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Abstract: Food production is a growing challenge with the increasing global population. To increase
the yield of food production, we need to adopt new biotechnology-based fertilization techniques.
Furthermore, we need to improve early prevention steps against plant disease. Guava is an essential
fruit in Asian countries such as Pakistan, which is fourth in its production. Several pathological and
fungal diseases attack guava plants. Furthermore, postharvest infections might result in significant
output losses. A professional opinion is essential for disease analysis due to minor variances in
various guava disease symptoms. Farmers’ poor usage of pesticides may result in financial losses due
to incorrect diagnosis. Computer-vision-based monitoring is required with developing field guava
plants. This research uses a deep convolutional neural network (DCNN)-based data enhancement
using color-histogram equalization and the unsharp masking technique to identify different guava
plant species. Nine angles from 360◦ were applied to increase the number of transformed plant
images. These augmented data were then fed as input into state-of-the-art classification networks.
The proposed method was first normalized and preprocessed. A locally collected guava disease
dataset from Pakistan was used for the experimental evaluation. The proposed study uses five
neural network structures, AlexNet, SqueezeNet, GoogLeNet, ResNet-50, and ResNet-101, to identify
different guava plant species. The experimental results proved that ResNet-101 obtained the highest
classification results, with 97.74% accuracy.

Keywords: data augmentation; deep learning; guava disease; plant disease detection

1. Introduction

Food production is currently one of the greatest challenges with the growing global
population. It is estimated that food consumption will double by 2050. Therefore, food
production needs a more high-yielding and sustainable environment to increase the plant
yield [1,2]. Guava is an important plant that belongs to the Myrtaceae plant family. It was
initially allocated in the American tropics; guava was discovered in Portugal in the early
17th Century [3]. It is popular in tropical and nontropical countries such as Bangladesh,
India, Pakistan, Brazil, and Cuba [4]. Guava contains phosphorus, calcium, nicotinic acid,
and many other essential food components [5]. Furthermore, it normalizes blood pressure,
has benefits for diabetes, provides immunity against dysentery, and eliminates diarrhea [6].
Regarding guava’s growing environment, it can grow in a variety of soils with a wide range
of pH (4.4 to 4.9), where it can also sustain intensive and extensive climate change [7].
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The delightful aroma of the generally spherical guava fruit makes it attractive [8].
The growing age of fruits and vegetables may change and pass from various stages, making
it challenging to recognize various factors that make them behave differently during differ-
ent stages. Therefore, image acquisition of vegetables and fruits is the first important step
to effectively analyze quality attributes such as color and texture. Illumination also affects
receiving these features from the sensor in fruit image collection [9]. Computer-vision-
based fruit and vegetable disease detection can lead to large-scale automatic vegetable
and fruit monitoring [10]. This helps in taking earlier steps to take care of specific hazards
that disturb actual yields, such as the need for fertilizers to be applied to increase the
growth rate [11]. Various diseases affect the production of guava fruits, such as anthrac-
nose [5], canker, dot, mummification, and rust. Farmers are very knowledgeable about
these diseases, but they mostly do not know of early prevention methods to protect them
against further loss. This ultimately leads to significant loss in guava production [12]. These
different diseases are caused by different factors of guava plants; for example, canker is
caused by algae and was first discovered by Ruehle [13].

Similarly, Dastur is another guava disease that is caused by dry rot [14]. These
types of diseases affect guava production, which leads to economic and environmental
loss [15]. Environmental loss is any kind of loss, including energy, water, clean air, and
land loss, where as far as the economic loss is concerned, this results in financial loss in
production. Pakistan is a country in the Asian Pacific whose economy is mostly based on
agricultural production. The agricultural significance of Pakistan can be analyzed from its
gross domestic product (GDP), with agriculture being 25% of its annual GDP [16]. Many
agricultural countries produce guava as a domestic product, and Pakistan is globally fourth
in guava production, as it annually produces 1,784,300 t [17]. To diagnose guava diseases
in a timely manner, accurate detection is necessary, as false detection may lead to the poor
production of guava species. Manual observation may be time consuming and lead to the
wrong interpretations.

This led us to produce an automatic system for guava disease detection [18], as the
production of guava fruits creates severe issues in developed and underdeveloped coun-
tries [19,20]. The automation of disease detection is currently the fastest, least expensive,
and most accurate solution [21]. It could cost more, but it can lead to a colossal time
reduction by automating the disease detection process [22]. For prediction models, the
RGB color channel images are primarily used, which are visually distinguishable by color.
The color features could be strong descriptors to distinguish different diseases. However,
obtaining deep feature-based models could be more robust, as this covers many other
aspects such as geometry, pattern, texture, and other local features. For this, a local guava
disease-based RGB image dataset was collected by a high-display-quality camera here. It
contains four types of disease, namely canker, dost, rust, and mummification, with the
fifth category as the healthy class. Further details of the dataset are discussed in Section 3.
The proposed study was inspired by deep learning (DL), and a comparative analysis of
various pretrained models is proposed. The main contributions are as follows:

1. Augmented data cover different aspects of view to provide more real-time data
visualization and big data usage for DL;

2. The first local Pakistani guava disease detection dataset using DL;
3. State-of-the-art DL models used to validate Pakistani guava disease detection.

The rest of the manuscript is divided into three sections. Section 2 presents the related
work. Section 3 is the methodology. Section 4 outlines the results and discussion.

2. Related Work

Plant disease detection is becoming increasingly automated. However, both machine
learning and deep learning methods are used [23] in order to provide intelligent automated
solutions, with a few recent studies on both categories are discussed below.
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2.1. Machine-Learning-Based Plant Disease Detection

Some experts confirmed the labeling to identify unhealthy from healthy guava fruits.
Handcrafted features named local binary patterns (LBPs) are extracted and further reduced
using principal component analysis (PCA). The multiple types of machine-learning (ML)
classifiers are used, where a cubic support vector machine performed the best among the
various methods in [24]. Edge- and threshold-based segmentation is performed for plant
disease detection using images of leaves. Multiple features of color, texture, and shape
are extracted, which are fed into a neural network classifier that classifies different plant
diseases [25].

