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Abstract: In a heat pump system, performance is an important indicator that should be monitored for
system optimization, fault diagnosis, and operational efficiency improvement. Real-time performance
measurement and monitoring during heat pump operation is difficult because expensive performance
measurement devices or additional installation of various monitoring sensors required for perfor-
mance calculation are required. When using a data-based machine-learning model, it is possible
to predict and monitor performance by finding the relationship between input and output values
through an existing sensor. In this study, the performance prediction model of the air-cooled heat
pump system was developed and verified using artificial neural network, support vector machine,
random forest, and K-nearest neighbor model. The operation data of the heat pump system installed
in the university laboratory was measured and a prediction model for each machine-learning stage
was developed. The mean bias error analysis is −3.6 for artificial neural network, −5 for artificial
neural network, −7.7 for random forest, and −8.3 for K-nearest neighbor. The artificial neural
network model with the highest accuracy and the shortest calculation time among the developed
prediction models was applied to the Building Automation System to enable real-time performance
monitoring and to confirm the field applicability of the developed model.

Keywords: machine-learning; coefficient of performance; heat pump system; prediction model

1. Introduction

The performance of the heat pump system must be monitored for efficient operation
and system optimization, and is an important indicator that can be used to determine fault
during system operation. After the heat pump system is manufactured or installed, the
performance is measured only under specific operating conditions to check the standard
performance, and continuous performance monitoring is not performed during system
operation. Real-time measurement and monitoring are difficult due to the lack of devices
or diagnostic sensors that can measure the performance of the heat pump system. To solve
this problem, it is possible to predict performance using a large amount of data measured
with measurement equipment such as BAS (Building Automation System) based on a
machine-learning model that finds the relationship between input data and output data
using various theoretical techniques [1].

Various studies related to prediction and optimal control of a building system using a
predictive model using a machine-learning model are being conducted according to the
need for massive information processing according to the automation of buildings [2–4]. A
study was conducted to develop a model for predicting energy consumption in buildings
using machine learning [5–7] and to predict the heating and cooling load [8,9]. In relation
to the heat pump system, a study to predict performance using a mathematical model [10],
a study to develop a model to predict the performance of a geothermal heat pump system
based on artificial neural networks [11,12] and random forest [13] models has proceeded A
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study was conducted to predict the performance of air-cooled heat pump systems [14–16]
and to develop a performance prediction model for heating tower heat pumps [17]. Most
of the studies related to the performance prediction of the aforementioned heat pump
system develop a predictive model based on one machine learning. It can be confirmed
that machine-learning models such as artificial neural networks and random forests can be
used to predict heat pump performance. According to the characteristics of each machine-
learning model, models with high usability are different depending on the system, such as
data characteristics. Studies have been conducted on improving prediction performance
by comparing performance according to changes in model configuration parameters, but
studies on the comparative analysis of prediction performance for various types of machine-
learning models are lacking. Performance verification of the development model using
simulation is mainly performed [18,19], and the application of the developed model to the
actual operating system and performance evaluation are insufficient [20–22].

In this paper, the performance prediction model was developed and tested using a
machine-learning model based on the actual operation data of the air-cooled heat pump
system. Learning data were collected using the heat pump system installed in the univer-
sity lab, and input variables were selected through statistical analysis, prediction model
selection, prediction model development and performance verification, and the predic-
tion model developed in the BAS system were applied in the following order. R studio
(ver. 1.2.1335), which is used as a research and industrial application for statistics, machine
learning, and data mining, was used for model development. ANN (Artificial Neural Net-
work) with the best accuracy and short computation time among the developed prediction
models was applied to the BAS of the laboratory. Real-time performance monitoring is
possible through BAS, and the field applicability of the development model was confirmed.

2. Data and Preliminary Process
2.1. Data Collection

For data-based predictive models, it is important to acquire sufficient and high-quality
data. For a high-accuracy prediction model, high-quality training data must be collected
from the processing stage. In this paper, a university laboratory was selected as a target
building to develop a performance prediction model for an air-cooled heat pump system.
The data required to develop the heat pump performance prediction model was collected
through the laboratory. In the laboratory, HVAC (Heating, Ventilation and Air Conditioning)
test equipment is established, an air-cooled heat pump is installed as a heat source system,
a single duct VAV (Variable Air Volume) system is established as an air conditioner, and the
indoor environment is controlled through terminal unit control. The laboratory’s air-cooled
heat pump system is installed as shown in Figure 1. The system configuration of the
laboratory is shown in Table 1, and the specifications of the heat pump system are shown
in Table 2.

