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Abstract: Chlorophyll-a (Chla) concentration, which serves as a phytoplankton substitute in inland
waters, is one of the leading indicators for water quality. Generally, water samples are analyzed in
professional laboratories, and Chla concentrations are measured regularly for the purpose of water
quality monitoring. However, limited spatial water sampling and the labor-intensive nature of data
collection make global and long-term monitoring difficult. The developments of remote-sensing
optical sensors and technologies make the long-term monitoring of Chla concentrations for an entire
water body more achievable. Many studies based on machine learning techniques, such as regression
and artificial neural network (ANN) methods, have recently been proposed for Chla concentration
estimation using optical satellite images. The methods based on machine learning can achieve
accurate estimation. However, overfitting problems may arise because the in situ Chla dataset is
generally insufficient to train a complicated machine learning model, which makes trained models
inapplicable. In this study, an ANN model containing three convolutional and two fully connected
layers with 4953 unknown parameters is designed. A transfer learning method, consisting of model
pretraining, main-training, and fine-tuning stages, is proposed to ease the problem of insufficient
in situ samples. In the model pretraining stage, the ANN model is pretrained and initialized using
samples derived from an existing Chla concentration model. The pretrained ANN model is then fine-
tuned using the proposed transfer learning technique with in situ samples collected in five different
campaigns carried out during early 2019 from Laguna Lake, the Philippines. Before the transfer
learning, data augmentation and rebalancing methods are conducted to enrich the variability and to
near-uniformly distribute the in situ samples in Chla concentration space, respectively. To estimate
the alleviation of model overfitting, the trained ANN model, using an in situ dataset from Laguna
Lake, was tested using an in situ dataset from Lake Victoria, Uganda, obtained in 2019, which has a
similar trophic state as Laguna Lake. The experimental results from Sentinel-3 imagery indicated
that the overfitting problem was significantly alleviated and the trained ANN model outperformed
related models in terms of the root-mean-squared error of the estimated Chla concentrations.

Keywords: chlorophyll-a concentration; artificial neural network; transfer learning; overfitting

1. Introduction

Lakes are land-surrounded water bodies that generally provide freshwater for human
daily needs. For instance, water from Lake Biwa, Japan, is used as a water drinking resource
for people in Osaka and Kyoto and has been maintained as a conservation ecosystem
with good water quality [1]. In Indonesia, a freshwater treatment plant, namely, PDAM
Kabupaten Kerinci, was built around Lake Kerinci in Jambi to take, store, filter, and
distribute the water to people living nearby [2]. Meanwhile, the worldwide demand for
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fish products has steadily increased due to the growing need for protein and the shift in
behavior towards the consumption of healthier food [3,4]. The aquaculture industry often
adds nutrient fertilizers, which are useful for commercial fish, to the water somewhere
around the lake body. This procedure can fulfil the consumption demands; however, algal
growth may be enhanced when nutrients are oversupplied. Consequently, the penetration
of sunlight, which is required for respiration in fish, is limited and may lead to the extensive
deterioration of water quality and the declining availability of freshwater, harming not
only the fish, but also society. Therefore, the long-term monitoring of the water quality
in lakes is necessary for the authorities to develop sustainable management initiatives to
prevent water quality degradation and to maintain freshwater supplies in the future.

Chlorophyll-a (Chla), a pigment found in every phytoplankton species, is considered
a critical water quality parameter for many environmental issues [5–7]. The water quality
and Chla concentration can be categorized into four classes based on the trophic state index:
oligotrophic (less than 2.6 µg/L), mesotrophic (2.6–20 µg/L), eutrophic (20–56 µg/L),
and hypertrophic (more than 56 µg/L) [8]. The water quality condition for each class
is described in Table 1. Chla concentrations measured using field surveys are accurate
and precise; however, the concentration data are only available at the sampling locations.
Taking more measurements from the lake water body is hindered by the high labor and
financial costs. Remote sensing technology enables researchers to empirically estimate the
Chla concentration at the full spatial coverage of the lake water body by regressing the
remote-sensing reflectance (Rrs) or the features with the in situ data obtained from field
survey. Dall’Olmo and Gitelson [9] utilized the features of band ratios, combining Rrs at
wavelengths 443, 490, and 560 nm (denoted as λ443, λ490, and λ560) in a three-band model, in
which the in situ samples used in training ranged from 4.4 µg/L to 217.3 µg/L. Al-Shehhi
et al. [10] exchanged the Rrs at wavelengths λ560 to λ645, which has been found to represent
both water turbidity and algal absorption in a narrower range of in situ data (0.1–27.8 µg/L).
Chen et al. [11] performed local calibration in Chinese waters resulting in an Rrs feature
at λ580, λ600, and λ692. Gitelson et al. [12] and Moses et al. [13] simplified the three-band
model to a two-band model by removing the Rrs at λ443 due to the similar sensitivity
to absorption as Rrs at λ490. Hence, Mishra and Mishra [14] proposed a differentiate
index, called the normalized differentiate Chla index (NDCI), and demonstrated that
the method outperforms the three-band and two-band models in cross validation. Many
researchers [15–20] searched for important features that are sensitive to Chla concentrations;
however, the procedure is somewhat statistically exhaustive.