Shadows are removed from the background by enhancing, resizing, and isolating the
region of interest (ROI), with clustering performed by using K-means for pomegranate fruit
disease detection in [26]. Guava disease detection was performed using basic color trans-
formation functions in image processing to detect the actual diseased parts of plant leaves.
Classification was performed using support vector machine (SVM) and K-nearest neighbor
(KNN) in [27]. Apple disease detection was performed using the spot segmentation method,
where feature extraction and fusion were also performed. The decorrelation method was
used for the fusion of extracted features in [28]. A soil-based analysis to recognize the soil
indicator that plays an important role in plant yield was also used in [29]. Similarly, the
weather forecasting history could play an important role in plant monitoring systems to
avoid any natural hazards, as in [30]. The hue–saturation–intensity (HSI) color space was
initially used, where unhealthy areas were detected using textures. Multiple features were
extracted after the color conversion of the data. Features such as homogeneity, energy, and
other cluster-based features were extracted. Lastly, SVM was used for classification in [31].

2.2. Deep-Learning-Based Plant Disease Detection

Demand for deep-learning (DL)-based studies is increasing due to their promising
results. Big data are used for DL model training for the prediction of automated detection.
Therefore, a similar study used more than 54,000 images of 14 crop diseases with 26 different
diseases types. A deep convolutional neural network (DCNN) was proposed with a 99.35%
accuracy achieved on the held-out test dataset. Lastly, smartphone-assisted automatic crop
disease detection was proposed and an app was suggested for development in [32]. A
similar big data dataset was used for plant disease detection. The open dataset of more than
87,000 images was used with 25 different plant categories. Multiple DCNN architectures
were used, and the best-performing network achieved a 99.53% accuracy. The reported
results showed that this tool model can be used for real-time plant disease identification [33].
Symptom-based gaps found by researchers that cover it by proposing their own CNN with
a visualization technique were also missing in previous architectures.

Modified networks for plant disease identification were applied that improved the
results of [34]. In-depth features and transfer learning using famous architectures were
applied on famous models’ architectures. Deep-feature-based classification using SVM
and other ML classifiers showed better results than those of the transfer-learning method.
Moreover, the fully connected layer of state-of-the-art architectures such as VGG-16, VGG-
19, and AlexNet showed better accuracy than that of other fully connected layers [35].
The images of specific conditions and various symptoms were acquired in real time, and
these were missed in public datasets. To tackle this limitation, data augmentation was
performed, which took a single input leaf image from multiple views that covered certain
conditions on the same leaf input image. It also covered multiple diseases affecting leaves.
Augmentation-based predictions increased the accuracy by 12%. Furthermore, the data
limitation suggested using data augmentation in [36]: the Plant–Village dataset contained
differently annotated apple black rot images. Fine-tuned DL models were trained, and
the best accuracy was achieved by VGG-16, at 90.4% [37]. Different ML- and DL-based
methods are shown in Table 1.
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Table 1. Summary of recent studies on the detection of guava diseases.

References Year Species Domain Method Results

[38] 2021 Plant–Village Deep learning
C-GAN and

DenseNet121-based
transfer learning

Accuracy (5 classes) = 99.51%
Accuracy (7 classes) = 98.65%

Accuracy (10 classes) = 97.11%

[4] 2021 Guava plant disease Machine learning
HSV, RGB, LBP, and

classical machine
learning methods

99% accuracy

[39] 2020 Cotton plant disease Deep learning Proposed CNN ∼

[40] 2019 Plant disease dataset Deep learning

Traditional augmentation
and GAN for data

generation and
neural network

Accuracy = 93.67%

[41] 2019 Tomato and brinjal Deep learning GLCM, adaptive
neuro-fuzzy system

Tomato accuracy = 90.7%,
brinjal accuracy = 98.0%

[42] 2019 Potato tuber Deep learning CNN 90–10 split training–testing
accuracy = 96%

[33] 2018 Open plant dataset Deep learning AlexNet, VGG, and other
CNN Best accuracy = 99.53%

[43] 2018 Papaya leaves Machine learning HOG features, random
forest classifier Accuracy = 70.14%

Although DL has shown excellent results in plant disease detection, it still faces
some challenges. The big data challenge compromises previous studies because they used
limited data. The data limitation can be reduced by using various strategies that also
produce a more confident model by covering a different aspect of a specific input sample of
plant disease [44].

3. Methodology

The automation of plant disease monitoring is taking the place of manual monitoring.
Many researchers have used real-time experimentation of plant disease monitoring and
achieved satisfying results. A local Pakistani dataset was collected for guava plant and
fruit disease detection in the proposed study. Data augmentation was used to meet the
big data usage challenge, where it was also used to cover model overfitting problems.
Data augmentation was performed using the affine transformation method; to enhance the
region of interest (ROI), unsharp masking and the histogram equalization method were
performed, better sharpening the ROI and removing any existing noise in the augmented
data. The final augmented and enhanced data were fed into various fine-tuned state-of-the-
art classification methods. All the steps are shown in Figure 1.

In the framework, augmented and enhanced images were given to 5 different prede-
fined architectures by replacing their last layer according to the given data classes. AlexNet
was the first model in the ImageNet competition that changed the image classification
and object detection using deep-learning models. SqueezeNet, GoogLeNet, and ResNet
followed with many others. Famous ones with different kinds of architectures were used
to check the effectiveness of a given local guava dataset. The proposed method showed
an initial step on a newly collected local Pakistani dataset, where more methods can be
adopted using a different ML and DL technology. The details of the dataset before and after
augmentation and the details of other used CNN architectures are shown in Section 3.1 by
discussing their fine-tuned parameters, with the weights in Sections 3.2–3.4. The achieved
results on the validation data are shown in Section 4.
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Figure 1. Proposed framework for guava plant disease detection.