Table 1. System configuration.

Category System Number of System

HVAC system AHU 1
VAV terminal unit with reheat coil 2

Heat source system Air-cooled heat pump systems 2

Table 2. System specification.

Category
Rated Capacity (kW) Power Consumption (kW)

Cooling Heating Cooling Heating

Heat source
system

Indoor unit 4.64 5.2.0 0.01 0.01
Outdoor unit 4.64 5.12 30.5 29.0
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such as temperature and pressure were installed in the indoor and outdoor units of the 
heat pump to collect the operational data required to develop the heat pump system per-
formance prediction model. Figure 2 shows the diagram of the heat pump system and the 
location of the sensor installation. The operation data of the heat pump system was meas-
ured at 1 min intervals for each item, and data such as inlet/outlet temperature on the heat 
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outdoor temperature, and indoor temperature were collected. 

 
Figure 2. Diagram of heat pump system and sensor. 

Figure 1. Heat pump System. (a) Indoor unit, (b) Outdoor unit.

In the target building, a BAS (Building Automation System) for system control is
established, enabling automatic control and monitoring of the heat pump system. Sensors
such as temperature and pressure were installed in the indoor and outdoor units of the
heat pump to collect the operational data required to develop the heat pump system
performance prediction model. Figure 2 shows the diagram of the heat pump system and
the location of the sensor installation. The operation data of the heat pump system was
measured at 1 min intervals for each item, and data such as inlet/outlet temperature on the
heat source side, inlet/outlet temperature on the load side, heat pump power consumption,
outdoor temperature, and indoor temperature were collected.
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2.2. Input Value Selection

For machine-learning models including ANN models, the accuracy of the machine-
learning model can vary greatly depending on the selection of input variables. Therefore,
the input variables were selected by examining the mathematical theory of the variables to
be predicted and comparing them with the system operation data items. The coefficient
of performance of the heat pump system is a value indicating the performance of the heat
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pump and is the ratio of the effect that can be obtained by refrigeration with respect to
the supply under certain conditions. The cooling performance coefficient can be obtained
through Equation (1), and the heating performance coefficient can be obtained through
Equation (2). The system performance of the heat pump system can be obtained through
Equation (3), and the amount of heat is obtained through Equation (4).

COPc =
Qc

Wc
(1)

COPh =
Qh
Wc

(2)

COPsys =
Q

Wc + Wp + W f
(3)

Q = mcc
(
tevap,i − tevap,o

)
(4)

where COPc is coefficient of performance in cooling mode, Wc is power consumption in the
compressor [kW], Wp is power consumption in the circulation pump [kW], W f is power
consumption in the fan [kW], Qc is heat transfer rate in cooling mode [kW], tevap,i is water
inlet temperature [◦C], tevap,o is water outlet temperature [◦C], mc is water flow rate and
is measured by a flow rate meter [kg/s], c is specific heat [kJ/kgK], COPh is coefficient of
performance in heating mode, Qh is heat transfer rate in heating mode [kW], COPsys is
coefficient of performance in heat pump system.

Regression analysis, analysis of variance (ANOVA) and unstandardized coefficients,
etc. It is shown in Table 3. F is the ratio of between variance to within variance.

Table 3. Analysis of input value.

Input Variable
Non-Standardization Factor

p
ANOVA

B Std. Err R2 F Sig

Source side input temperature 8.34 1.52 × 10−16 <0.05 0.9023 8.44 <0.001
Source side output temperature 8.50 0.0448 <0.05 0.556 104.27 <0.001

Load side input temperature 2.96 0.0822 <0.05 0.3316 167.16 <0.001
Load side output temperature 3.62 0.1242 <0.05 0.1661 8.71 <0.001

R2 is the explanatory power of the variable, and the higher the explanatory power,
the better the estimation. The p-value value is an index that judges statistical significance.
The heat source side temperature has a high correlation with the load side temperature,
and the geothermal inlet temperature R2 is the most. It shows a high number, and it can
be confirmed that it has the highest correlation with the dependent variable. The p-value
of the four independent variables (heat source side inlet/outlet temperature, load side
inlet/outlet temperature) was less than 0.05, which was a significant independent variable,
indicating a high influence with the dependent variable, and the significance was less than
0.001, indicating statistical stability.

