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Abstract: In the coal mining process, various types of tramp materials will be mixed into the raw
coal, which will affect the quality of the coal and endanger the normal operation of the equipment.
Automatic detection of tramp materials objects is an important process and basis for efficient coal
sorting. However, previous research has focused on the detection of gangue, ignoring the detection
of other types of tramp materials, especially small targets. Because the initial Single Shot MultiBox
Detector (SSD) lacks the efficient use of feature maps, it is difficult to obtain stable results when
detecting tramp materials objects. In this article, an object detection algorithm based on feature fusion
and dense convolutional network is proposed, which is called tramp materials in raw coal single-shot
detector (TMRC-SSD), to detect five types of tramp materials such as gangue, bolt, stick, iron sheet,
and iron chain. In this algorithm, a modified DenseNet is first designed and a four-stage feature
extractor is used to down-sample the feature map stably. After that, we use the dilation convolution
and multi-branch structure to enrich the receptive field. Finally, in the feature fusion module, we
designed cross-layer feature fusion and attention fusion modules to realize the semantic interaction
of feature maps. The experiments show that the module we designed is effective. This method is
better than the existing model. When the input image is 300 × 300 pixels, it can reach 96.12% MAP
and 24FPS. Especially in the detection of small objects, the detection accuracy has increased by 4.1
to 95.57%. The experimental results show that this method can be applied to the actual detection of
tramp materials objects in raw coal.

Keywords: coal; gangue; tramp materials; object detection; SSD; feature fusion

1. Introduction

Due to the limitations of equipment and technology, tramp materials such as gangue,
bolt, stick, iron sheet, and iron chain will be mixed into the raw coal in the mining
process [1,2]. These tramp materials mixed in the raw coal can easily cause blockage
and scratches of the transfer equipment, and can even cause the failure of the equipment,
and in particular, can cause accidents [3]. As the most important solid waste generated dur-
ing coal mining, gangue will affect the calorific value of coal during the combustion process
and cause environmental pollution [4]. Therefore, the automatic and efficient separation
of coal and tramp materials is of great significance for ensuring safe production and for
improving coal mining efficiency [5]. At present, most coal mines use manual separation to
remove tramp materials in raw coal, as shown in Figure 1. This method mainly relies on the
manual identification of objects, resulting in a poor working environment, high physical
labor intensity, and low productivity, all of which endangers the health of miners, and is
not in line with the intelligent development of mines. Other sorting methods, such as wet
sorting, will use a lot of water and cause water pollution, while dry sorting has become
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a potential direction of sorting technology due to non-contact and economic efficiency.
Among them, computer vision-based mineral separation technology has become a hot
research topic in recent years [6]. Therefore, detecting tramp materials mixed in raw coal
from optical images is an economical and effective method of beneficiation [7–9].
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A tramp material image of raw coal has a rich color, grayscale, texture, shape and
contains other characteristic information. However, due to surface pollution, light changes,
size differences, and the variety of tramp material shapes, how to extract robust tramp
material image features is a challenging task. The detection method based on traditional
image processing constructs are featured manually and use support vector machines for
classification [10]. This method has high requirements for the detection environment
and highly depends on the manual parameter setting, so there is still much room for
improvement in the generalization effect and stability of the detection [11–13]. On the other
hand, the object detection technology based on deep learning improves the performance
of the detector by learning from training data and by adaptively extracting stable image
resources [14].

Previous research has focused on the detection of gangue, ignoring the detection of
other types of tramp materials, especially small targets. In this research, we designed a
object detection algorithm for multiple tramp materials in raw coal. To ensure real-time
target detection performance, we used a structure similar to SSD [15]. SSD uses a multi-
scale feature map strategy to detect objects of different sizes in real time. However, because
there is no semantic interaction between shallow and deep feature maps, small targets
cannot be detected effectively. For this reason, SSD is not suitable for detecting multi-scale
tramp material targets. To improve the performance of the detector, we first used a densely
connected network containing a four-stage feature extractor to stably down-sample the
feature map. The feature extraction module adopts a multi-branch dilation convolution
structure to realize the efficient use of feature images by fusing feature images of different
receptive fields. The cross-layer feature fusion and the attention fusion module are used
in the feature fusion module to fuse the position information of the shallow feature map
and the semantic information of the deep feature map to improve the detection ability of
small objects. We refer to the proposed detector as the tramp materials in raw coal single-
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shot detector (TMRC-SSD). The main contributions of this research can be summarized as
follows:

1. A CNN model-based detection algorithm for multiple tramp material objects in raw
coal is proposed, namely TMRC-SSD. It can extract multi-scale image features, and can
effectively detect five types of tramp materials, including gangue, bolt, stick, iron sheet, and
iron chain by training deep learning models. Experimental results show that our proposed
network achieves 96.12% MAP at 24FPS.