Table 1. Description of trophic state index [8].

Trophic Class Chla Concentration
Range (in µg/L) Water Condition

Oligotrophic 0~2.6
A lake with very clear waters and high drinking

water quality due to low nutrient content and
algal production.

Mesotrophic 2.6~20
Commonly clear water lakes with beds of

submerged aquatic plants and medium levels of
nutrients.

Eutrophic 20~56 The water body will be dominated either by
aquatic plants or algae.

Hypertrophic More than 56
Highly nutrient-rich lakes characterized by

frequent and severe nuisance algal blooms and
low transparency.

Another promising procedure to estimate Chla concentrations is by means of an artifi-
cial neural network (ANN). Buckton et al. [21] proposed a fully connected neural network
containing one hidden layer that revealed the capability of ANN for Chla concentration
estimation. Similar work was also conducted by other researchers [22–24]. Hafeez et al. [25]
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designed several fully connected neural networks and searched for the optimal hyperpa-
rameters, including the number of hidden layers and the number of neurons in a layer. The
study also revealed that the optimal ANN model outclassed the other machine learning
methods, including random forest, cubist regression, and support vector regression, in
terms of Chla concentration estimation. Furthermore, several researchers utilized convolu-
tional neural networks (CNNs), which consider neighborhood spectral information in Chla
concentration modelling using convolutional layers with 3D kernels [26–29].

An ANN model requires a high number of labelled data—that is, it uses in situ Chla
concentrations as outputs and their corresponding Rrs in satellite images as inputs, and
the initial values for unknown parameters for model training. Pyo et al. [28] constructed
a CNN model with more than 2000 unknown parameters. This model was trained using
only 238 labelled data. Meanwhile, Aptoula and Ariman [26] utilized 320 labelled data to
train a CNN model containing 2432 unknown parameters. However, overfitting problems
may arise because insufficient labelled data are used to search for the optimal values of
thousands of unknown parameters during model training. Nguyen et al. [30] applied data
augmentation to enrich the labelled data; however, they did not consider the data imbalance
problem that may affect the estimation accuracy. Furthermore, some researchers utilized
simulated datasets instead of in situ Chla concentration data to deal with the labelled data
insufficiency [31–33]. A simulated dataset means that the Chla concentration information is
obtained from an existing known model. With this procedure, the labelled data insufficiency
can be solved; however, training a neural network model with a simulated dataset may
not reach the global optimum of the defined loss function. Syariz et al. [34] proposed
a two-stage training method, in which the model is firstly pretrained using a simulated
dataset, and the pretrained model is then retrained using an in situ dataset. The advantage
of this method is that the pretraining process is able to provide good initial values for
the unknown parameters before the main training process using the in situ dataset. The
training process can train an ANN model rather well for Chla concentration estimation.
However, the overfitting problem is not fully alleviated because of the lack of training
sample variability and the problem of training sample imbalance.

In this study, the main objectives were (1) to propose a transfer learning technique
using the two-stage transfer training approach for better Chla concentration estimation
accuracy; (2) to enrich and balance the Chla-labelled data by performing data augmentation
and rebalancing techniques; and (3) to test the ANN model trained using the improved
proposed two-stage training transfer learning approach with an in situ dataset from Laguna
Lake, using the in situ dataset acquired from Lake Victoria, Uganda. To evaluate the
effectiveness of the proposed model learning methods, an ANN model, namely WaterNet,
first proposed by Syariz et al. [34], was adopted. The input to WaterNet was a water-body
image patch of the size 7 (width)× 7 (height)× 16 (bands) and the output was an estimated
Chla concentration at the center pixel of the input patch. Lastly, the proposed transfer
learning method can increase the accuracy of Chla concentration retrieval in the lake water
body, which can later be utilized by governments to better understand the lake water
state and develop a clinical management plan to prevent water quality degradation and
to maintain freshwater supplies in the future. The remainder of the paper is organized as
follows. Section 2 describes the study area, data material, acquisition, and preprocessing.
Section 3 elaborates the proposed transfer learning technique, data augmentation, and data
rebalancing. Section 4 presents the experimental results, performance, and the comparisons
of the trained ANN model and related models, and Section 5 provides the conclusions and
future work.