3. Methodology
3.1. Prediction Model Selection

To select a model used for performance prediction, a data-based machine-learning
model widely used in the field of building and facility systems was considered. Artificial
neural network model (ANN), support vector machine model (SVM), random forest model
(RF), and K-nearest neighbor model (KNN) were selected. ANN model is planned to copy
the fundamental architecture of the human brain, whose essential component is called a
processing unit modeling a biological neuron. ANN is composed of a multilayer perceptron
structure such as an input layer, a hidden layer, and an output layer, and is a machine-
learning algorithm that updates the weights between each node by learning the correlation
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between input and output variables through back propagation learning. The artificial
neural network is excellent in predicting nonlinear systems, but has the disadvantage of
falling into local optimization and overfitting. The artificial neural network model proceeds
in two major processes. The first is a feed-forward process, which calculates the output
value using a series of input variables, variables in the hidden layer, the relationships
between each variable (Connectivity, Weight) and transfer functions. The second process
is the backpropagation process, which corrects the relationship between variables using
the error between the output value calculated from the model and the actual value to
enable accurate calculation. In the artificial neural network, each node’s signal has a
weight according to its importance, and receives an input signal and calculates information
according to an equation.

The support vector machine is a widely used machine-learning method for modeling
characteristics of data and classifying data using information according to characteristics. In
general, SVM is widely applied in a binary classification method that selects and classifies
each data when there is data composed of two categories. This method acquires feature data
from training data for constructing a classification model, and creates a model that classifies
two categories through the acquired information. The classification model generated from
the training data can effectively predict the category to which the data be-longs to new data
that has not been used for training, and becomes a classification model that can be applied
to a new problem.

Random Forest analyzes and aggregates several decision trees to create a final pre-
diction model. A forest is formed from several decision trees sampled at random. Since
random forest makes independent decision trees repetitively by giving maximum random-
ness in sample selection and variable selection for each model, prediction errors can be
reduced by lowering variance while maintaining low bias of decision trees. Even in high-
dimensional data including many explanatory variables, it is stable without causing errors
because the interactions and nonlinearities between explanatory variables are considered.
In this method, by inputting data that deviate from the importance of the variable to the
model, it is examined whether the input variable is important to the model, i.e., randomly
cycled OOB data are input to the model, and the importance of variables is measured
according to the equation.

The K-nearest neighbor classification algorithm (KNN) is based on learning by analogy,
and unlike other machine-learning algorithms to derive a generalized objective function
based on training data, the learning example is used as it is. There are features. In KNN,
training data are represented by n-dimensional numerical properties. Each datum is
represented by a single point in the n-dimensional space, and all training data are stored in
the n-dimensional pattern space. When new data are given, KNN searches for the closest
data in the pattern space, checks the k-nearest neighboring standard patterns, and classifies
the class of the most selected standard pattern into the new data class. The Euclidean
distance function is applied to the proximity to determine the nearest neighbor in KNN.
The conceptual diagram of the machine-learning model is shown in Figure 3.
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3.2. Accuracy Metrics

To evaluate the performance of the predictive model, the accuracy was evaluated
using the coefficient of variation and the mean bias error (MBE), root mean square error
(RMSE), CvRMSE. The mean bias error means the total error of the predicted value, and the
coefficient of variation is a method of analyzing the error through the degree of variance.
MBE is calculated according to Equation (5).

MBE =
∑n

t=1(Pi − Mi)

n
∗ 100 (5)

RMSE analyze the precision of various anticipating standards and is calculated accord-
ing to Equation (6).

RMSE =

√
∑n

t=1(Pi − Mi)
2

n
(6)

CvRMSE analyze the precision of various anticipating standards and is calculated
according to Equation (7).

CvRMSE =
RMSE

P
∗ 100 (7)

where Pi is the anticipated value, Mi is the real value, n is the total number of estimates, P
is the average value.