2. Construction of an image dataset of tramp materials in raw coal; we verified the
effectiveness of our proposed MDCS, CLFF and AFM modules in improving detection
accuracy through experiments. The experimental results showed that the TMRC-SSD
network increases the AP of small object detection by 4.1 to 95.57%.

The organizational structure of this article is as follows. In Section 2, we discuss
the previous research on the detection of tramp materials in raw coal. In Section 3, we
introduced the detail of TMRC-SSD. In Section 4, we introduced the dataset and evaluation
index. In Section 5, we obtained the experimental and visualization results. Finally,
Section 6 summarizes the research results.

2. Related Works
2.1. Image-Based Detection for Extraction of Tramp Materials in Raw Coal

Because it does not need to use water, dry coal preparation technology has advantages
in environmental protection and economy, and has become a hot research field. The method
based on radiation [16] requires the careful management of radiation sources to avoid harm
to the human body. The method based on density [9] measurement is complicated and
requires materials to be arranged neatly. The image-based detection method is safer and
more convenient than the above-mentioned methods. Traditional image processing and
classic machine learning algorithms can use the image’s grayscale [17], texture [18], fractal
dimension [19,20], morphology [8] and spectral feature [21], by constructing a feature
vector to identify tramp material objects represented by gangue. However, this approach
relies too much on human experience judgment and prior knowledge, which has certain
limitations. With the rise of deep learning technology represented by Convolutional Neural
Networks (CNN), a new technical approach is provided for image recognition of tramp
material objects. CNN adopts an end-to-end training method, which can adaptively extract
robust image features, thereby avoiding the subjectivity of manually extracting features.
Su [22] proposed a simple LeNet-5 model, which realizes the automatic classification of
coal and gangue images. Pu [23] uses transfer learning strategies to train small sample
datasets to improve recognition accuracy. According to the difference between thermal
images of coal and gangue, Alfarzaeai [24] proposed a recognition model based on CNN.
Xing [25] proposed a method to identify coal gangue using the intensity image of lidar
echo and DenseNet, the recognition rate reached being 93%. However, the above four
studies only explore the recognition of coal and gangue images, and could not achieve the
detection tasks of target positioning and other various types of tramp materials. Gao [26]
proposed a full convolutional network based on U-Net to achieve pixel-level segmentation
of coal and gangue in images. Nonetheless, due to the limitations of the dataset size and
type, detection of other types of tramp materials such as bolt cannot be achieved. Sun [27]
proposed a CG-YOLO dynamic target detection method and tested the sorting effect of
supporting robots at different speeds, which can provide a solution for the realization of
mechanical sorting execution unit after the completion of tramp material object detection.
Lv [28] integrates the method of a multi-channel feature fusion layer and optimization
loss function into the cascade network to improve the identification accuracy. Although
experiments and visualizations show that this method is effective for the detection of coal
and gangue, other types of tramp materials on the conveyor belt are not fully considered.
Through the continuous in-depth research of many scholars, the image-based detection of
tramp materials in raw coal is a feasible technical approach and has potential.
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2.2. Object Detection with CNN

In order to solve the problem of gradient elimination in network training, Hinton
proposed the theory of deep learning [29]. Since AlexNet [30] was proposed in 2012, the
use of CNN for target detection has achieved exciting results in the field of computer vision.
According to the difference of algorithm framework, CNN detector can be classified into
two main types: region-based proposal and regression-based algorithm, called two-stage
algorithm and a one-stage algorithm, respectively. In the two-stage method, the sliding
windows is set in the input image to extract the regional suggestion network, and then the
convolution operation is performed on each region to achieve the target classification and
positioning task in the candidate region, such as RCNN [31], Fast R-CNN [32] and Faster
R-CNN [33]. This detection method has advantages in detection accuracy by extracting the
image information in the candidate box, but the selection of the region of interest will use a
lot of computing costs, so it is difficult to meet the requirements of real-time detection speed.
As a classical framework of single-stage methods, YOLO [34] extracts image features of
input images through convolutional networks. For multi-scale target detection tasks, only
a single feature layer is used to achieve classification and regression tasks, which cannot
meet the requirements of fine detection. SSD can extract feature images of different levels
through a backbone network, and use feature images of different scales to detect scale
targets. Because SSD feature maps are extracted from bottom to top, there is no semantic
interaction between feature maps, and shallow feature maps lack contents of high-level
semantic features, so small target objects cannot be effectively detected. In order to solve the
limitations of the above problems, researchers put forward many new means and methods
to improve the performance of the detector. FPN [35] realizes the interaction between
shallow feature maps and deep feature maps by constructing feature pyramids. DSSD [36]
enriches the semantic information of a specific feature layer by combining feature graphs.