3.1. Dataset Normalization

The dataset was initially collected using a high-definition camera with different resolu-
tions. Images were of different angles and orientations, which may lead to the misguidance
of the prediction model due to the illusion factor, spatial resolution changes, camera set-
tings, background changes, and many other real-time factors. Therefore, the data were first
resized to be equal in size using the bicubic interpolation method. This uses 4 by 4 neighbor-
hood pixels to interpolate the 16 nearest pixels, primarily used in many image-editing tools.
This improved the results as compared to those of the bilinear and nearest-neighbor meth-
ods. Interpolation was used to resize the image. The resized image was again augmented
and enhanced; its histogram-based representation is shown in Figure 2.

Figure 2. (top, left) Original and (top, right) enhanced. (bottom, left) Original and (bottom, right)
enhanced image histogram.

The histogram shows that the data intensity levels were equalized after the prepro-
cessing of data resizing and enhancement.
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3.2. Data Augmentation and Enhancement

Resized images were rotated or transformed using the affine transformation method.
Different angles with a 360 rotation were used with an angle difference of 45◦. There
were 9 angles in total in each sample instance applied for all classes, namely 0◦, 45◦, 90◦,
135◦, 180◦, 225◦, 270◦, 315◦, and 360◦. Affine transformation was calculated as given in
Equation (1), and the applied augmentation sample for each category is shown in Figure 3.

Rotation =

 cos(a) sin(a) 0
−sin(a) cos(a) 0

0 0 1

 (1)

The angle of rotation according to an affine rotation is shown in Equation (1). A is the
angle value that was changed nine times for an image to obtain the new rotated image.

Data enhancement was applied with a combination of unsharp masking and color
histogram equalization, and both of these methods were applied and calculated using
Equations (2) and (3).

f (I) = α f − β fl (2)

The output enhanced image was calculated in f(I), where α and β are constant, to be
the input image that is multiplied where the original image is processed and subtracted via
low-pass filter process mask f l . Histogram equalization was used in the image processing
to enhance a given RGB image, and the three channels were individually evaluated using
Equation (3).

Tk = (L− 1)cd f (P) (3)

The cumulative distribution of the given intensity was calculated over the probability
of occurrences, as calculated in Equation (4)

Cd f (P) =
P

∑
k=−∞

Prob(k) (4)

This calculated accumulative distributive value was then multiplied with maximal value
intensity, and the newly calculated transformed intensity was calculated and mapped to the
corresponding pixels throughout the given image.

Figure 3. Five types of guava species image samples with their enhanced and rotated 9 angle images
in circular view in 4 circles.

Rotated images covered a different aspect of the actual time occurrence, which could
be any of the orientations for the user. The training and predictions of rotated augmented
data offered promising results.
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3.3. Basics of Convolutional Neural Networks

There are many proposed CNN architectures used in various aspects of intelligent
classification and object-detection systems. These architectures have slight differences in their
networks, and the analyzed primary layers and components are discussed here. We discuss
these basics before explaining state-of-the-art models of classification that were also used.

3.3.1. Convolutional Layer

The convolutional layer is called as such when at least one convolutional operation
is used in the input layers of an architecture. The convolutional operation uses various
parameters such as kernels, where the kernel size is specified for parameter initialization.
Similarly, padding and stride size are also initialized and used in convolutional operations.
The convolutional operation is summarized in Equation (5).

Convl
i = Biasl

i +
a(l−1)

i

∑
j=1

w(l−1)
i,j ∗ Cl

i (5)

In Equation (5), Convl
i is the output of a convolved operation in which Biasl

i is the bias
matrix, with the ith iterative region of operation on which convolved window w is evolving,
and i, j represents the window size of the rows and columns. Iterated convolved window
Cl

i is multiplied with the corresponding pixels of the given image, where the selected area
is defined by window size wi,j.

3.3.2. Batch Normalization

Batch normalization is a normalization operation, such as the min–max data normal-
ization performed in data cleaning. Batch normalization is a normalization in which a
batch of input data is normalized, and it can be written as in Equation (6).

x′i =
xi − µB

σ2
B

(6)

It normalizes data, where the data transformation has taken place, such as a mean
output close to 0, and the standard deviation output remains close to 1. In Equation (6),
input x of a particular instance is subtracted from the mean (µ) of batch b, where after
subtraction, a ratio is calculated over the square of the standard deviation (σ) of that
particular batch (B) where instance x belongs, and a normalized value of x′i is returned
as output.

3.3.3. Pooling Layer

Pooling pools over a specific item from some scenarios, where pooling in CNN is used
to calculate a max, min, and average pool to take a single output value from a defined
kernel window. The stride is also used as a parameter to define the ongoing or iterating
step for a pooling value. The pooling value is calculated as in Equation (7).

Doutput = xh ∗ xw ∗ xd (7)

The output dimension after performing pooling is represented as Doutput, where x is
the input instance and instance height, the width represented as h, w, and the color channel
dimension is represented as d, for instance x.

3.3.4. Rectified Linear Unit

ReLU is an activation unit where other activation units such as tanh and sigmoid
are also used, and it is used in various studies. ReLU is also called the piecewise linear
function, and it simply outputs an identical input variable to the input if it is >0; otherwise,
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it is 0. Lastly, it maximally excludes the misguiding value in calculating an output class by a
prediction model of artificial intelligence. We can simply write the ReLU as in Equation (8).

ReLU = max(0, x) (8)

The linear behavior of this activation function makes it a commonly used activation
function. In Equation (8), the output is shown as ReLU, where input x is to be taken as the
max, which is calculated very straightforwardly if the input value is positive >0; then, it
outputs the simple input as it is where <0, or negative values are only taken as 0.

