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Abstract: To improve the ergonomic reliability of medical equipment design during the operation
process, a method for evaluating the operating procedure of a medical equipment interface accord-
ing to functional resonance analysis method (FRAM)-Moran’s I and cognitive reliability and error
analysis method (CREAM) is proposed in this study. The novelty of this research is to analyze the
ergonomic reliability of medical equipment in a more systematic manner and to minimize the impact
of human subjectivity and individual differences on the evaluation results of the operation process.
To solve the calculation problem of functional resonance in FRAM and to make the evaluation results
more objective, Moran’s I was introduced to quantify the deviation degree caused by the individual
differences of the subjects. By giving weights based on Moran’s I, the influence of individual differ-
ences and subjectivity on the evaluation results can be minimized, to a certain extent. Considering the
importance of a special environment, which is not fully considered by the conventional CREAM, the
weighting values based on Moran’s I, Delphi survey, and technique for order preference by similarity
to an ideal solution (TOPSIS) were adopted to assign weights to common performance conditions
(CPCs) in CREAM. The optimal design scheme was selected more objectively than in the conventional
method. The validity and practicability of this operation process evaluation method was verified by
a statistical method based on ergonomic reliability experiments.

Keywords: reliability; medical equipment; operation process analysis; ergonomic

1. Introduction

There are many methods used to evaluate ergonomic reliability. The first-generation re-
search methods that focused on human behavior and classification of errors have appeared
and developed into the second-generation methods seen later, such as cognitive reliability
and error analysis method (CREAM). Like many new approaches, CREAM incorporates
cognitive models representing the more complex human reliability analysis (HRA) [1].
Nowadays, ergonomic reliability is commonly applied in the medical field, and a study by
Carayon et al. indicated that HRA would play a central role in medical security [2]. Sujan
et al. noted that human–machine assessment can play an effective role in risk analysis in
the healthcare field; however, the technique needs to be adapted to take into account the
context of the field [3]. Zaitseva et al. applied the structure function in reliability engineer-
ing to analyze and evaluate human factors in the use of medical devices [4]. Foster et al.
demonstrated the importance of human reliability assessment in laparoscopic ablation [5].
These studies indicate that reliability analysis is not limited to traditional mechanical field
applications, such as the stress testing of mechanical structures etc. [6–8]; reliability analysis
is also widely used in the medical field, nowadays, although some reliability analysis
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methods applied in this field are immature. In addition, CREAM is gradually being intro-
duced into the medical field as a typical human reliability approach. Zheng et al. studied a
derivative model based on CREAM to predict the dispensing error rate in pharmacies [9];
however, the model has limitations that do not take into account the source of system
errors other than human factors. Modern engineering systems often operate under com-
plex operating conditions [10]; thus, reliability analysis often involves multidisciplinary
coupling and multi-level structure construction [11] with uncertain factors [12,13]. CREAM,
which has been utilized in many optimization schemes, is very suitable for ergonomic
reliability analysis in the above situations. Zhou et al. used a fuzzy analytic hierarchy
process (FAHP) to evaluate the weight of common performance conditions (CPCs) in the
shipping industry, and proposed a method where CREAM could be quantified to make
it more suitable for the actual situation of personnel in the shipping industry [14]. Chen
et al. studied the human error in diving operations by combining CREAM and Bayesian
networks [15]. Based on the extended CREAM framework, He et al. optimized the CPC
assessment under the chemical enterprise scenario on the basis of summarizing the safety
management assessment of hundreds of hazardous chemical enterprises [16]. Shuen-Tai
proposed a new fuzzy method to improve the logical relationship between CPC and cog-
nitive control mode (COCOM) by adjusting the related weights, and verified it by taking
an oil tanker as an example [17]. He et al. proposed a prospective quantitative process
simplification of CREAM [18]. Marseguerra et al. mentioned that the decision of CPC level
or score is disturbed by uncertainty and proposed a fuzzy set method to capture such un-
certainty [19]. Wang et al. established a CREAM framework table for quantification of coal
mine operation scenarios to solve its shortcomings, such as not considering the applicability
of general performance conditions and the subjectivity of evaluating the CPC table [20].
The objects of systematic design optimization often have multi-objective characteristics,
among which the determination and allocation of weights play an important role in the
design result [21]; however, the predictions of traditional CREAM do not take into account
how the system will change when targeted to the different cases. Compared with different
improvement methods, CREAM can be better combined with the environment based on
CPC weight allocation, which is also combined with other reliability algorithms, such as
fault tree analysis (FTA), to solve human factor reliability problems about the source of
system errors and targeted change methods. Zupancic and Marn applied the synthesis of
CREAM and FTA in the reliability of distillation tower operating systems [22]. Alvarenga
et al. mentioned that CREAM has made progress on issues related to human cognition;
however, the interaction between these factors cannot be studied using this model. The
functional resonance analysis method (FRAM), which is similar to but more advanced
than traditional FTA, is a promising modern method to solve this problem. It can play a
role in the correlation of each information transmission and enhance the influence of other
parameters in the evaluation [23]. Reliability analysis needs to be systematic [24]. FTA is
a top-down analysis based on workplace management [25], while FRAM is the opposite
as a systemic ergonomics reliability analysis method used to analyze action behavior in a
more in-depth and systematic way. Patriarca et al. studied and demonstrated that FRAM
can solve problems by studying technology, people, organization [26], and other external
factors that influence the boundaries of complex systems. França et al. used FRAM to
build models and systematically analyzed human influence and non-technical technologies
under the scenario of offshore drilling [27]. FRAM has also been applied in the medical
field. Vahid Salehi et al. found that medical and health care is one of the most popular fields
for using FRAM [28]; they studied sick and weak elderly people and modeled and ana-
lyzed their problems during the transition between hospital and home using this reliability
analysis method [29]. Clay-Williams used FRAM in the medical field to bridge the gap
between paper processes and actual work [30]. FRAM, as a reliability analysis approach,
can provide additional insight into human factors and the environment [31] and is useful
in evaluations. For example, Haddad and Rosa used FRAM to assess the risks of processes
in the construction industry [32]. Gattola et al. discussed the application of FRAM in the
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assessment of socio-technical safety-related issues in manufacturing [33]. Anvarifar et al.
explored the application of FRAM in qualitative risk assessment of multifunctional flood
protection facilities [34]. In systems evaluation, FRAM has greater potential because it
better simulates the environment under investigation [35].