The accuracy of the prediction model was evaluated using the MBE and CvRMSE
calculated according to Equations (5)–(7), which are the standards provided by ASHRAE
Guideline 14, which are 10% for MBE and less than 30% for CvRMSE [23,24].
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3.3. Prediction Model Development

In this study, a heat pump system performance prediction model was developed using
the data collected in Section 2.1. As described in Section 2.1, the operation data of the
heat pump system collected from the laboratory was used to develop a heat pump system
performance prediction model using machine learning. Problems such as overfitting,
sampling noise, and sampling bias may occur if the scale of the characteristics of the data is
significantly different when developing a machine-learning model. To prevent problems
before the data are learned, preprocessing was performed so that the data are reflected in
the same scale. A predictive model was developed using normalized data that transforms
the data interval into a range of 0 to 1 through Equation (8).

X = (x − xmin)(xmax − xmin) (8)

where x is the measure value, xmin is the minimum value, xmax is maximum value.
A total of 5124 pieces of data corresponding to 70% of the collected heating and cooling

operation data were used as training data for predictive model development, and 30% of
the data (2196 pieces) not used as training data are testing data to verify the performance of
the developed model. As the input variables, as in Section 2.2, the inlet/outlet temperature
of the heat source side and the inlet/outlet temperature of the load side were used. A
predictive model was developed using R studio (ver. 1.2.1335), which is used as a research
and industrial application for statistics, machine learning, and data mining. The Figure 4 is
an example of R studio screen used for predictive model development.
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The parameter configuration of ANN prediction model is shown in Table 4. Each
parameter was set inside the R studio code, and the number of layers and neurons of
the hidden layer was selected based on previous studies [9]. The optimization algorithm
used Adam (Adaptive Moment Estimation), which is effective by reducing computational
memory even when the number of data, layers, and neurons increases. The activation
function used the sigmoid.

Table 4. Parameter configuration of ANN model.

Category Contents

Structure

Input layer Number of layers 1
Number of neurons 4

Hidden layer Number of layers 5
Number of neurons 2

Output layer Number of layers 1
Number of neurons 1

Function Activation Sigmoid
Optimization algorithm Adam

The parameter configuration of SVM prediction model is shown in Table 5. The kernel
function is Gaussian and kernel scale is 1.2.

Table 5. Parameter configuration of SVM model.

Category Contents

Kernel function Gaussian
Kernel scale 1.2

Box constraint level 1
Standardize data True

The parameter configuration of RF model is shown in Table 6. The random forest
model used 400 decision trees, and the number of randomly selected input values was
1/3 of the total input values. The parameter configuration of KNN model is shown in
Table 7. The KNN model uses the Euclidean distance equation, and the number of K-nearest
neighbors is set to 3.

Table 6. Parameter configuration of RF model.

Category Contents

Number of trees 400
Number of samples at each decision split 6

Minimum number of samples at leaf 10

Table 7. Parameter configuration of KNN model.

Category Contents

Number of neighbors 3
Distance metric Euclidean

4. Results and Discussion
4.1. Preformance of Prediction Model

Table 8 shows the results of analyzing the developed performance prediction model
with the aforementioned accuracy metric. Figure 5 shows the results of comparing the
predicted performance with the actual performance using the ANN models. The ANN
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model showed a relative error of −7.8~9, MBE −3.6, CvRMSE 5.4, which satisfies the
ASHRAE Guideline standard and showed excellent performance.

Table 8. Accuracy of prediction model.

Output Prediction Model
Accuracy [%]

MBE CvRMSE Error

Coefficient of Performance

ANN −3.6 5.4 −7.8~9
SVM −5.0 6.0 −11~11
RF −7.7 6.9 −14~16

KNN −8.3 8.1 −12~12
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Figure 7 shows the results of comparing the predicted performance with the actual
performance using the RF models. The RF model showed an error of −14 to 16, and the
MBE −7.7 and CvRMSE 6.9 showed performance satisfying the ASHRAE Guideline criteria.