3.3.5. Softmax

The softmax function returns probability values in the range of 0–1, where maximum
likelihood returns a higher probability value. It is somehow matched to multilinear regres-
sion, where multiple classes are predicted using internal values. The softmax function can
be calculated as Equation (9).

σ(−→z )i =
ezi

∑k
j=1 ezj

(9)

In Equation (5), the softmax operation is calculated as input vector −→z where zi are
all the input values of vector z. Exponential function e is applied over each value that
gives a positive value greater than 0. The denominator value confirms all values sum up to
give one value. The final K is the output class number that changes from application to
application.

3.4. Classification Using the AlexNet Architecture

AlexNet was the first model in deep learning to change the trend of image identifica-
tion and classification tasks. It was initially proposed for detecting and classifying objects
using a benchmark dataset from ImageNet. Using the AlexNet architecture, the image
size for the input layer is taken to be 227× 227× 3. In this architecture, there are only
5 convolutional layers and 3 fully connected layers, giving 25 layers in total. The last layers
were altered in the proposed framework, and then, we used fine-tuned network parameters.
The modifications are shown in Table 2.

In Table 2, all layers above remain the same as in AlexNet, where Fc-8 is first altered
with four layers, and the two layers of the softmax activation class output correspondingly
give the output for the five categories of guava species.

Table 2. AlexNet for guava disease detection.

Layers Categories Activations Weights

Data Layer Image Input 227× 227× 3 -

Convolve-1 Convolution 55× 55× 96 11× 11× 3× 96

ReLU-1 ReLU 55× 55× 96 -

Normalization-1 Cross-Channel
Normalization 55× 55× 96 -

Pool-1 Max-Pooling 27× 27× 96 -

Convolve-2 Grouped Convolution 27× 27× 256 5× 5× 48× 128

ReLU-2 ReLU 27× 27× 256 -

Normalization-2 Cross-Channel
Normalization 27× 27× 256 -

Pool-2 Max-Pooling 13× 13× 256 -

Convolve-3 Convolution 13× 13× 384 3× 3× 256× 384

ReLU-3 ReLU-3 13× 13× 384 -
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Table 2. Cont.

Layers Categories Activations Weights

Convolve-4 Grouped Convolution 13× 13× 384 3× 3× 192× 192

ReLU-4 ReLU 13× 13× 384 -

Convolve-5 Grouped Convolution 13× 13× 256 3× 3× 192× 128

ReLU-5 ReLU 13× 13× 256 -

Pool-5 Max-Pooling 6× 6× 256 -

FC-6 Fully Connected 1× 1× 4096 4096× 9216

ReLU-6 ReLU 1× 1× 4096 -

Drop-6 Dropout 1× 1× 4096 -

Fc-7 Fully Connected 1× 14096 4096× 4096

ReLU-7 ReLU 1× 1× 4096 -

Drop-7 Dropout 1× 1× 4096 -

FC-8 Fully Connected 1× 1× 5 5× 4096

Softmax Softmax 1× 1× 5 -

Class Output Classification - -

3.5. Classification Using GoogLeNet Architecture

Google developers focused on the proposed AlexNet model and then introduced
the inception module and changed it sequentially by stacking up layers. This introduced
different and smaller kernel size windows with more layers in them. It became the winner
of the 2014 ILSVRC competition. The inception modules that were the fundamental
contribution by GoogLeNet are shown for the trained architecture on the guava dataset,
and the layer-by-layer parameters are shown in Table 3.

Table 3. GoogLeNet network used for guava disease detection.

Layers Categories Activations Weights

Inception-3a-1×1 Convolution 28× 28× 64 1× 1× 192× 64

Inception-3a-3×3 Convolution 28× 28× 128 3× 3× 196× 128

Inception-3a-5×5 Convolution 28× 28× 32 5× 5× 16× 132

Inception-4a-1×1 Convolution 14× 14× 192 1× 1× 480× 192

Inception-4a-3×3 Convolution 14× 14× 208 3× 3× 96× 208

Inception-4a-5×5 Convolution 14× 14× 48 5× 5× 16× 48

Inception-5a-1×1 Convolution 7× 7× 256 1× 1× 832× 256

Inception-5a-3×3 Convolution 7× 7× 320 3× 3× 160× 320

Inception-5a-5×5 Convolution 7× 7× 128 5× 5× 32× 128

FC Fully Connected 1× 1× 5 5× 1024

Softmax Softmax 1× 1× 5 -

Classification Classification Output - -

The overall architecture remains similar, where the last three layers are altered, and
the upper-layer connections remains connected.

3.6. Classification Using the SqueezeNet Architecture

SqueezeNet was introduced with five modules. It is claimed that the 3× 3 kernel size
should be reduced to 1× 1, reducing the size of the overall parameter. Downsampling is
also reduced into layers. More feature maps are thus learned by the layers. The introduced
fire module contains the squeeze layer, and it has 1× 1 filters. They are fed an expanding
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layer that is a mixture of 1× 1 and 3× 3 kernels. The SqueezeNet layer architecture and
parameters with altered layers are shown in Table 4.

Table 4. SqueezeNet network used for guava disease detection.

Layers Categories Activations Weights

Fire3-Squeeze-1×1 Convolution 56× 56× 16 1× 1× 128× 16

Fire4-Squeeze-1×1 Convolution 28× 28× 32 1× 1× 128× 32

Fire5-Squeeze-1×1 Convolution 28× 28× 32 1× 1× 256× 32

Fire6-Squeeze-1×1 Convolution 14× 14× 48 1× 1× 256× 48

Fire7-Squeeze-1×1 Convolution 14× 14× 48 1× 1× 384× 48

Fire8-Squeeze-1×1 Convolution 14× 14× 64 1× 1× 384× 64

Fire9-Squeeze-1×1 Convolution 14× 14× 64 1× 1× 512× 64

Last-convolve Convolution 14× 14× 5 1× 1× 512× 5

ReLU-Convolve ReLU 14× 14× 5 1× 1× 512× 5

Pool-4 Global Average Pooling 1× 1× 5 -

Softmax Softmax 1× 1× 5 -

Classification Classification Output - -

The fire modules in the hyperparameter continuation produce three tunable param-
eters, namely s1 × 1, e1 × 1, and e3 × 3. AlexNet’s level of accuracy was achieved by
the actual SqueezeNet with 50× fewer parameters, and the model size was reduced to
just 0.5 MB because of the decrease in the kernel sizes and the fire modules used in this
architecture.