However, relevant computing studies on FRAM are scarce at present. Most relia-
bility analyses rely on big data [36,37], and some medical equipment is used in special
conditions of high infection. When a sample size of hundreds or thousands cannot be
reached, a method that reduces the bias caused by individual factors needs to be introduced.
Moran’s index (Moran’s I) was proposed in 1950 and later used in spatial autocorrelation.
Thompson et al. showed that when Moran’s I is used to quantify the degree and form
of phase separation, it can provide more reliable quantitative measurements and good
results can be obtained. Lima et al. used Moran’s I in their study to detect fraud in auction
bids [38]. Mazhar et al. used Moran’s I to explore the adaptability of farming families
in different regions, and showed that spatial analysis extending the Moran’s I can be a
useful tool for decision makers to decide whether to conduct behavioral interventions [39].
Since FRAM can also demonstrate a spatial and behavioral relationship, Moran’s I can
be applied to enhance it. Hirose and Sawaragi proposed a further FRAM in conjunction
with CREAM, called “Fuzzy CREAM for systematic and quantitative FRAM analysis”,
which was used to test the safety of drug dispensing procedures under specific circum-
stances [40]. In addition, Hirose and Sawaragi also applied this method in an air disaster
and determined that the reason conclusion of the pilot deviated from the standard operat-
ing process [41]. Therefore, FRAM–Moran’s I amalgamated with CREAM can be useful in
ergonomic reliability analysis.

With the development of information science and technology, there is still a lack of
widely recognized simulation software for human reliability evaluation compared with
the mechanical reliability field [42]. The verification of the ergonomic reliability method
through experimental simulation requires necessary precision equipment [43,44], which is
expensive; however, it is effective and practical under the conditions of use.

According to the situation analyzed above, to evaluate the operation process of medical
equipment, this research proposes an approach based on FRAM–Moran’s I and CREAM. In
Section 2, the ergonomic reliability analysis is elaborated deeply. Under the circumstances
of high workload and a high-infectivity environment, a medical laboratory technician’s
actions were broken down and the resonance relations between the action factors were
dissected using the FRAM technique. Combining Moran’s I with FRAM is a novel way to
reduce the unreasonable consequences resulting from the chain reaction caused by poor
form, such as insomnia etc.. In addition, the related data provided by CREAM is more
suitable for the human operation background of medical equipment through the regulation
of weight values. In Section 3, there are three design schemes of the polymerase chain
reaction (PCR) device as typical medical equipment that were assessed by the method
described in this research. In Section 4, the effectiveness of the proposed method was
verified by eye tracker and electromyogram experiments. In Section 5, our conclusions
are presented.

2. Operation Process Evaluation of Medical Equipment Based on Ergonomic
Reliability Analysis
2.1. Operation Process Analysis Based on FRAM–Moran’s I

FRAM can be systematically utilized to study the correlation between the detailed
movement flow and the movements of medical personnel in terms of operating medical
equipment. The hexagonal structure of FRAM is illustrated in Figure 1. I (inputs) offer
connections to the previous functions. To produce outputs, inputs can be utilized by func-
tions or converted. O (outputs) offer connections to follow-up functions, and R (resource)
is an output requisite for processing inputs (energy, programs, software, hardware, and
labor). C (controls) are used as the restrictions or control factors to assist in monitoring
or restricting functions. P (prerequisites) serve as system conditions; they must be met
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before a function (another program or procedure, as well as particular conditions) can
be performed. T (time) is a particular resource or restriction derived from the allowable
amount of time.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 20 
 

 

equipment. The hexagonal structure of FRAM is illustrated in Figure 1. I (inputs) offer 

connections to the previous functions. To produce outputs, inputs can be utilized by 

functions or converted. O (outputs) offer connections to follow-up functions, and R (re-

source) is an output requisite for processing inputs (energy, programs, software, hard-

ware, and labor). C (controls) are used as the restrictions or control factors to assist in 

monitoring or restricting functions. P (prerequisites) serve as system conditions; they 

must be met before a function (another program or procedure, as well as particular con-

ditions) can be performed. T (time) is a particular resource or restriction derived from the 

allowable amount of time. 