3. Proposed Method
3.1. Backbone Network

The shallow feature map retains more detailed information of the image. The tra-
ditional SSD network performs feature extraction by continuously reducing the feature
map. This has the advantage of reducing the computational cost, but losing part of the
image information. Inspired by the densely connected networks, we designed a modified
DenseNet as the backbone network of TMRC-SSD, named M-Densenet, as shown in Table 1.

Table 1. Architecture of M-DenseNet.

Stage Layer Output Size Specification

stem block 75 × 75 × 64

Stage(1)

dense block(1) 75 × 75 × 256
(

1× 1 conv
3× 3 conv

)
× 6

transition layer(1)
75 × 75 × 256 1× 1 conv

2× 2 max pool, stride 2

Stage(2)

dense block(2) 38 × 38 × 512
(

1× 1 conv
3× 3 conv

)
× 8

transition layer(2)
38 × 38 × 512 1× 1 conv

19 × 19 × 512 2× 2 max pool, stride 2

Stage(3)
dense block(3) 19 × 19 × 768

(
1× 1 conv
3× 3 conv

)
× 8

simplify transition
layer(1) 19 × 19 × 768 1× 1 conv
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Table 1. Cont.

Stage Layer Output Size Specification

Stage(4)
dense block(4) 19 × 19 × 1024

(
1× 1 conv
3× 3 conv

)
× 8

simplify transition
layer(2) 19 × 19 × 1024 1× 1 conv

A 7 × 7 convolutional layer and a 3 × 3 maximum pool was inserted before the first
dense block in the original DenseNet design (Figure 2). In M-DenseNet, we designed
the steam block to replace the operation before stage (1). The input image in the steam
block first passes through a 3 × 3 convolution with stride as 2, and then connect a central
asymmetric convolution structure, and finally performs a filter concatenate and 1 × 1
convolution operation. Such an operation can effectively improve the expressive ability of
features without increasing the computational cost.
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All DenseNet structures contain a 4 dense block. The pooling operation is used in
each transition layer to down-sample the feature map. As the backbone of TMRC-SSD, M-
DenseNet is different from the base DenseNet, which increases the number of convolution
operations in the dense block. In order to prevent the difficulty of feature mapping due to
the deepening of the network, we use the strategy of a simple transition layer to improve
the performance of the detector.

All layers of Dense Block output k feature maps after convolution indicate that the
number of channels in the generated feature map is k. Because DenseNet uses a concate-
nation connection method, if each layer generates k feature maps, it will produce a large
number of feature maps; in order to prevent the network from becoming very wide, k
needs to be limited to a small range. In M-DenseNet, we set k = 32. Moreover, in order
to reduce the width of the network, before each 3 × 3 convolution, 1 × 1 convolution is
introduced as a narrow space level to check the calculation load. Compression can use
convolution to compress the model dimensions between blocks. In M-DenseNet, we set the
θ = 1 to enhance the expressive ability of features.

3.2. Extract Feature Module

Expanding the receptive field of the detector is an effective means to improve the
performance of the detector. Previous researchers extracted multi-scale information by
using multi-scale convolution kernels. With the continuous increase of the convolution
kernels, the detection effect was improved while the computational cost increased rapidly.
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Dilation convolution is a variant of traditional image convolution. By adding dila-
tion to traditional image convolution, the receptive field expansion of traditional image
convolution is completed. Dilation convolutions with different numbers of dilation are
often used for the fusion of multi-scale feature map information and receptive fields. The
calculation is as follows:

r fk = r fk−1 + ((nk − 1)×
k−1

∏
i=1

si) (1)

r fk represents the size of the k layer receptive field; r fk−1 represents the size of the k
− 1 layer receptive field; nk represents the size of the convolution kernel of the k layer; and
si is represents the size of the k layer before the step size of the i layer convolution.