3.7. Classification Using the ResNet-50 Architecture

ResNet was introduced with the residual block concept mainly to answer the overfit-
ting issue created in DL models. It uses a considerable number of layers, such as 50, 101, and
152. As ti is suggested by GoogLeNet to use a small kernel size, it uses small convolutional
kernels where denser or more layers are used to meet or improve the validity of the data.
The introduced residual block uses a 1× 1 layer that reduces the dimension, a 3× 3 layer,
and a 1× 1 layer used to restore the dimensions of the given input. The layer-based ResNet
was used, so we used a 50- and 101-layer architecture; the 50-layer architecture of ResNet is
shown in Table 5.

Table 5. ResNet-50 network used for guava disease detection.

Layers Categories Activations Weights

Res-2a Convolution 56× 56× 256 1× 1× 64× 256

Res-3a Convolution 28× 28× 512 1× 1× 256× 512

Res-4a Convolution 14× 14× 1024 1× 1× 512× 1024

Res-5a Convolution 7× 7× 2048 1× 1× 1024× 2048

FC Fully Connected 1× 1× 5 5× 2048

Softmax Softmax 1× 1× 5 -

Class-Output Classification - -

The basic residual branches of ResNet-50 with their learned parameters in guava dis-
ease detection are shown in Table 5. The residual block re-concatenates spatial information
from the previous block to preserve information in each calculated feature map of the
residual block. For the proposed framework, the last layers are altered with five categories
to classify them on the basis of previous learning on the augmented guava data of the
proposed study.
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3.8. Classification Using ResNet-101 Architecture

The ResNet-based study produced many variants of its introduced residual blocks,
such as 18, 19, 34, 50, and 101, and the densest of 152. Making it increasingly denser
did not improve the accuracy after a certain point. This may be due to many factors,
such as learning saturation, loopholes in the proposed architecture, and hyperparameter
optimization. Therefore, the mainly used networks were ResNet-50 and 101. The learned-
weight-based architecture of the residual blocks using the ResNet-101 architecture for guava
disease detection are described in Table 5; the difference between 50 and 101 is in their
architecture. There are 347 layers in total in ResNet-101 and 177 layers in the ResNet-50
model. Learning mainly changed after Res-branch 4a, as hundreds of layers are added after
it learns in different ways, as described in the ResNet-101 architecture.

4. Results and Discussion

The proposed study used augmented data of actual given locally collected data in
Pakistan for guava disease detection. The data had enough images to train the DL model.
The dataset details for before and after augmentation are shown in Table 6.

Table 6. Dataset description with and without augmentation.

Categories Number of Images (without
Augmentation)

Number of Images (with
Augmentation)

Canker 77 693

Dot 76 684

Mummification 83 747

Rust 70 630

Healthy 15 135

Total 321 2889

4.1. Evaluation Measure

There are mainly four types of prediction instances, which we can consider in the for-
mulation of these above-mentioned evaluation measures: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). These are described in detail below.

4.1.1. Accuracy

Accuracy is the most commonly used measure in the ML and DL domains for clas-
sification. It can briefly be described as truly predicted instances over total instances,
including wrong and right predictions. In terms of the four types used above, the equation
for accuracy can be written as follows:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(10)

The equation can be described as the ratio of the summation of TP and TN over the
summation of TP, TN, FP, and FN.

4.1.2. Specificity

This is the measure among the right predictions over the total that were from both the
positive and negative classes. Briefly, negatively labeled objects are measured over the total
of true- and false-negative instances. It can be written as:

Speci f icity =
TN

(TN + FP)
(11)

The specificity equation is defined as the ratio over TN and the summation of TN and FP.
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4.1.3. F1 Score

The F1 score is an essential measure, as it is calculated for both the essential measures
of recall and precision. Recall is also known as sensitivity and is the measure to detect
positive class predictions among true positives and false negatives. For the F1 score, we
need to calculate the sensitivity as follows:

Recall (Sensitivity) =
TP

(TP + FN)
(12)

The second measure, precision, is also separately calculated and used in the F1 score
measurement. Precision is calculated to obtain a truly predicted class over true and false
positives. It is represented as:

Precision =
TP

(TP + FP)
(13)

After obtaining the precision and recall, the F1 score can be calculated. After having
TP over TP and FN by recall and by obtaining TP over TP and FP, we can obtain more
precise measurements for true-positive predictions. The final F1 score can be calculated as:

F1− score = 2× Precision ∗ Recall
Recall + Precision

(14)

Therefore, the F1 score equation can be defined as two multiplied by the ratio of the
product and summation of precision and recall.

4.1.4. Kappa–Cohen Index

The last measure is to have confidence about the statistical analysis of the results, as
statistical analysis is broadly used in many aspects of scientific work. Therefore, a statistical
measure that gives confidence over confusion matrix values was calculated for evaluation.
The kappa index gives the confidence over a certain range of confusion-matrix-based
calculated values. If its value range lies in the range of 0–20, it promises that 0–4% of the
data are reliable to use for prediction. If its index value lies in the range of 21–39, it promises
a 4–15% data reliability. If it lies between 40 and 59, it promises 15–35% data reliability. If
it lies between 60 and 79, it promises a 35% to 63% reliability. If it lies between 80 and 90,
then it promises strong data reliability, and if it lies at more than 90, that means 82% to
100% reliability. It can be calculated as:

Agreement =
( cm1∗ rm1

n
)
+
( cm2xrm2

n
)

n
(15)

The agreement type was calculated using cm1, cm2, rm1, and rm2, where cm1 represents
Column 1 and cm2 represents Column 2. rm1 and rm2 represent Rows 1 and 2 of any two-
class confusion matrix. This formulation is the general form of a two-class confusion matrix;
in the case of our proposed methodology, there are five columns and rows that extend the
formulation to up to five rows and columns.