2. Data Materials and Preprocessing

The in situ dataset acquired from Laguna Lake, the Philippines, was used to train the
proposed ANN model while the in situ dataset acquired from Lake Victoria, Uganda, which
has a similar trophic state (i.e., mesotrophic) with Laguna Lake, was utilized to test the
trained model. The acquisitions of these two datasets are described in Sections 2.1 and 2.2.
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The Sentinel-3 imagery used for Chla estimations and data preprocessing are described in
Section 2.3.

2.1. Laguna Lake of the Philippines

Laguna Lake, with an area of 900 km2 and an average depth of 2.5 m, is the largest
lake in the Philippines. There are more than 20 million people living in the surrounding
areas of Laguna Lake, indicating the importance of the lake in providing freshwater for
local daily needs [35]. However, around 17% of the lake water body (~150 km2) is occupied
by aquaculture cages, where the nutrients and hazardous substances from industrial
activity may pollute Laguna Lake, in addition to the issues of rapid population growth,
industrialization, and urbanization [36,37]. In this study, field measurements of Chla
concentrations were conducted during five different campaigns in 2019, as shown in
Figure 1. Infinity-CLW ACLW2-USB, an optical-based data logger used to measure Chla
concentrations, was installed on a boat at a depth of 0.5 m below the water’s surface. The
data logger recorded the Chla concentrations once per second during a 5-hour field survey,
collecting more than 15,000 records at each campaign. Outlier removal and data down-
sampling were conducted to remove noise and to match the Chla concentration sampling
resolution with the spatial resolution of the Sentinel-3 images, respectively. After the data
pre-processing, 257 in situ Chla samples were obtained from the five field campaigns, as
shown in Table 2, and the resulting samples were utilized to train the ANN model and
related models for comparison and evaluation.
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Table 2. Statistical summary of the in situ samples from Laguna Lake. “Min”, “Max”, Mean”
and “Std.” represent the minimum, maximum, mean, and standard deviation of the Chla
concentrations, respectively.

Campaign # Date (in 2019) # of Samples
Chla Concentration Statistics (µg/L)

Min. Max. Mean Std.

1 11 Jan 35 9.072 13.235 11.391 0.655

2 29 Mar 74 7.378 8.076 7.906 0.163

3 6 Apr 98 6.980 10.970 8.459 1.218

4 26 Apr 22 6.731 7.692 7.254 0.315

5 30 Apr 48 7.856 11.295 9.613 0.801

2.2. Lake Victoria of Uganda

The in situ Chla concentrations from Lake Victoria were obtained from the Mendeley
Online Database (https://data.mendeley.com/ (accessed on 3 August 2021)), as provided
by Deirmendjan et al. [38]. The study in [38] estimated the dissolved organic matter (DOM)
under the support of the project Lake Victoria Greenhouse Gas Dynamics (LAVIGAS).
In this project, there were three campaign periods: 29 March to 8 April 2018, 25 October
to 4 November 2018, and 7 June to 17 June 2019. At each period, the water samples
for Chla concentrations were measured daily in water depths ranging from 1 to 40 m.
Considering that (1) the samples have the same trophic state as Laguna Lake (2.6–20 µg/L),
the measurement depth should be similar to that for Laguna Lake (0.5 m), (2) the Chla
sampling time should match with the Sentinel-3 image acquisition time, and (3) the Sentinel-
3 image pixels corresponding the collected Chla samples should be cloud-free, only two
in situ samples, shown in Figure 2, could be utilized. These two samples were used to
evaluate the inference performance of the trained models to compare the trained model
with related models.
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2.3. Sentinel-3 Image Dataset

Fifteen level 2 water full resolution (WFR) images of Laguna Lake, acquired by the
ocean and land color instrument (OLCI) sensor of Sentinel-3, were utilized. A Sentinel-3

https://data.mendeley.com/
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WFR image contains 16 atmospherically-corrected bands, excluding bands 13–15 (λ761,
λ764, λ767) and bands 18–19 (λ885, λ900,) which are mainly designed for atmospheric correc-
tion [39]. The water-leaving reflectance in Sentinel-3 WFR images is further divided by π
to derive the remote-sensing reflectance Rrs. In addition, the Sentinel-3 WFR product also
contains several water quality parameters, including the Chla concentrations estimated
by using an inverse radiative transfer model–neural network (IRTM-NN) [40]. The Chla
concentrations from the IRTM-NN were regarded as a simulated dataset in this study and
were used for model pretraining.