The dilation convolution expands the receptive field without reducing the size of the
feature map. The kernel size dlk of the k layer of dilation convolution is as follows:

dlk = lk + (lk − 1)× (d− 1) (2)

where lk represents the kernel size of the k layer of the original ordinary convolution,
and d represents the number of spaces inserted. Combining the above two formulas, the
receptive field of the k layer dlk size dilation convolution kernel for the lk size ordinary
convolution kernel expansion is r f _expendk as follows:

r f _expendk = ((lk − 1)× (d− 1)×
k−1

∏
i=1

si (3)

The concrete description of the receptive field relationship is shown in Figure 3. Take
a 5 × 5 ordinary convolution kernel to perform a convolution operation on a 5 × 5 image
matrix as an example. After the original image is convolved, a 1 × 1 feature map is
obtained, that is, the feature map only saves the receptive field of pixels as the entire
original image. The dilation convolution kernel is 3 × 3 and d = 2, as shown in Figure 3b.
Perform a convolution operation on a 5 × 5 image matrix with the dilation convolution to
obtain a 1 × 1 feature map. It can be seen that the feature map obtained by this dilation
convolution operation is consistent with the receptive field of a convolution operation
using a 5 × 5 ordinary convolution. The dilation convolution uses a smaller parameter to
achieve a larger receptive field.
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Due to the preset fixed size of the convolution kernel, a standard convolution can
only extract the information of some receptive fields in the image. In order to obtain richer
image information, we designed a multi-branch dilation convolution structure (MDCS), as
shown in Figure 4. First, use 1 × 1 convolution to achieve channel interaction, then reduce
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the number of channels in each branch to a quarter of the previous input level. In order
to reduce the parameter size, we add a 3 × 3 convolution operation on the middle three
branches respectively. Next, the dilation convolution of d = 1, 2, 3 and 5 was used on each
branch to enrich the receptive field. A splice operation is then used to join the branches.
To avoid the instability of gradient transfer the shortcut is integrated into the designed
modules. MDCS introduces dilation convolution and adjusts the expansion rate to obtain
feature maps of different receptive field without increasing the calculation parameters. By
fusing the receptive fields of different scales and making full use of the context information
of the feature map, the feature representation ability of the model is enhanced.
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3.3. Feature Fusion Module (FFM)
3.3.1. Cross-Layer Feature Fusion (CLFF)

In the original SSD design, a convolution kernel of a selected size was used to obtain
the local receptive field in the image, and a series of sampling operations were carried out
to make the size of the feature graph shrink continuously, and the semantic information
of small target objects decrease continuously in this process. SSD adopts the strategy of a
shallow feature map detecting small targets and deep feature map detecting large targets
to detect targets of different scales, but this method has been proved to be defective in the
detection of small targets. Inspired by the idea of feature fusion, we designed a cross-layer
feature fusion module (CLFF) to fuse the position information of the shallow feature map
and the high-level semantic information of the deep feature map to improve the model’s
ability to detect small targets. In CLFF-1, the feature layer of 38 × 38 × 512 size is formed
by the fusion of the three-level feature graph (stage1, stage2, conv7) extracted from the
network, as shown in Figure 5. The specific fusion operation is as follows: firstly, stage1
is down-sampled, and conv7 is up-sampled. After the size is the same, stage1, stage2
and conv7 all go through a 3 × 3 con-volution layer. In order to avoid the influence of
gradient fluctuation, we use batch normalization operation for the fused feature images.
We abbreviate batchnorm, scale, and ReLU as B-S-R. Other CLFF modules have a similar
fusion process.
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3.3.2. Attention Fusion Module (AFM)

Continuous down-sampling and convolution of the original image can obtain feature
layers with different semantic features and resolutions. Selecting a suitable feature layer is
very important for the detection of multi-scale targets, and the detection of small targets is
a difficult problem. For basic SSD networks, small target detection is poor due to the lack of
interaction between feature graphs. This paper designs the attention fusion module (AFM),
which is embedded in the feature fusion module to fuse high-level and low-level semantic
information, and construct a multi-scale feature map containing the object to be tested,
which is used to improve the detection accuracy of small targets. The attention fusion
block achieves the purpose of efficient feature extraction by assigning different weights
to different channels and positions on the feature map. In order to ensure the unity of
dimension of the adjacent feature graph, deconvolution operation is used here. Next, in
order to make the network give a higher weight to the region of interest, SENet is integrated
into the AFM, as shown in Figure 6.
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3.3.3. Residual Block