 

Figure 1. Hexagonal structure of FRAM. 

In the evaluation of human factor reliability, the individual differences of operators 

can easily affect the entire evaluation. However, this phenomenon is rarely recognized, 

and the impact of individual differences on the entire evaluation is very difficult to 

quantify. In contrast, Moran’s I provides a reliable quantitative measurement method. 

Regarding the number of professionals who face difficulty in obtaining large-scale data, 

if the probability of failure of each module is particularly high and involves a chain reac-

tion, it is caused by human differences and individual mistakes; therefore, Moran’s I, as a 

weight indicator for each operator, can be applied to measure the proficiency of the op-

erator or the errors caused by poor status. In the process of evaluating medical device 

interfaces, the impact of an individual’s operational proficiency or poor state in the 

evaluation process needs to be minimized. If the value of Moran’s I is significantly high-

er, it implies that the individual has a significant influence; however, if the value of Mo-

ran’s I is relatively low or fluctuates around the mean value, the failure is caused by the 

interface design and not the individual. Based on the FRAM model, operational behav-

iors corresponding to spatial correlations can be systematically and comprehensively 

calculated using Moran’s I. The following equation reveals the calculation formula for the 

global Moran’s I: 

1 1

2

1 1

( )( )

=

g g

pq p q

p q

g g

pq

p q

w x x x x

I

S w

 

 

 


 (1) 

where, 

2

12

( )

=

g

p

p

x x

S
g




 is the sample variance, pqw  is the spatial weight matrix of 

the  ,p q  factor (the distance from p to q is measured), and 
1 1

g g

pq

p q

w
 

  is the sum total 

of the spatial weights. When the spatial weight matrix is row-normalized, 

1 1

=
g g

pq

p q

w g
 

 then the global Moran’s I should be expressed as follows: 
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In the evaluation of human factor reliability, the individual differences of operators
can easily affect the entire evaluation. However, this phenomenon is rarely recognized, and
the impact of individual differences on the entire evaluation is very difficult to quantify. In
contrast, Moran’s I provides a reliable quantitative measurement method. Regarding the
number of professionals who face difficulty in obtaining large-scale data, if the probability
of failure of each module is particularly high and involves a chain reaction, it is caused
by human differences and individual mistakes; therefore, Moran’s I, as a weight indicator
for each operator, can be applied to measure the proficiency of the operator or the errors
caused by poor status. In the process of evaluating medical device interfaces, the impact of
an individual’s operational proficiency or poor state in the evaluation process needs to be
minimized. If the value of Moran’s I is significantly higher, it implies that the individual
has a significant influence; however, if the value of Moran’s I is relatively low or fluctuates
around the mean value, the failure is caused by the interface design and not the individual.
Based on the FRAM model, operational behaviors corresponding to spatial correlations can
be systematically and comprehensively calculated using Moran’s I. The following equation
reveals the calculation formula for the global Moran’s I:

I =

g
∑

p=1

g
∑

q=1
wpq(xp − x)(xq − x)

S2
g
∑

p=1

g
∑

q=1
wpq

(1)

where, S2 =

g
∑

p=1
(xp−x)2

g is the sample variance, wpq is the spatial weight matrix of the (p, q)

factor (the distance from p to q is measured), and
g
∑

p=1

g
∑

q=1
wpq is the sum total of the spatial

weights. When the spatial weight matrix is row-normalized,
g
∑

p=1

g
∑

q=1
wpq = g then the global

Moran’s I should be expressed as follows:

I =

g
∑

p=1

g
∑

q=1
wpq(xp − x)(xq − x)

g
∑

p=1
(xp − x)2

(2)
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Based upon the global Moran’s I, the weight of an individual’s influence on the entire
evaluation can be obtained, as follows:

w2
i =

1− Ii
e
∑

i=1
Ii

e
∑

i=1
(1− Ii

e
∑

i=1
Ii

)
(3)