The SVM model showed an error of −12 to 12, and satisfies the ASHRAE Guideline
standard with MBE −8.3 and CvRMSE 8.1. Figure 8 shows the results of comparing the
predicted performance with the actual performance using the KNN models. The accuracy
analysis result of each prediction model is shown in Table 5, and the error analysis result
ANN is −7.8~9, SVM is −11~11, RF is −14~16 and KNN is −12~12. All machine-learning
models satisfied the ASHRAE Guideline standard, but the performance prediction model
using artificial neural networks showed the best performance.
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Table 9 shows the computation time required to build a machine-learning model. The
computational speed of a machine-learning model depends on the number of data and
the configuration of the model. Applicability and usability can be judged in the building
where the actual system is being used, and the faster the calculation speed, the higher
the applicability to the field. It can be seen that the computation time of the predictive
model using artificial neural networks is the shortest at 31 s. It took 1 min 20 s for the
support vector machine, 2 min 8 s for the random forest, and 2 min 22 s for the K-nearest
neighbor. In the case of the support vector machine, the difference in operation time from
other machine-learning models was not large, but as training data increased, limitations
on memory and operation time appeared. Among the four machine-learning models,
the artificial neural network model showed the shortest computation time, and it was
confirmed that the performance prediction was possible with a small computation speed
even with an increase in the number of data, so it was highly likely to be applied in the field.

Table 9. Computation time of prediction model.

Category ANN SVM RF KNN

Computation time 31 s 1 min 20 s 2 min 8 s 2 min 22 s

4.2. Prediction Model Appilcation

According to the results of the calculation speed and accuracy of the performance
prediction model analyzed above, the ANN model showed the highest accuracy and the
fastest calculation speed for the data format related to the performance prediction of the
heat pump system. To verify the applicability of the developed ANN-based performance
prediction model, the performance prediction model was applied to the BAS of the labora-
tory where the air-cooled heat pump system was installed. The BAS screen is configured to
apply the performance prediction model of the heat pump system and monitor the results,
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and Figure 9 shows the BAS application screen. In BAS, the performance of the two heat
pumps and the performance of the heat pump system are confirmed.
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Figure 9. BAS application of performance prediction model.

Figure 10 shows the results of analyzing the monitored performance as time series
data after applying the artificial neural network-based performance prediction model to the
BAS. The predictive model enables real-time performance monitoring during heat pump
system operation and is saved in Excel file format. It can be used for diagnosis and efficient
operation of heat pumps by checking and analyzing performance data during operation.
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Figure 11 shows the predicted performance monitored by the BAS during the cooling
operation period, and the prediction result R2 is 0.9954. Performance changes in the range
of about 2.49 to 3.9 were observed during operation of the heat pump system, indicating
even predictive performance in all ranges.

It was confirmed that real-time performance prediction and monitoring during system
operation was possible through the application of BAS. In the future, the performance
degradation of the heat pump system can be checked, and in connection with this, it can be
used for system failure diagnosis.
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5. Conclusions

In this paper, the performance prediction model was developed and tested using a
machine-learning model based on the actual operation data of the air-cooled heat pump
system. The performance was predicted using artificial neural networks, support vector
machines, random forests, and K-nearest neighbor models, and the accuracy and com-
putation time of the predicted performance were compared. The field applicability was
confirmed by applying the developed predictive model to BAS. The detailed conclusion of
this paper is as follows.

(1) To develop a predictive model, a university laboratory equipped with an air-cooled
heat pump system was selected as a target building and operational data were mea-
sured. A statistical analysis was performed between the data and performance col-
lected through the mathematical model and BAS, and through this, the inlet/outlet
temperature of the heat source side and the inlet/outlet temperature of the load side
were selected as input values.

(2) The training data constructed while developing a predictive model using artificial
neural network, support vector machine, random forest, and K-nearest neighbor was
subjected to data preprocessing to improve the accuracy of the predictive model. A
total of 5124 pieces of data corresponding to 70% of the collected data were used as
training data for predictive model development, and 30% of the data (2196 pieces)
not used as training data are testing data to verify the performance of the developed
model. A predictive model was developed using R studio.

(3) As a result of evaluating the accuracy of the developed performance prediction
model, MBE of ANN was −3.6, MBE of SVM was −5, MBE of RF was −7.7, and
MBE of KNN was −8.3. This satisfies the verification criteria of ASHRAE Guideline
14 and confirmed that the developed predictive model has excellent performance.
ANN with the best accuracy and short computation time among the developed
prediction models was applied to the BAS of the laboratory. Real-time performance
monitoring is possible through BAS, and the field applicability of the development
model was confirmed.

Real-time performance can be checked through the developed performance prediction
model, and it can be used for system failure diagnosis and optimal control. When applied
to a heat pump system, it can be used as a control point for a heat pump system through
prediction of performance that is difficult to predict, and it is expected that energy-saving
and performance improvement will be possible.
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