The total augmented data were later split into a 70/30 ratio for training and testing
data, where the fine-tuned parameters for each of the five training models remained
different and showed different results. The training and testing data number of instances
became 2023 and 866, respectively.

There were five different kinds of architectures applied to classify guava diseases
using the augmented image data. The individual class testing data prediction results
are discussed with their overall results. The evaluation measures accuracy, sensitivity,
specificity, precision, recall, and the kappa index were also used as statistical measures. The
results are shown in Table 7.
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Table 7. Results obtained on the basis of individual class testing data.

Models Categories Accuracy Specificity F1-Score Precision Kappa

AlexNet Canker 0.98077 0.99088 0.97608 0.97143 0.52096

Dot 0.98049 0.99697 0.98529 0.99015 0.5309

Healthy 1 1 1 1 0.90762

Mummification 0.98661 0.99533 0.98661 0.99533 0.48509

Rust 0.98942 0.99705 0.98942 0.98942 0.5648

Overall 0.9850 0.9960 0.9875 0.9875 0.9531

GoogLeNet Canker 0.96635 0.99696 0.9781 0.99015 0.52859

Dot 0.97561 0.98638 0.96618 0.95694 0.52695

Healthy 1 1 1 1 0.90762

Mummification 0.99429 0.99377 0.97297 0.98182 0.49202

Rust 0.99471 0.99114 0.98172 0.96907 0.56

Overall 0.9758 0.9937 0.9798 0.9796 0.9242

SqueezeNet Canker 0.97596 0.99392 0.97831 0.98068 0.52404

Dot 1 1 0.96698 1 0.51541

Healthy 1 1 1 1 0.90762

Mummification 0.98214 0.9891 0.97561 0.96916 0.48364

Rust 0.91534 1 0.9558 1 0.5866

Overall 0.9711 0.9924 0.9753 0.9772 0.9098

ResNet-50 Canker 0.99519 0.99696 0.99281 0.99043 0.51957

Dot 1 0.99697 0.99515 0.99034 0.52957

Healthy 1 1 1 1 0.90762

Mummification 0.98661 1 1 1 0.48733

Rust 1 1 1 1 0.56351

Overall 0.9954 0.9988 0.9962 0.9962 0.9856

ResNet-101 Canker 0.99519 0.98784 0.97872 0.96279 0.51484

Dot 0.98049 0.99849 0.98772 0.99505 0.53178

Healthy 1 1 1 1 0.90762

Mummification 0.98214 1 1 1 0.48887

Rust 0.98413 0.99557 0.98413 0.98413 0.56544

Overall 0.9861 0.9964 0.9883 0.9884 0.9567

The individual class and overall results for each model were evaluated. Several
evaluation measures were used: accuracy, specificity, F1 score, precision, and kappa.

The first model, AlexNet, showed 98% accuracy, 99% specificity, a 97.60% F1 score,
97.14% precision, and a 0.5296 value for kappa as the canker class prediction results of the
testing data. Accuracy is a general measure over all positive and negative instances that
are either wrongly or correctly predicted. The 98% accuracy of the canker class showed
accurate predictions of positive and negative classes and mainly showed excellent and
satisfactory results in TN predictions over TN and FP; specificity showed that true negatives
were mostly predicted right among TN and FP. Precision showed TP over TP and FP, with
a 97.14% value; this means that it had less accurate predictions. For a positive class to see
the combined effect of TP and TN, the F1 score measure was used. The F1 score showed
a 97% value, which summarizes both of the above measures. The kappa index showed
a weak level of agreement for the canker class. The dot class showed 98.04% accuracy,
99.69% specificity, 98.52% F1 score, 99% precision, and a 0.53 kappa value. The dot class
showed less accuracy than that of the canker class, but it needs to be discussed with
another evaluation measure to analyze the predictions of positive and negative instances.
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Specificity, which was 99.7% in the case of the dot class, represented TN among TN and
FP where the precision was 99% for TP over TP and FP. The F1 score of this measure
showed 98.52%, which summarizes the recall and precision, which could be considered
to be more promising factors compared to sensitivity, specificity, and precision. The last
statistical measure showed a weak level of agreement for this class. The third and healthy
class showed accurate results in all networks where the data agreement value was also
0.97, showing an extraordinary level of agreement on the given data. The next class,
mummification, showed 98.66% accuracy, 99.53% specificity, a 98.66% F1 score, a 99.53%
precision value, and a 0.485 value for kappa. The accuracy for the mummification class
was slightly better than that for the canker and dot classes. Other values such as specificity
were lower than those for canker and dot, but with large differences. The precision value
was higher than that of the canker class and lower than that of the dot class. To summarize
both precision and specificity, the F1 score was used, which was nearer to that of the dot
class and higher than that of the canker class. The kappa value is a decision-maker index,
with a 0.48 value, which was less than that of the canker and dot classes, but also had
weak agreement with the data reliability. The kappa value for the last class was 0.56 due
to the one value for both precision and specificity, but 56 also lies in the weak agreement
class. Lastly, the overall or mean results were evaluated, showing 98.50% accuracy, 99.60%
specificity, a 98.75% F1 score, 98.75% precision, and a 0.9531 value for the kappa index. The
mean or overall value was an actual representation of a model that produced good results;
it was either about the accuracy, specificity specifically for TN, and precision for the TP
value, and the F1 score represents the recall and precision. A kappa value of more than 90%
is a strong agreement level, and the data reliability is also high when kappa is more than
90. Therefore, AlexNet overall showed satisfactory results.