2.2. Ergonomics Reliability Analysis Based on Improved CREAM

The CREAM analysis process is divided into three main steps. Firstly, the CPCs are
used to characterize the overall task, and this characterization is expressed by means of
a combined CPC score. There are different levels with different numbers of levels in the
different CPCs. Secondly, possible cognitive function failures must be identified. The
cognitive control mode (COCOM) involves observation, interpretation, planning, and
execution. Every cognitive activity should be described according to its related COCOM
function, as illustrated in Figure 2. Thirdly, the failure probability is determined. Finally,
the impacts of common performance conditions on cognitive failure probabilities (CFPs)
are considered to obtain the event failure probabilities. In traditional CREAM, the detailed
description of the C7 level is as follows: general time pressure levels for the task and state
types, in addtion to how to better align task execution with the dynamic process [45]. C7
is divided into two levels: day-time and night-time. These two levels correlate with the
guidance weights and control the degree of influence on failure probabilities for the four
major failure modes in normal circumstances. As large amounts of medical equipment
are used by doctors in laboratory medicine, they often face the problem of staying up late
and losing sleep. Therefore, these factors, such as fatigue and insomnia, are added into C7
combined with the night-time level in the traditional CREAM framework, which means
the adjusted values for night-time are used in this case based on medical background and
are combined with the four kinds of cognitive function failures, as shown in Figure 2.
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According to HRA techniques, such as the human error assessment and reduction tech-
nique (HEART), along with experiences from related studies [46], a database that specifies
the applicable weighting factors for all cognitive function failures was built. The operation
process evaluation of medical equipment under actual situations and environments, the
weights of CPCs, and weighting factors based on COCOM were considered to adjust the
cognitive function failures in order to improve the conventional CREAM, as illustrated in
Figure 3.
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2.2.1. Assessment of Common Performance Conditions

The conventional weighting value of the CPC factors of CREAM are obtained from
the average of each factor. To make the assessment more reasonable and improve usability,
according to the circumstances and case, the weighting value of each CPC factor should
be adjusted under the different application environments based on the actual equipment.
The Delphi method, developed by the RAND Corporation, is applied according to actual
situations to consult experts [47]. Experts ranked the importance of the factors for CPCs.
Based on this adjustment, the factors for CPC coefficients provided by CREAM fall under
four major cognition control modes: observation, interpretation, planning, and execution.
However, experts’ experiences are subjective to a certain extent based on their own rich
experience [48]; this necessitates consensus and correlation tests to improve the reliability
of the data provided by the experts [49].

The coefficient weights of COCOM functions corresponding to the expected effect of
the CPCs on performance reliability should be adjusted.

The data collected via the Delphi exhibit has the hierarchical characteristics of multiple
columns; thus, Kendall’s W is highly suitable for analyzing the consensus test according to
this type of data. Based on the rankings given by E experts, the facilities are ranked as 1,
2, . . . , t, i.e., from small numbers to large numbers, according to their importance. In the
h-th hierarchy, B1

h, B2
h, . . . , Bt

h denote the average ranking values. The test hypotheses
are as follows:

Hypothesis 0 (H0). The E rank orders are inconsistent.

Hypothesis 1 (H1). The E rank orders are consistent.

The formula of Kendall’s W is expressed as:

W =

12
t

∑
j=1

Tj
2 − 3E2t(t + 1)2

E[Et(t2 − 1)−∑ (s3 − s)]
(4)

where E represents the number of participating judges; t is the rank order number of the
weighting factors under one CPC, based on the different COCOMs; Tj is the sum of the
numbers of the weighting factor rank orders; and s is the number of rank orders with
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the same importance for the weighting factors. The chi-squared result is calculated using
Equation (5):

χ2 = E(t− 1)W (5)

The consistency of the rank orders of the weighting factors is determined by the chi-
squared test. ν = t− 1 represents the number of degrees of freedom. When χ2

0.05,t−1 < χ2,
P < 0.05, H1 should be accepted while H0 should be rejected.

After the consistency test, the correlation and reliability of the grader are tested based
on grey correlation analysis, which is an approach used to judge the degree of correlation
between different factors based on the geometric shape with a similar degree of curves. In
addition, part of the relatively low degree of correlation should be removed [50]. After this
low degree of correlation is removed, one more consistency is confirmed to improve the
reliability of the data input to the evaluation matrix calculation. Grey correlation analysis
is highly suitable for an uncertain system with a small sample of the part of information
known in addition to the part of information unknown. The principles are as follows. There
exists c weighting factors under one CPC based on the different COCOMs.

The mother sequence is expressed as in Equation (6):

X0 = (x0(1), x0(2), · · · , x0(c))
T (6)

The subsequence is as follows:

X1 = (x1(1), x1(2), · · · , x1(c))
T

· · ·
Xe = (xe(1), xe(2), · · · , xe(c))

T
(7)

y(x0(k), xi(k)) =
min

i
min

k

∣∣∣∣X0(k)− Xi(k)
∣∣∣∣+ρ max

i
max

k

∣∣∣∣X0(k)− Xi(k)
∣∣∣∣∣∣∣∣X0(k)− Xi(k)

∣∣∣∣+ρ max
i

max
k

∣∣∣∣X0(k)− Xi(k)
∣∣∣∣ (i = 1, 2, . . . , e; k = 1, 2, . . . , c) (8)