Traditional SSD achieves classification and regression by using convolution filters
embedded in front of each detection head. We designed a residual block, adding it before
each prediction layer, as shown in Figure 7. We used standard convolution operations to
obtain different receptive fields, and to add residual connections to achieve unity of features,
which can effectively restrict the growth of parameters and increase the depth and width
of the network. The use of the residual block makes the gradient of the loss function not
directly flow to the back propagation network, which reduces the computational cost while
effectively improving the detection accuracy and improving the network performance.
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3.4. Construction of TMRC-SSD

The purpose of this research is to improve the accuracy of tramp material detection in
raw coal. We propose an improved SSD detection framework named as tramp materials
in raw coal single-shot detector (TMRC-SSD), as shown in Figure 8. It mainly includes
backbone network, an extract feature module, a feature fusion module, a detection head
and non-maximum suppression. The original image is processed and entered into the
subsequent processing network at a preset size. Next, after a stem block module, a four-
level feature extractor is used in the backbone to down-sample the feature map stably.
Multi-branch dilation convolutional structure was integrated into conv7~conv11 modules
to obtain rich receptive fields and extract robust feature map information, so as to avoid the
sharp increase of computing cost caused by the expansion of receptive fields. In order to
realize the information interaction between feature graphs, four cross-layer feature fusion
modules are integrated into the feature fusion module. The attention fusion block is used to
fuse adjacent CLFF feature layers. SENet improves the accuracy of detection by enhancing
the weight of the region of interest, and at the same time enhances the network’s ability to
detect small targets. Before each prediction layer, a residual block is used to control the flow
direction of the gradient in the loss function and improve the performance of the network.
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3.5. Loss Function

The loss function of the network we designed mainly consists of two parts, confidence
loss (conf ) and localization loss (loc). The weight term α is set to 1 by cross-validation.

L(x, c, l, g) =
1
N

(
(Lcon f (x, c) + αLloc(x, l, g)

)
(4)

where, the N represents the number of positive box. The localization loss is the smooth
L1 loss between the prediction box (l) and the ground truth box (g). Parameters: (cx, cy),
(w), and (h) represent the center, width, and height offsets of the default bounding box,
respectively.
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where

smoothL1(x) =
{

0.5(x)2 |x| < 1
|x| − 0.5 otherwise

(8)

The confidence loss is the softmax loss over multiple classes confidences (c) given by:
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i ) (9)

where
ĉp
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4. Data and Evaluation
4.1. Dataset and Training Settings

We construct a specific dataset to evaluate the detection effect of the designed de-
tector. In order to ensure the diversity of the data, the dataset contains 6670 images of
300 pixels × 300 pixels actually taken at the working site and in the laboratory. We marked
five class: gangue, bolt, stick, iron sheet, iron chain, as a total of 9461 objects. The mean
area ratio (MAR) can be calculated by dividing the pixel value of the object in the image
by the total pixels of the original image. In order to investigate the detection effect of
the TMRC-SSD network on different scale objects, the MAR of each class in our dataset
was calculated, as shown in Table 2. By observing Table 2, it can be concluded that the
proportion of iron chains is significantly smaller. The r mean area ratio is only 5.06%, which
brings great challenges to the detection of small objects. Due to the differences in shooting
angle and distance, the same type of foreign object may have a huge difference in area ratio
in different images. Therefore, we classify each object according to the area ratio in the
image where it is located. Those less than 10% are small objects, greater than 10% and less
than 40% are medium objects, and greater than 40% are large objects, the statistical results
are shown in Table 3. We used 80% of the images in the dataset for network training and
the other 20% for detector testing.

Table 2. Number and MAR of each class.

Class Gangue Bolt Stick Iron Sheet Iron Chain

Number 4661 1537 1982 1223 112
MAR 28.9% 57.4% 36.6% 30.1% 5.06%

Table 3. Number of each category.

Category Small Object Medium Object Large Object

number 427 7573 1461

This dataset is used for network training, which is similar to the end-to-end training
strategy in SSD. We set the batch size to 16, and used a stochastic gradient descent strategy
to optimize our network. In the first 10k iterations, we set the initial learning rate to 0.001,
and reduced it by 0.1 times at 20k and 30k iterations.