GoogLeNet showed testing results on the canker class as follows: 96.635% accuracy,
99.69% specificity, 97.81% F1 score, 99.01% precision, and 0.5285 kappa value. Accuracy
showed promising results where, if examining the specificity value over TN values, it
showed a value of 99.69%. Similarly, the precision value over the TP values showed 99%,
and the F1 score over precision and recall showed a value of 97.81%, which showed more
confidence than precision and specificity did. The last important measure is the kappa
index, 0.5285, which showed weak promise as it was of only one class over other classes.
The mean value showed the actual effect of the kappa stat. The other dot class showed
values of 97.56% accuracy, 98.638% specificity, a 96.618% F1 score, 95.69% precision, and
a 0.5269 kappa value. The accuracy value as compared to that of the canker class was
lower. In the case of the dot class, where the specificity value was also slightly lower, its
precision value was lower than that of the canker class. The F1 score based on precision and
recall showed a slightly higher score in the canker class, where the last kappa Cohen index
was similar and lied on weak agreement of data reliability. The mummification showed a
99.42% value of the accuracy, a 99.37% value of the specificity, a 97.29% value for the F1
score, a 98.18% precision value, and a 0.49 kappa value. For an accuracy value higher than
those of the canker and dot classes, where the specificity value was lower than that of the
canker, and slightly lower than that of the dot class, this means that some TN instances
had variation in these cases. The F1 score showed a lower score than that of the dot class
and higher than that of the canker class. This means the combined effect of TP and FP was
more promising for mummification compared to that for the dot class. The last class of
rust showed 99.47% accuracy, 99.114% specificity, a 98.172% value for the F1 score, 96.907%
for precision, and 0.56 for the Cohen index. The accuracy value was higher than that of
the canker, dot, and mummification classes. The F1 score showed a 98.17% value that was
nearest the canker, mummification, and dot classes. Therefore, the accuracy value was the
measure to analyze the test prediction results where other values such as the F1 score also
mattered and made the results distinguishable.

SqueezeNet testing showed results for the canker class of 97.596% accuracy, 99.392%
specificity, a 97.838% F1 score, 98% precision, and a 0.52 kappa value. The accuracy value,
a general assumption of model performance, had a lower value than that of specificity,
precision, and the F1 score. The specificity value was much higher, which means that true
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negatives over the TN and FP had higher rates for the canker class. TP cases were also
predicted with a 98% value over the FP and TP as the precision scores. The recall- and
precision-based F1 score showed 97.83%, which is intermediate between the precision and
specificity. The kappa value was 0.52 and lied on the weak agreement of the data. The
second dot-class-based results showed 100% accuracy, 100% specificity, a 96.68% F1 score,
100% precision, and a 0.51 kappa value. Although the accuracy was good for this class,
specificity showed a 100% result. The F1 score that covered recall and precision validity
had a 96.68% score and 0.52 kappa value. The mummification class showed a predictivity
of 98.214% accuracy, 98.91% specificity, a 97.56% F1-score, a 96.916% precision value, and
0.48 for the kappa index. The last class of rust showed predictivity measures of 91.53%
accuracy, 100% specificity, a 95.58% F1 score, and 100% precision. The accuracy value was
lower than that of the other three classes where precision and specificity were 100% in this
case. The global or overall results for the all classes had a primary issue. Accuracy was
97.11%, lower than that of AlexNet and GoogLeNet, where specificity was lower than that
of both AlexNet and GoogLeNet, and the F1 score, precision, and kappa were lower for
this model testing the data predictions. The kappa index showed promise for these data.

ResNet-50 and -101 had much more improved results than those of AlexNet, SqueezeNet,
and GoogLeNet. ResNet-50 showed canker class results of 99.51 accuracy, 99.68% specificity,
a 99.28% of F1 score, a 99.03% precision value, and 0.51 for precision value of the kappa
index. Compared to the previous cases of AlexNet, GoogLeNet, and SqueezeNet, the
results were overall improved for all measures. Similarly, for the dot class, the accuracy
value was 100%, 99.697% specificity, a 99.515% F1 score, a 99.034% precision value, and a
0.52 kappa index. The canker class results were not better than those of the dot class if we
look at the accuracy measures, with only a slight difference in the F1 scores. Mummification
results showed 98.661% accuracy, 100% specificity, a 100% F1 score, 98.25% precision, and a
0.48 kappa value. Although it had 100% accuracy as an individual class, the specificity and
precision values were also higher than those of the canker and dot classes. The rust class
showed 100% accuracy, 100% specificity, a 100% F1 score, and a 100% precision value. The
overall results were improved as compared to the above models’ mean results. The global
mean results were 99.54% accuracy, which was better than that of SqueezeNet, GoogLeNet,
and AlexNet. Specificity was also better than that in the three models. The F1 score and
precision were both better than those in the previously discussed three models. Although
it had a higher value than that of the previous models, the last kappa had the same class of
confidence. The data reliability was higher for all models.

The last model of the proposed study also achieved good results as compared to the
other models. The canker class showed predictivity values of 99.519% accuracy, 98.784%
specificity, an F1 score of 97.87%, a precision of 96.27%, and a 0.51 kappa index. ResNet-50’s
accuracy had a dominant result compared to the previous class results of the other models,
while other evaluation values also showed more improvement in this model. If the accuracy
value was improved, other values were not so improved, but different cases showed overall
improvement of the results. In ResNet-101, the dot class showed 98.049% accuracy, 99.84%
specificity, 99.505% precision, and a 0.53 kappa value. Accuracy, specificity, precision, and
the F1 score were overall improved for each class, which did not happen in the previous
models’ results for any class. The mummification class again showed 100% accuracy
in this model testing. The mummification class showed 100% accurate results in other
models where other values were not improved to such an extent: 98.41% accuracy, 99.84%
specificity, 98.93% F1 score, and 99.47% precision. The last class showed consistency in the
improvement of the results for each class by also showing promising results here. Lastly,
the overall mean results of ResNet-50 proved it to be more accurate than the four other
models. The accuracy was also better than that of the others. Similarly, other measures also
showed excellent performance. The graphical illustration of all five models’ mean testing
results is shown in Figure 4.
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Figure 4. Guava disease classification result visualization.