In the image data preprocessing, cloud-free water pixels in the Rrs images and their
neighboring local patches of the spatial size 7× 7 were extracted. Image patches containing
non-water pixels, such as cloud, and pixels with negative Rrs values due to imprecise
atmospheric correction or cloud shadow, were excluded from the dataset, forming full-
water Rrs image patches. The summary of the Rrs image patches is presented in Table 3.
Similarly, the cloud-free Sentinel-3 image patches corresponding to the locations with
the simulated Chla concentrations generated by IRTM-NN were extracted. These image
patches with simulated Chla concentrations were used in the model pretraining. The Rrs
water patches and their corresponding simulated Chla data were used as a training set.
The training set is denoted as {(Pi, s_chlai)}n

i=1, where n denotes the number of simulated
labelled data, and Pi and s_chlai represent the i-th Rrs water patch and its corresponding
simulated Chla concentration, respectively. There were a total of 47,231 simulated labelled
data. In addition, 275 in situ Chla data over Laguna Lake and their corresponding Rrs
water patches were used as the retraining dataset. The retraining dataset is denoted as
{(Ki, t_chlai)}m

i=1, where n represents the number of in situ Chla samples, and ki and
t_chlai represent the i-th Rrs water patch and its corresponding in situ Chla concentration,
respectively. In addition, one Sentinel-3 WFR image Rrs located in Lake Victoria was also
obtained, and the acquisition date of the image was 15 June 2019. A Rrs water patch of
the size 7 × 7 located at the field measurement point LV1 was extracted. As for the field
measurement LV2, which was taken on 16 June 2019, the water patch was extracted from the
Sentinel-3 image acquired on 15 June 2019. This means that the estimation was conducted
using the image acquired one day before the field measurement in LV2.

Table 3. Summary of Sentinel-3 Rrs image patches from Laguna Lake.

Image Acquisition Day
# of Image Patches

Pretraining Stage Transfer-Learning Stage

11 Jan 1008 35

29 Mar 4715 74

6 Apr 5681 98

26 Apr 1908 22

30 Apr 2582 48

15 Jan 3471

22 Jan 2017

7 Feb 3722

8 Feb 3681

19 Feb 2877

2 Mar 1654

10 Mar 3393

26 Mar 2766

10 Apr 3984

21 Apr 3772

Total 47,231 275
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Considering the stability of the model training, the water patches from Laguna Lake
and Lake Victoria containing Rrs at 16 spectral bands were normalized to the range 0, 1 using
the minimal and maximal Rrs values at each spectral wavelength. The data normalization
process was also performed for the in situ and simulated Chla concentration data.

3. Methodology
3.1. Artificial Neural Network Model

An ANN model, namely WaterNet, proposed by Syariz et al. [34] was adopted. As
shown in Figure 3, the input and output to the model was an image patch of the size
7 × 7 × 16 and an estimated Chla concentration in the center pixel of the patch, respec-
tively. The model is an end-to-end network structure consisting of three phases: that
is, band expansion, feature extraction, and Chla concentration estimation. In the band
expansion phase, there were three convolutional layers with 1 × 1 × 3 kernel filters. The
1 × 1 × 3 kernel filters performing convolution on the spectral domain attempt to augment
spectral features from the spectral bands of the input image patch, which is also known as
spectral feature extraction via band combination [41–43]. Meanwhile, two convolutional
layers containing ten filters of the size 3× 3× 42, and five filters of the size 3× 3× 10, were
utilized in the feature extraction phase. With those filters, the spatial feature information
was extracted. The output to this phase was a feature map of the size 3 × 3 × 5, and this
output was further flattened and linked to the Chla concentration estimation phase which
contained two fully connected layers. A rectified linear unit (ReLU) and sigmoid functions
were used as the activation function in convolution and fully connected layers, respectively.
In total, this ANN model contained 4753 unknown parameters.
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3.2. ANN Model Training

Utilizing insufficient in situ Chla concentration data and unsuitable initialization for
the unknown parameters in ANN model training may lead to model overfitting and make
the loss function difficult to converge. Syariz et al. [34] proposed a two-stage training
approach consisting of pretraining and main-training, which is shown to be able to deal
with the aforementioned problems. The first stage provides a better initialization for the
unknown parameters before the main stage by pretraining the model with the simulated
labelled data {(Ki, s_chlai)}n

i=1. Here, the estimation error is large and backpropagating
the error could make the extraction of the spatial feature not optimum. Moreover, the
convergence of the loss function may not reach its global minimum due to the utilization
of the simulated data. However, this allows the model to have suitable initial values of
the unknown parameters before the main training stage. Then, the pretrained model is
refined with the in situ labelled data {(Pi, t_chlai)}m

i=1. This procedure is also known as
transfer learning.

In this study, the two-stage training was adopted and the main stage part was im-
proved by the implementation of fine-tuning, another kind of transfer learning technique.
Moreover, data augmentation and rebalancing were also proposed and performed before
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the training in the improved main stage. The aim was to have more in situ labelled data
with balanced amounts of samples in Chla concentration distribution space. Details regard-
ing the data augmentation and rebalancing and the proposed transfer learning approach
are explained below.