Then,

y(x0, xi) =
1
c

c

∑
k=1

y(x0(k), xi(k)) (9)

is the grey correlation degree of x0 and xi.
After the consensus test based on Kendall’s W and the correlation test based on grey

correlation analysis, the relatively objective and useful data are calculated in the next step
of the analysis to obtain the weighting factor values. Bh

m is the average rank under one
weighting factor in the CPC, as expressed in Equation (10). Owning to the consistency
matrix composed of the mean rank orders of the weighting factors of CPCs, it is not
necessary to perform certain consistency tests once the judgment matrix is built, as in
Equation (11).

ah
mn =

Bh
m

Bh
n
(m, n = 1, 2, . . . , c) (10)

(
ah
)

c×c
=

O I P E

O
I
P
E


1 ah

12 · · · ah
1c

ah
21 1 · · · ah

2c
...

...
. . .

...
ah

c1 ah
c2 · · · 1

 (11)

Under the different weighting factors of the CPCs, O represents the related value
under the observation mode, I represents the related value under the interpretation mode,
P represents the related value under the planning mode, and E represents the related value
under the execution mode. c is number of the weighting factors with different levels of one
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CPC under the four cognitive control modes [51]. In addition, the rank of ah is 1, which is
a consistent matrix; hence, Z is the only one non-zero eigenvalue of ah. Then, the weight
vector can be obtained from the normalized eigenvector of ah, as indicated in Equation (12):

ahw = Cw, w = (w1, w2, . . . , wc) (12)

where the non-zero vector w is the feature vector corresponding to the eigenvalue C of ah.

Wm
h =

wm
c
∑

m=1
wm

(13)

In Equation (13), Wm
h, which is the adjusted weighting factor value of different levels

of CPCs under different cognitive control modes, can be obtained by normalizing w.
The combined CPC scores are adjusted using the weights of the nine CPCs. Further-

more, the technique for order preference by similarity to an ideal solution (TOPSIS) is
adopted for calculating the CPC weights. After the weight of each CPC is obtained using
TOPSIS, it is then multiplied with the value of the weighting factor under different CPCs
provided by the improved CREAM based on Delphi, in order to obtain a new weight factor
value after modification; this can help determine the probability of ergonomic reliability in
a more precise manner.

Considering the special environment in which the medical equipment is used, c CPCs
are assessed with a normalized matrix of e assessment indexes based on experts’ research.
The following is a decision matrix for the ergonomic reliability assessment constructed
based on the TOPSIS analysis:

H =


h11 h12 · · · h1e
h21 h22 · · · h2e

...
...

. . .
...

hc1 hc2 · · · hce

 (14)

The following is the definition of the maximum value:

H+ =
(

H+
1 , H+

2 , · · · , H+
m
)
= (max{h11, h21, · · · , hc1}, max{h12, h22, · · · hc2}, · · · , max{h1c, h2c, · · · hce}) (15)

The following is the definition of the minimum value:

D− =
(

D−1 , D−2 , · · · , D−m
)
= (min{d11, d21, · · · , dc1}, min{d12, d22, · · · dc2}, · · · , min{d1e, d2e, · · · dce}) (16)

The distance from the maximum value to the value of the k-th(k = 1, 2, · · · , c) evalua-
tion index is defined in Equation (17). Here, wik is based on Moran’s I.

L+
k =

√
e

∑
i=1

wik
(

H+
i − hki

)2 (17)

The distance from the minimum value to the value of the k-th(k = 1, 2, · · · , c) assess-
ment index is defined as:

L−k =

√
e

∑
i=1

wik
(

H−i − hki
)2 (18)

In addition, the approximation degree of the k-th(k = 1, 2, · · · , c) assessment index to
the ideal solution is provided by:

wk =

L−k
L+

k +L−k
c
∑

k=1

(
L−k

L+
k +L−k

) (19)
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2.2.2. Probability Adjustment Based on Cognitive Failure

Figure 4 illustrates the four cognitive functions of the CPCs derived from CREAM.
The relative cognitive activities and the corresponding weighting factors of every CPC are
identified and calculated according to the basic weighting factors in Figure 4, which were
used for a general situation. Thereafter, the multiplication result based on the modified
weight values of the weighting factors for all hierarchy CPCs corresponding to each cogni-
tive activity is obtained; the total weighting factor of cognitive activity is also determined.
Next, according to different environments, the adjusted cognitive failure probability (CFP,
the failure probability of the cognitive function) is derived in Equations (20) and (21):

CFPmodify = CFPcalibration ×
c

∏
f=1

w f ( f ∈ c) (20)

where w f is the revised weight of CPCs under different actual working environments based
on the various cognitive behaviors:

w f =
wk × wmeo

c
∑

k=1
wk

,
(

e ∈ {Each CPCs level}
o ∈ {OBS, INT, PLAN, EXE}

)
(21)

where wk is the weight of CPC achieved based on the TOPSIS method, and wmeo is the
weight factor value corresponding to the four different cognitive functions under the nine
different CPCs.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 20 
 

 

where kw  is the weight of CPC achieved based on the TOPSIS method, and meow  is the 

weight factor value corresponding to the four different cognitive functions under the 

nine different CPCs. 

