alcoholic solution
results higher than diacetyl in a water solution, following a logarithm profile. This is due
to the high sensitivity of SnO2 to ethanol as reported in previous works [37,38]. Moreover,
the presence of ethanol markedly enhanced the gas sensing performance toward diacetyl
in the alcoholic solution.
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By fitting the sensor response with a logarithmic function Y = 1.28 + 0.13logX (R2 = 0.99)
it is evident how the slope of the curve is greater than the response of diacetyl in water
solution. From the fit it is possible to extract the lower detection limit (LDL), the minimum
concentration of gas detectable by gas sensor [45,46].

For SnO2 sensor LDL can be estimated by the extrapolation of the linear fit of the
response curve down to the minimum response Rmin/R0 where Rmin = R0 − 3σ, and σ is
the standard deviation of the baseline resistance before analyte exposure. For diacetyl in an
aqueous solution LDL results 0.1 mg/L, while for measurements performed on diacetyl
in an alcoholic solution LDL is less than 0.01 mg/L. In turn, ethanol presence increases
the sensitivity of the sensor, proving the capability of the SnO2 sensor to detect diacetyl in
alcoholic solution in a CO2 atmosphere.

3.2.6. Response and Recovery Time in Alcholic Diacetyl Solution

Response and recovery times of diacetyl in alcoholic solution under a CO2 atmosphere
are analyzed, being important to understand the performance of the sensor.

Figure 6a shows response/recovery times of the SnO2 sensor in different diacetyl
concentrations. Their analysis shows that for all the evaluated diacetyl concentrations,
recovery time is higher than response time. Response and recovery time values decrease
with an exponential law upon increasing the concentration; response time is almost halved,
from 3.2 min to 1.7 min with a diacetyl increment from 0.4 mg/L to 3.2 mg/L. Analogously,
the recovery time decreases from 6.6 min to 2.2 min in the same working conditions.
According to literature data [42], basic effects of surface covering kinetics and diffusion may
be the cause of a dependence on concentration change. Moreover, since the semiconductor
can be considered as an RC filter with a time constant τ, electronic effects may have
influence too. Due to the increasing of diacetyl concentration, the resistance decreases and
thus also the time constant.
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Indeed, the sensor resistance as a function of time during the exposure to the analyte
and during the recovery can be described through the following equations [42]:

R(t) = Rmax − (Rmax − R0) exp
[

−t
τresp

]
, (1)

R(t) = R0 + (Rmax − R0) exp
[
−t
τrec

]
, (2)

where R(t) is the resistance after the analyte exposure, R0 is a constant, Rmax is the saturated
resistance, t is the time, and τresp and τrec are the response and recovery time constants,
respectively. Figure 6b shows the plot of time constants as a function of diacetyl concentra-
tion. The curves show that the time constants decreased as diacetyl concentration increased.
According to response and recovery time analysis, the range of τ values recorded at low
diacetyl concentration is much wider than that recorded at high diacetyl concentration,
where τ is less than 50 s.

The parameter τ is therefore considered a more suitable parameter to characterize
sensors response and recovery times.
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4. Conclusions

A SnO2-based MOS sensor is used to investigate the detection of VOCs in fermented
beverages such as beer, wine and distillates. Synthesized and characterized SnO2 is used to
discriminate the concentration of diacetyl vapors in different operating atmospheres, as to
replicate a typical alcoholic fermentation scenario.

Under air, N2 and CO2 gases, SnO2 shows different behavior and baseline resistances
due to different interactions with its surface. In particular, measurements carried out
under air and N2 atmospheres show the n-type behavior of the SnO2 sensor, whereas
measurements carried out in CO2 ambient prove that SnO2 acted as a p-type sensor.

Tests performed in aqueous and alcoholic diacetyl solutions show good response in
terms of diacetyl detection in the range of concentration 0.2–3.2 mg/L at 200 ◦C in CO2
atmosphere, with LDL of 0.1 mg/L and 0.01 mg/L, respectively.

Response and recovery times trends reveal the diacetyl concentration dependance,
with response and recovery times constant less than 50 s.
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