3.2.1. Data Augmentation and Rebalancing

To enrich the variability of the Chla in situ dataset, the data augmentation technique
was implemented, as the convolutional processing is insensitive to rotation and scale [44,45];
however, the balance of data may not be considered. In this study, the data augmenta-
tion was performed on the in situ labelled data {(Pi, t_chlai)}m

i=1 by applying rotation to
the image patches (with angles of 90◦, 180◦, and 270◦) and flipping the rotated images
from the left to right. Then, the rotated and flipped image patches were linked to their
corresponding Chla concentration as a new dataset, namely, an augmented dataset: that is,
{(Qi, n_chlai)}

q
i=1 where q is the number of rotated and flipped images (2216 data in total).

The augmented dataset was further reclassified into 12 classes, with the first class starting
from 6 µg/L, the last class ending at 12 µg/L, and each class covering 0.5 µg/L, as shown
in Figure 4. Figure 4a implies the frequency of the in situ Chla in the augmented dataset. As
seen, the difference between the Chla concentration data inter-range is huge, and indicates
the imbalanced distribution of the data. Training the model with a data imbalance may
reduce the optimum accuracy, and therefore data rebalancing is necessary. For that, a
sample rebalancing technique was conducted by randomly removing several rotated and
flipped in situ labelled data if the frequency of Chla concentration of the corresponding
class was more than 100 sets (see Figure 4b). This kept the Chla concentration data at each
range equal to or less than 100 sets, thus the balance of the data was achieved. In total,
the data augmentation and rebalancing generated 900 rebalanced data {(Ri, n_chlai)}r

i=1
where r denotes the number of rebalanced in situ labelled data, qi and n_chlai represent
the i-th Rrs water patch and its corresponding in situ Chla concentration, respectively. This
also includes its original data {(Pi, t_chlai)}m

i=1. For simplification, the summary of dataset
variations is described below.

� The simulated labelled data {(Ki, s_chlai)}n
i=1,

� the in situ labelled data which also refer to the original dataset {(Pi, t_chlai)}m
i=1

� the augmented dataset {(Qi, n_chlai)}
q
i=1, and

� the rebalanced dataset {(Ri, n_chlai)}r
i=1.
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3.2.2. Transfer Learning

In this study, two-stage training was adopted and the main stage part was improved
by the implementation of fine-tuning. The procedures for the fine-tuning in the proposed
transfer learning is as follows. There are two sub-stages in the main training.

1. Main-training stage. With the help of the pretraining stage, the ANN model contains
suitable values of unknown parameters. Training them with the rebalanced dataset
increases the possibility that the search for the global minimum in the loss function
can be reached. This also means that the accuracy of the estimation is enhanced or the
estimation error is smaller. The error is then backpropagated to update the unknown
parameters and the spatial feature is more robust.

2. Fine-tuning stage. In the previous stage, the extraction of the spatial feature is al-
ready powerful, and continuing training the previously trained ANN model with the
rebalanced dataset may only endanger the spatial feature. Therefore, a fine-tuning
technique is performed in this stage by means of “network surgery”. First, the model
is split into two parts: the body part, consisting of the first and second phase of the
ANN model; and the head part, consisting of the last phase of the ANN model, which
is the Chla concentration estimation phase. The head part is then removed, leaving the
body part only. Inputting an image patch to the body part only will result in a spatial
feature image. In machine learning, the technique to split and remove the head part is
known as a feature extractor. Moreover, a new head part containing a similar network
as the last phase with a random initial value for the unknown parameters is attached
to the body part. Here, if the gradient is allowed to backpropagate from these random
values all the way through the network, the powerful spatial features could be at risk.
To prevent this problem, the layers in the body part, i.e., in the first and second phase
of the model, are frozen or set as untrainable and allow the backpropagation when
training be performed on the new head only. This allows the network to start learning
from the powerful spatial feature and the estimation of Chla concentration can be
optimized. Lastly, all of the layers are unfrozen or set as trainable. However, different
to the previous stage or sub-stage in which the training is conducted with a learning
rate of 0.001, the learning rate is now set to a very small rate of 0.0001. The aim of
setting such very small rate is to obtain a suitable adjustment for the body and head
parts. For simplification, Figure 5 shows the workflow of the fine-tuning stage.
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For hyperparameters, the Adam optimizer is employed due to its capability in adap-
tively tuning the learning rate and moment [46], and the mean squared error (MSE) is used
as the loss function L and is defined as follows:

L =
1
m

m

∑
i=1

(prChlai − isChlai)
2, (1)

where prChlai is the prediction or estimation of Chla concentration from the input im-
age patch of the i-th labelled data. Moreover, overfitting is alleviated by adopting two
regularization techniques: dropout and L2 regularization. The dropout rate is set to 0.5,
meaning that only 50% of the total unknown parameters are temporarily deactivated when
computing the loss function for model convergence monitoring, whereas the L2 regulariza-
tion adds the Frobenius norm to the loss function to penalize large weights during error
backpropagation for the tuning of unknown parameters. The maximum epoch is set to 30
and the trained network from an epoch with the smallest value of the loss function will be
stored and used for the Chla concentration estimation.