 

Figure 4. Basic values and uncertainty bounds for cognitive function failures. 

3. Operation Process Evaluation in the Ergonomic Medical Equipment Interface 

In this work, a PCR device, which is a piece of equipment typically used for virus 

detection, was considered. The procedures of medical personnel operating the PCR 

analysis software were recorded. The PCR interface operation process is mainly divided 

into three modules as follows: PCR program setup and operation, sample editing, and 

results analysis. In addition, PCR program setup and operation essentially includes the 

preparation, preincubation, amplification, melting curve, and cooling stages. According 

to the procedure, a FRAM model of the PCR interface operation process was built, as il-

lustrated in Figure 5. 

 

Figure 5. The systemic FRAM model built for the PCR interface operation process. 

Figure 4. Basic values and uncertainty bounds for cognitive function failures.

3. Operation Process Evaluation in the Ergonomic Medical Equipment Interface

In this work, a PCR device, which is a piece of equipment typically used for virus
detection, was considered. The procedures of medical personnel operating the PCR analy-
sis software were recorded. The PCR interface operation process is mainly divided into
three modules as follows: PCR program setup and operation, sample editing, and results
analysis. In addition, PCR program setup and operation essentially includes the prepa-
ration, preincubation, amplification, melting curve, and cooling stages. According to the
procedure, a FRAM model of the PCR interface operation process was built, as illustrated
in Figure 5.
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Moran’s I was introduced into FRAM to determine the spatial and temporal autocor-
relations. There were three types of interface design schemes for the PCR control software.
The analysis functions of these schemes were similar. Owing to limited conditions, a total of
36 experts were invited, and each scheme was operated by 12 experts. The failure times or
number of errors of each expert operation were recorded. Based on these records, Moran’s
I was introduced to identify the influence of the personal working status of the experts on
the overall error operation. To reduce the influence of individual working statuses on the
overall assessment, Moran’s I was used to assign weight to the experts. The global Moran’s
I was obtained according to Equation (2). Furthermore, Figure 6 reveals the maximum
values of Moran’s I based on Schemes A, B, and C. According to Equation (3), the weighting
values from the experts’ operation errors were calculated based on Moran’s I. As shown in
Figure 6, regarding Scheme A, the second expert was in the worst shape and clearly out
of form, probably suffering from sleeplessness; thus the related Moran’s I value was the
maximum. In order to minimize the impact of the data collected from the second expert on
the ergonomic reliability results, the least weight was given as shown in Figure 6c. Similarly,
regarding Scheme B, the least weight was given according to the fourth expert who had the
maximum value of Moran’s I and was in the worst shape. Regarding Scheme C, the least
weight was given based on the operation errors from the first expert.

Further, based on the improved CREAM proposed herein, using two rounds of con-
sensus analysis based on Kendall’s W and a round of correlation analysis based on the grey
correlation analysis, certain data from the Delphi technique were filtered out. Consequently,
the objectivity of the data for analysis was improved, thereby overcoming the subjective
defects of the Delphi survey.
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Figure 6. The maximum values of the global Moran’s I and the weighting values based on Moran’s I;
(a) the maximum Moran’s I value based on Scheme A; (b) the maximum Moran’s I value based on
Scheme B; (c) the maximum Moran’s I value based on Scheme C; (d) the weighting values based on
Moran’s I.

As presented in Table 1, based on the calculations using Equations (4)–(9), most of
the p-values were significant. The chi-squared values were also elevated after the grey
correlation analysis, except for in C6. This is because there were significant influence curves
of CPCs in C6. There was less consensus in terms of consistency; however, it had a stronger
impact on the final outcome. In this particular case, C6 had higher consistency before
the grey correlation analysis; hence, the average ranks were applied in the evaluation
matrix to obtain the importance of the weighting factors for C6. The COCOM function
weight corresponding to different CPC levels can be calculated as illustrated in Figure 7.
Those weights were calculated through the Delphi method to allow for the background of
medical equipment operation and the features of interface design containing the expert
experiences. In addition, the adjusted weighting factors for the CPC levels can be obtained
using Equations (10)–(13). Figure 8a shows the basic weighting factors provided by the
traditional CREAM aimed at the general situation, while Figure 8b presents the values
summarized and calculated by considering the specific situation and research background
based on improved CREAM.
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Table 1. The results of consistency tests before and after grey correlation analysis based on CPCs.