The overall results showed that the kappa value had overall excellent data reliability
for all models. The mummification, the healthy and dot classes were more distinct classes
to distinguish them from the other two classes, as they showed 100 true results many times.
The densest model with more residual connections showed more accurate results, which
means that using a small kernel size with an increasingly denser network improved the
classification results.

For individual cases or data-based testing analysis, the confusion matrices were
designed and evaluated, and they are shown in Table 8.

Table 8. Confusion matrix obtained using several state-of-the-art networks.

Networks AlexNet GoogLeNet SqueezeNet ResNet-50 ResNet-101

Classes C D H M R C D H M R C D H M R C D H M R C D H M R

C 204 0 0 3 1 201 3 0 2 2 203 0 0 5 0 207 1 0 0 0 207 0 0 0 1

D 3 201 0 0 1 0 200 0 2 3 0 205 0 0 0 0 205 0 0 0 2 201 0 0 2

H 0 0 40 0 0 0 0 40 0 0 0 0 40 0 0 0 0 40 0 0 0 0 40 0 0

M 3 0 0 221 0 2 5 0 216 1 1 3 0 220 0 2 1 0 221 0 3 1 0 220 0

R 0 2 0 0 187 0 1 0 0 188 3 11 0 2 173 0 0 0 0 189 3 0 0 0 186

The confusion matrices of all architectures showed that the rust class was the most
distinguishable among other guava diseases. If we discuss the AlexNet model results, four
wrong cases were predicted as wrong in the rust and mummification classes, four wrong
predictions were found for the dot class, where the wrong predictions lied on canker and
rust. There were three wrong predictions for mummification, in the class of canker, and
there were two wrong predictions in the rust class; these wrong predictions were two for dot.
The second GoogLeNet architecture made 201 correct predictions in the canker class, and
seven wrong predictions lied in the dot, mummification, and rust class, while no prediction
lied in the healthy class. The five wrong predictions for the dot class were two predicted
as mummification and three was rust, whereas 200 were predicted as right. This makes it
one case less accurate than AlexNet, as that made four wrong predictions in the dot class.
Mummification was predicted as nine wrong classes in the canker, dot, mummification, and
rust categories, where two-hundred sixteen cases were rightly predicted. In rust, 188 cases
were rightly predicted. One was predicted wrongly in the dot class. It was highly more
efficient than AlexNet was in this category, as that predicted two wrong cases in the dot
class, and GoogLeNet predicted only one wrong. The SqueezeNet architecture model made
five wrong predictions, with two-hundred and three correct predictions of the canker class.
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The five wrong predictions were in the mummification class. In the dot class, there was no
wrong prediction, and all 205 test instances were rightly predicted. In mummification, there
were four wrongly predicted cases and two-hundred and twenty rightly predicted cases.
Most were predicted in the dot class with three instances, with one predicted in the canker
class. Rust had 16 wrong cases, and most were in the dot class—11 out of 16. ResNet-50 was
similar to ResNet-101, where the difference was mainly of several layers and its parameters.
ResNet-50 predicted one wrong cases for the canker class with one wrong prediction in dot,
and two-hundred and seven were correctly predicted. All dot class predictions (205) were
correctly predicted in the dot class. The mummification class in this model’s predictions
had 221 correct predictions in dot. It has one wrong and two wrong predictions in the
canker class. ResNet-101 also had higher accuracy results as compared to those of all other
models. According to its confusion matrix, it made one wrong prediction for the canker
class into the rust class. As compared to ResNet-50, it had one wrong case prediction, but
in a different class. Regarding the dot class, ResNet-50 made no wrong predictions, and
ResNet-101 made four wrong predictions. In the third case of the mummification class,
there were four wrong predictions, and ResNet-50 made three wrong predictions. There
were three wrong predictions in the last class, rust. There were 186 correct predictions for
ResNet-101.

The above analysis of the five models shows that ResNet-50 had an overall high rate
of correct predictions; for wrong predictions in the dot class data, it was highly difficult
for each model, as it was predicted as the wrong class in most cases. The other classes also
misled the models, where the most challenging and least robust class was dot. Therefore,
the dot class may need more confident and robust approaches to classify it from other
classes. The mummification class had no wrong predictions in ResNet-50 and -101, where
it only had a higher rate of wrong predictions in the cases of SqueezeNet with four, where
the two remaining models also did not make very many accurate predictions for this class.
The healthy class overall in all models remained accurate with no wrong prediction by
any model. It made the normal class easily distinguishable by any model. However, the
challenge was differentiating the guava disease categories.

5. Conclusions

Guava is an important plant to monitor with the growing population; its production
demand is also increasing. Pakistan is a leading global guava producer. Hence, for auto-
matic monitoring, the study proposed a DL-based guava disease detection system. Data
were preprocessed and enhanced using a color histogram and unsharp masking method.
Enhanced data were then augmented over the nine angles using the affine transformation
method—augmented enhanced data used by five DL networks by altering their last layers.
The AlexNet, GoogLeNet, SqueezeNet, ResNet-50, and ResNet-101 architectures were
used. The results of all networks showed adequate measurements, and ResNet-101 was
the most accurate model. Future work should use more data augmentation methods such
as generative adversarial networks. Other federated-learning-based DL architectures can
be applied for classification to obtain more robust and confident results for this Pakistani
guava disease dataset.
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