4. Experimental Results and Discussion

This study proposed a transfer learning technique consisting of model pretraining,
main-training, and fine-tuning stages for Chla ANN model training with an insufficient in
situ dataset. In addition, the data augmentation and rebalancing were integrated with the
transfer learning for Chla in situ data enrichment and imbalance. To evaluate the proposed
method, a k-fold cross validation was performed with the Chla in situ dataset from Laguna
Lake, the Philippines, where k was empirically set to 10. In this section, the results of the
proposed transfer learning are presented in Section 4.1, and the effect of data imbalance to
the trained ANN model is presented in Section 4.2. In addition, Section 4.3 demonstrates
the comparisons between the CNN model trained by the proposed transfer learning with
the related models using the dataset from Lake Victoria, Uganda. For accuracy assessment,
the root mean squared error (RMSE) is employed by rooting the MSE in Equation (1).

4.1. Evaluation of the Transfer Learning

To evaluate the proposed transfer learning technique with the processes of data aug-
mentation and rebalance, the ANN named WaterNet was used for Chla concentration
estimation. For details about WaterNet, please refer to Section 3.2. To evaluate the perfor-
mance of the three training stages in the transfer learning, the hyperparameters containing
the batch size, the optimizer, and the number of epochs was the same and 10-fold cross
validation was performed on the rebalanced dataset from Laguna Lake. The evaluation
results are presented in Table 4. After the model pretraining, the accuracy of the estimated
Chla concentrations was not satisfied. The range and average of RMSEs of the folds were
2.070~2.228 µg/L and 2.144 µg/L, respectively. This implies that a poor performance with
high estimation errors was obtained when training the ANN model using the simulated
Chla data. Although the ANN model at this stage cannot effectively retrieve the Chla
concentrations, this training stage can provide suitable initial values for the unknown
parameters for the coming stage. As a result, a better estimation result was obtained
in the main-training stage. The range and average of the RMSEs at folds decreased to
0.4866~0.6887 µg/L and 0.5819 µg/L, respectively. Moreover, the trained ANN model was
further fine-tuned in the next stage. The average RMSE improved from 0.5819 µg/L in the
second stage to 0.3724 µg/L in the third stage. This was caused by setting the layers in
the band extension and feature extraction phases to untrainable and only permitting the
backpropagation to work on the layers in the Chla concentration phase.
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Table 4. Performance of training stages in the proposed transfer learning.

Fold

Transfer Learning Performance (RMSE in µg/L)

Pretraining Stage
Transfer-Learning

Main-Training Stage Fine-Tuning Stage

1 2.070 0.689 0.478

2 2.144 0.562 0.229

3 2.113 0.487 0.219

4 2.089 0.606 0.430

5 2.190 0.576 0.414

6 2.120 0.517 0.284

7 2.194 0.609 0.441

8 2.228 0.560 0.387

9 2.216 0.633 0.508

10 2.079 0.581 0.336

Avg. 2.144 0.582 0.372

The ANN model trained by the proposed transfer learning was applied to five Sentinel-
3 images, which were acquired at similar dates with the field campaigns in Laguna Lake,
Philippines. The Chla concentration maps for the water body, shown in Figure 6, are
visualized by colors ranging from yellow (6 µg/L) to red (12 µg/L). In addition, the outputs
from the feature extraction phase in the ANN shown in Figure 3 are convolutional feature
maps of the size 3 × 3 × 5. The feature maps imply the importance of spatial features for
the Chla estimation. To visualize the feature maps for the whole lake body, the center pixels
of the feature maps were extracted and combined to form spatial feature maps. The Chla
concentrations of Laguna Lake on 6 April 2019, estimated by the trained ANN and the
spatial feature maps extracted from the trained ANN, are shown in Figure 7. The spatial
feature maps #1 and #3 are flashier than the others. To address this on the two spatial
feature maps, the two dashed boxes are set on the maps to represent the area of interest for
highlight and discussion. As shown in the brown dashed box, most of the features within
this area have smaller values in feature map #1 and higher values in feature map #3. The
significant differences between these two feature maps result in high Chla concentrations
during the model prediction. As for those in the yellow dashed box, the opposite results
are obtained, because the area is homogeneous and the pixels within this area have similar
values. This observation revealed that the proposed transfer learning is able to preserve
spatial features that are important in Chla concentration estimation.