C1
Levels

C2
Levels

C3
Levels

C4
Levels

C5
Levels

C6
Levels

C7
Levels

C8
Levels

C9
Levels

Value of Kendall’s W 0.102 0.164 0.112 0.117 0.121 0.186 0.075 0.148 0.147
Adjusted value of
Kendall’s W 0.183 0.314 0.151 0.184 0.18 0.233 0.203 0.225 0.292

Value of chi-square 24.431 28.892 26.995 20.663 21.346 32.75 8.391 25.985 35.179
Adjusted value of
chi-square 32.997 45.038 27.261 24.244 23.697 30.725 17.044 29.685 52.561

P values 0.058 0.002 0.029 0.037 0.03 0.001 0.299 0.007 0.002
Adjusted P values 0.05 <0.005 0.027 0.012 0.014 0.001 0.017 0.002 <0.005
Degrees of freedom 15 11 15 11 11 11 7 11 15
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The weighting values based on Moran’s I were used in TOPSIS. After testing and
operating the interface, each expert was invited to fill in the important survey questionnaire
of CPCs with a full score of 10 and to rate the importance of CPCs based on the PCR analysis
software. According to Equations (14)–(19), the weights of the CPCs were calculated; the
results are illustrated in Figure 9. The weight proportion of C3 was the largest, while that
of C7 was the smallest. This may be because this research focuses on the interface design of
the equipment.

In Figure 10, the three heatmaps reflect the users’ browsing and eye fixation. When
the testers operated the medical equipment based on Scheme B, the fixation points mainly
focused on some common keys in the test process. These hot spots do not form as a result
of eyeballs wandering back and forth; thus, most of the hot spots are relatively evenly
distributed. When Schemes A and C were observed, the eyes of testers moved back and
forth between different non-important keys, causing the hot zones on the heatmaps to
appear on the buttons that are not used frequently during testing. In addition, based on
the adjusted weighting factors of the CPCs, the operation error times, and the basic values
for cognitive function failures, the cognitive failure probability of the operation process
can be calculated using Equations (20)–(21). For Scheme A, PA = 0.04113; for Scheme
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B, PB = 0.00504; and for Scheme C, PC = 0.02956. From the perspective of ergonomics
reliability, Scheme B is slightly better than Schemes A and C, and Scheme C is better than
Scheme A. This is likely because several functional components of Schemes A and C are
hidden in the drop-down menus and the inhuman layout, as illustrated in the heatmap in
Figure 10.
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4. Verification Based on Ergonomic Reliability Experiments

To verify that the pull-down and hidden tool menus are important factors resulting in
the different degrees of ergonomic reliability in the operation process of the three schemes,
the menu on the right of Scheme B was changed to a drop-down menu, similar to Scheme
A, and a hidden menu, similar to Scheme C, as illustrated in Figure 11. Thirty-three subjects
who were using the software for the first time participated in the experiments. During the
user’s operation, an eye-tracking experiment was activated to record the observation orders
of the subjects’ eyes and the number of mouse clicks during the process of searching for
the virtual “save” button. The eye-tracking serial numbers recorded by the eye movement
instrument with a steady frequency based on a typical subject are also shown in Figure 11.
The larger the serial number is, the longer the time the subject spent trying to find the
target button. The “save” button of Scheme A was found by the typical subject when the
eye-tracking serial number was over 50; the “save” button of Scheme B was found when
the serial number was 18; and the target button of Scheme C was found only when the eye
tracking number reached approximately 40. In Scheme A, the virtual target button was
located in the drop-down menu; in Scheme B, the virtual target button was designed as a
large icon on the right; and in Scheme C, the virtual target button was located in the hidden
menu on the right.
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The data collection results of the eye-tracking serial numbers were contrasted in a
one-way analysis of variance (ANOVA) based on 11 subjects that used the three schemes of
the medical device software model for the first time. The F statistic was 22.15 (P < 0.005),
as presented in Table 2. Thus, the null hypothesis stating that the serial numbers of eye
movement tracking under Schemes A, B, and C are all equal should be rejected. By contrast,
the alternative hypothesis stating that the serial numbers of eye movement tracking under
these three groups are not equal should be accepted. Thus, there are statistically significant
differences in the serial numbers of eye tracking among the three groups. In addition, the
one-premise condition of the variance analysis is that the total variance of each sample
should be equal based on homogeneity of variance. Bartlett’s test χ2 was applied to test
the homogeneity of variance, χ2= 1.7270 (P = 0.422). This implies that, according to the
inspection standards α= 0.10, the null hypothesis is not rejected, there is no statistical
significance, and the three populations possess the homogeneity of variance; hence, the
variance analysis applied to analyze the data is appropriate.

Table 2. Analysis of variance based on the serial numbers of eye tracking.

Source Sum of
Squares

Degree of
Freedom Mean Square F Test

Statistic
P
Value

Between group 2403.87879 2 1201.93939 22.15 <0.005
Within group 1628 30 54.2666667
Total 4031.87879 32 125.996212
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In order to further analyze which group had the largest mean coefficient of variation
and which group has the smallest mean coefficient of variation among the three groups,
the Bonferroni method was applied for the multiple comparisons, as presented in Table 3,.
The results indicated that the button of Scheme C in the hidden menu is larger and easier to
identify than that of Scheme A in the drop-down menu, which is more hidden and difficult
to discover. By contrast, the button of Scheme B was the easiest to find.