4.2. Performance of Data Augmentation and Rebalancing

Three datasets are used and tested in this subsection, namely, original, augmented,
and balanced datasets. The original dataset refers to the Chla in situ data acquired from
Laguna Lake, the Philippines. The augmented and balanced datasets are the augmented in
situ datasets without and with, respectively, the consideration of in situ Chla concentration
unbalancing. The comparisons of the proposed transfer learning using these three datasets
are shown in Figure 8. The results indicated that the RMSEs of the training using the
original dataset ranged from 0.5 µg/L to 1.0 µg/L. By using the augmented dataset,
the RMSEs of estimated Chla concentrations ranged from 7.5 µg/L to 9.5 µg/L. This
is caused by the fact that more Chla samples in the augmented dataset are in the Chla
concentration ranges 7.5~8 µg/L and 9.5~10 µg/L. Consequently, the sample imbalance
on the Chla concentrations makes the performance of the trained model worse than that
trained using the original dataset. When the data rebalancing that considers the distribution
of samples’ Chla concentrations in the augmented dataset is performed, the RMSEs of
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the estimated Chla concentrations are improved to 0.5~0.7 µg/L. Similar statistical results
are shown in Figure 9, where the correlation coefficient between the estimated and in
situ Chla concentrations was improved when the data rebalancing was performed with
data augmentation.
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4.3. Comparisons of Chla Estimation Models

A real model test, in which the machine-learning model is trained and tested using
two geographically different and dependently corrected sample datasets, is rarely con-
ducted due to the limited in situ Chla samples and overfitting problems. In this study,
a ANN model was trained using the proposed transfer learning with the processes of
data augmentation and rebalancing. The training Chla sample dataset was collected from
Laguna Lake, Philippines. The trained ANN model was then applied to the Chla samples
acquired from Lake Victoria, Uganda, for testing and evaluation. In addition, the trained
ANN model was compared with the related models, including the three-band model [9],
two-band model [13], NDCI [14], and WaterNet [34]. WaterNet is described in Section 3.1
and the other models are presented in Table 5. For fair comparisons, the three-band and
two-band models were calibrated using in situ Chla-labelled data from Laguna Lake with
a linear regression model. Linear regression was selected to ease overfitting problems. In
addition, the hyperparameters containing the batch size, the optimizer, and the learning
rate in the WaterNet training with original two-stage training are the same as that in the
proposed training. Different to the other compared models, it is not necessary to calibrate
the NDCI model, as the model directly outputs the estimated Chla concentrations. All of
the compared models were trained using the dataset from Laguna Lake and then tested
using the dataset from Lake Victoria for fair comparisons.
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Table 5. Information of the compared Chla estimation models.

Model Name Formula Calibration Model

Three-band model
{[

R−1
rs (665)− R−1

rs (709)
]
× Rrs(754)

}
Linear regression

Two-band model {[Rrs(709)÷ Rrs(665)]} Linear regression

NDCI
{

[Rrs(665)− Rrs(709)]
÷[Rrs(665) + Rrs(709)]

}
WaterNet

Table 6 shows the comparison results of WaterNet, trained using original two-stage
training with original data, and the proposed method, including the improved transfer
learning with data augmentation and rebalancing. The table also contains the related
models using the Chla dataset from Lake Victoria. The results indicate that the three-band
model with the performance RMSE = 0.588 µg/L and the two-band models with the per-
formance RMSE = 0.509 µg/L have similar Chla concentration prediction accuracy. This
may be due to the fact that these two models utilize similar Rrs features, that are Rrs at λ443
and at λ490, which share similar sensitivity to the absorption [13]. WaterNet trained with
original two-stage training and data also performed similarly, with RMSE = 0.496 µg/L.
Better performances were obtained when the estimation of Chla concentrations was con-
ducted using WaterNet with the proposed training method and NDCI. The RMSEs of the
two models were 0.228 µg/L and 0.244 µg/L, and WaterNet with the proposed training
was slightly better than NDCI. This means that the proposed transfer learning with the
processes of data augmentation and rebalancing is able to resist the overfitting problem,
and the performance of the trained model outperforms the related models.

Table 6. Comparisons of the ANN model trained by the proposed transfer learning with the related
models using Chla samples acquired from Lake Victoria, Uganda.

Station
Name

Estimation Error (in µg/L)

Three-Band
Model

Two-Band
Model NDCI WaterNet Proposed

Method

LV1 0.746 0.653 0.304 0.645 0.302

LV2 0.367 0.303 −0.164 0.277 0.117

RMSE 0.588 0.509 0.244 0.496 0.229

5. Conclusions and Future Work

A transfer learning method containing the stages of model pretraining, main training,
and fine tuning, was proposed to train ANN models for Chla concentration estimation
using Sentinel-3 images. In addition, data augmentation and rebalancing were performed
not only to increase the variability of the training dataset, but also to balance the samples
in terms of Chla concentrations. To evaluate the ease of overfitting and to compare with
related models, the models were trained using the Chla dataset from Laguna Lake and then
tested using the Chla dataset from Lake Victoria, which has the same trophic state with
Laguna Lake. The quantitative assessments on the Setinel-3 WFR images demonstrate that
the proposed transfer learning method is better than that of WaterNet, and the trained CNN
outperforms the related models in terms of Chla estimation accuracy. Considering that the
data rebalancing can provide massive effects to the performance of the model, in the near
future, WaterNet will be redesigned such that the neural network can be applied to other
optical satellite imagery with better spatial resolution, including Sentinel-2 and Landsat
8 images, in order to improve the extraction of important spatial features in lake water
bodies. In addition, other water quality parameters, such as turbidity and total suspended
matter, will be included in the modelling.



Appl. Sci. 2022, 12, 203 15 of 16

Author Contributions: Conceptualization, M.A.S., C.-H.L. and L.M.J.; data curation, M.A.S.; formal
analysis, M.A.S., C.-H.L. and L.M.J.; funding acquisition, C.-H.L.; investigation, M.A.S., D.H., U.L. and
B.M.S.; methodology, M.A.S.; project administration, C.-H.L.; software, M.A.S. and D.H.; supervision,
C.-H.L., U.L., B.M.S. and L.M.J.; validation, M.A.S. and D.H.; visualization, M.A.S.; writing—original
draft, M.A.S., C.-H.L. and L.M.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by the Ministry of Science and Technology, Taiwan
(grant numbers MOST 106-2923-M-006-003-MY3 and 109-2923-M-006-001-MY3); and the Indonesian
Ministry of Research and Technology/National Agency for Research and Innovation (grant number
1377/PKS/ITS/2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Ariel C. Blanco from the University of the Philippines
and Loris Deirmendjian from Paul Sabatier University and colleagues for the collection and sharing
of water quality data samples from Laguna Lake and Lake Victoria, respectively. Sentinel-3 imagery
courtesy of the European Space Agency.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kira, T.; Ide, S.; Fukada, F.; Nakamura, M. Lake Biwa Experience and Lessons Learned Brief. In Managing Lakes and Their Basins

for Sustainable Use: A Report for Lake Basin Manegers and Stakeholders; International Lake Environment Committee: Otsu, Japan,
2006; Volume 5.

2. Kementerian Lingkungan Hidup. Profil 15 Danau Prioritas Indonesia; Kementerian Lingkungan Hidup: Jakarta, Indonesia, 2011.
3. Ipsos Business Consultant. Indonesia’s Aquaculture-Key Sectors for Future Growth; Ipsos Business Consultant: Jakarta,

Indonesia, 2010.
4. World Bank. Fish to 2030 Prospects for Fisheries and Aquaculture; World Bank: Washington, DC, USA, 2013.
5. Cristina, S.; Fragoso, B.; Icely, J.; Grant, J. Aquaspace Project Document; Aquaspace Project: Sagaremisco, Portugal, 2018.
6. Gurlin, D.; Gitelson, A.A.; Moses, W.J. Remote estimation of chl-a concentration in turbid productive waters-Return to a simple

two-band NIR-red model? Remote Sens. Environ. 2011, 115, 3479–3490. [CrossRef]
7. Moutzouris-Sidiris, I.; Topouzelis, K. Assessment of Chlorophyll-a concentration from Sentinel-3 satellite images at the Mediter-

ranean Sea using CMEMS open source in situ data. Open Geosci. 2021, 13, 85–97. [CrossRef]
8. Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [CrossRef]
9. Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the

remote estimation of chlorophyll-a concentration in turbid productive waters: Modeling results. Appl. Opt. 2006, 45, 3577.
[CrossRef] [PubMed]

10. Al Shehhi, M.R.; Gherboudj, I.; Zhao, J.; Ghedira, H. Improved atmospheric correction and chlorophyll-a remote sensing models
for turbid waters in a dusty environment. ISPRS J. Photogramm. Remote Sens. 2017, 133, 46–60. [CrossRef]

11. Chen, J.; Zhang, X.; Quan, W. Retrieval chlorophyll-a concentration from coastal waters: Three-band semi-analytical algorithms
comparison and development. Opt. Express 2013, 21, 9024. [CrossRef]

12. Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical
model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [CrossRef]

13. Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Satellite estimation of chlorophyll-a concentration using the red and NIR
bands of MERIS-The azov sea case study. IEEE Geosci. Remote Sens. Lett. 2009, 6, 845–849. [CrossRef]

14. Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a
concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [CrossRef]

15. Andrzej Urbanski, J.; Wochna, A.; Bubak, I.; Grzybowski, W.; Lukawska-Matuszewska, K.; Łącka, M.; Śliwińska, S.; Wojtasiewicz,
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