Table 3. Multiple comparison results of three menu styles based on the Bonferroni method.

Comparison Group (1 and 2) x2−x1

B and A 20.7273 (P = 0.000)
C and A 8.0000 (P = 0.049)
B and C 12.7273 (P = 0.001)

Based on the three schemes, signals were collected from thenar muscle, the first
lumbrical muscle, and flexor carpi radialis under the same screen angle as shown in
Figure 12. Figure 12a illustrates the surface electromyogram (EMG) signals generated on
these three muscles at a certain time. The root mean square (RMS) of surfaceEMG signals
represents the instantaneous power of EMG signals and the effective value of muscle surface
discharge, which is an indicator of the time domain characteristics of EMG signals [52].
RMS has excellent real-time performance and is often used to describe the activity state of
muscles, mainly because its waveform is basically the same as that of the linear envelope
of EMG signals. The amplitude variation characteristics of EMG signals can be reflected
in detail in the time dimension, and there is an internal relationship between muscle load
factors and muscle physiological and biochemical processes. RMS is correlated with the
synchronization of motor unit recruitment and excitation rhythm [53]. Therefore, RMS was
selected as a parameter to assess the degree of dynamic muscle activity. Figure 12b shows
the surface EMG value processed by RMS in the same period; the RMS values of the first
lumbrical muscle are large overall, while the values of thenar muscle are generally small.
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Based on the experimental and statistical results, the RMS values of the surface EMG
for the thenar muscle and the flexor carpi radialis under the three schemes showed no
significant differences. However, the RMS values of the surface EMG for the first lumbrical
muscle under the three schemes indicated significant differences. One-way ANOVA pro-
duced an F statistic of 7.25 (P = 0.0009). Bartlett’s test χ2 was used to test the homogeneity
of variance χ2= 34.7319 (P < 0.005). The homogeneity of variance was not met; therefore,
the T test was applied to the two contrasts between the three schemes. The RMS of the EMG
data collected based on Scheme A was greater than that for the data collected under Scheme
C (T = 2.3632; P = 0.0098); the RMS of EMG data collected based on Scheme C was greater
than that collected based on Scheme B (T = 1.2912, P = 0.0995); and the RMS of EMG data
collected based on Scheme A was greater than that collected based on Scheme B (T = 3.4819,



Appl. Sci. 2022, 12, 200 16 of 19

P = 0.0003). The EMG signals of each group were different and statistically significant.
Moreover, Scheme B involved the lowest fatigue. This lower fatigue can enhance ergonomic
reliability to a certain extent during the operation processes.

Using the two experimental designs, it was determined that the ergonomic reliability
of Scheme B was relatively high. Although the costs of the experimental equipment are
high, the validity of the ergonomics reliability evaluation approach presented herein was
confirmed based on another perspective.

5. Conclusions

Among the existing human reliability analysis methods, CREAM is a relatively mature
method that is suitable for the analysis of the operation processes of human computer
interactions; however, analyzing the influence of individual states on the evaluation results
for human reliability has not been studied adequately. The working status of each person
was found to be different depending on the proficiency of training or the time periods,
and this is difficult to quantify. This personal factor can lead to the misdiagnosis of design
rationality for human–machine interfaces. When the human body is in a poor condition, a
chain reaction of misbehavior can occur easily. Human operating behavior is systematic
and complex. FRAM is ideal for analyzing complex integrated systems, and the degree of
human chain reactions when operating the system can be reflected based on Moran’s I.

Considering the complexity of the operating system of certain medical equipment
used in laboratories and the depth of function coupling, FRAM was employed to conduct
an orderly, systematic, and detailed analysis of the operating process for medical equip-
ment. The upstream–downstream coupling of the functions of each module of FRAM was
identified based on Moran’s I to analyze the degree of chain reactions from the operator’s
individual mistakes. The influence of individual operator differences on the evaluation
results was minimized via Moran’s I to reduce the subjectivity of the evaluation results.
Through three different design schemes and the ergonomic reliability statistical experiment,
it was found that the novelty of Moran’s I’s worked together with FRAM is reasonable, and
is a feasible and effective method to reduce the impact of the data of the subjects related
to bad individual state on analysis results to improve the objectivity of the ergonomic
reliability analysis of the interfaces of medical device operations. CREAM was adopted to
classify the cognitive functions of operators when using medical equipment. These were
then divided into four categories: observation, interpretation, planning, and execution.
Each function had several failure modes. Based on the explanation of the 13 cognitive
function failure modes and the basic value of the failure probability, the improved CPC
weights and weighting factor values controlled by Moran’s I and the ergonomic reliability
of different operation processes based on different design schemes were analyzed in order
to identify excellent solutions. The rationality of the method based on FRAM–Moran’s I and
CREAM was statistically verified via eye movement tracking and surface EMG acquisition
experiments. This study found that the common button for high frequency use arranged
on the main interface as much as possible, on the premise of not affecting contact efficiency
between the human hand and the button, is more conducive to improving the ergonomic
reliability of the operation process.
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