4.2. Evaluation Indexs

The Intersection over Union (IoU) is used to test the performance of the detector, as
show in Figure 9.
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MIoU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pij − pii

(11)

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

Accuracy =
TP + TN

TP + FP + TN + FN
(14)

where k, pii, pjj, pji and pij represent the total number of class, the true positive (TP), the
true negatives (TN), the false positive (FP) and the false negative (FN) respectively.

As to speed, frames per second (FPS) is used to measure the detection speed for the
approaches.

5. Results and Analysis
5.1. Comparison with Other Methods

In this section, we have selected some widely used detectors such as SSD, Yolov3,
Yolov3-tiny, DSSD, and Faster R-CNN for the comparison experiments, and to compare the
results of each kind of tramp materials detection AP and all types of mAP are counted, as
shown in Table 4. When the input image size is 300 pixels × 300 pixels, compared with
SSD and DSSD, TMRC-SSD has achieved the best mAP which reaches 0.9612, which is
8.3 and 6.9% higher than that of SSD and 6.9% higher than that of DSSD, which shows
that the three modules—MDCS, CLFF and AFM—designed to improve detection accuracy
are effective. Yolov3 uses the FPN structure in feature extraction, and uses the multi-scale
prediction method to perform on the feature maps of the three scales. YOLOv3-tiny is a
streamlined version of YOLOv3. It only retains two independent prediction branches. The
speed is improved but the detection accuracy is not as high as YOLOv3. Faster R-CNN is
a two-stage detection network, which, by processing large-resolution input images and
adding RPN structure to detect the tramp materials.

Table 4. Performance with different methods for five type of objects.

Method Backbone Input Size Gangue Bolt Stick Iron Sheet Iron Chain mAP

SSD VGG-16 300 × 300 0.9267 0.9216 0.9287 0.9336 0.6827 0.8787
Yolov3 Darknet-53 320 × 320 0.9719 0.9217 0.9776 0.9691 0.9016 0.9484

Yolov3-tiny Darknet-19 416 × 416 0.9461 0.8554 0.9418 0.9174 0.8669 0.9055
DSSD ResNet-101 300 × 300 0.9117 0.9135 0.9056 0.9776 0.7518 0.8920

Faster RCNN ResNet-101 600 × 1000 0.9728 0.9141 0.8625 0.8663 0.7507 0.8733
TMRC-SSD M-DenseNet 300 × 300 0.9663 0.9714 0.9719 0.9529 0.9434 0.9612

For the detection effect of three different sizes of objects, we use different detection
networks to conduct comparative experiments. The results are shown in Table 5. YOLOv3-
tiny‘s backbone network is relatively shallow, and it is difficult to extract high-level semantic
features of the image, and only uses two feature layers for detection, and loses part of
the scale information; therefore, the detection accuracy of small targets is only 88.56%.
TMRC-SSD uses the feature fusion method to fuse the low-level features and high-level
semantics of the image extracted from the shallow feature map and the deep feature map,
and uses a multi-scale prediction strategy to detect targets of different sizes. In small object
and large objects, the detection accuracy on the two types reached 95.57% and 97.06%
respectively.
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Table 5. Performance with different components for three scales of objects.

Method Small Object Medium Object Large Object

SSD 0.7438 0.9325 0.9598
Yolov3 0.9142 0.9707 0.9602

Yolov3-tiny 0.8856 0.8983 0.9326
DSSD 0.8163 0.9422 0.9174

Faster RCNN 0.6839 0.9163 0.9658
TMRC-SSD 0.9557 0.9692 0.9706

5.2. Ablation Experiment

We designed three variants of TMRC-SSD and tested them with tramp material
datasets to evaluate the efficiency of MDCS, CLFF and AFM components. In the TMRC-SSD
(-3) network, MDCS, CLFF and AFM components were not included. For TMRC-SSD (-2),
it has an MDCS component, but no CLFF and AFM components. The TMRC-SSD (-1) we
designed adds four CLFF components on the basis of TMRC-SSD (-2). TMRC-SSD includes
MDCS, CLFF and AFM components. Table 6 shows different designs, and Table 7 shows
the performance test results of different designs. We first verify the effectiveness of the
MDCS component. TMRC-SSD (-2) increased the mAP by 1.3% compared to TMRC-SSD
(-3). Compared with TMRC-SSD (-2), the mAP of TMRC-SSD (-1) increased by 0.017,
reaching 0.9609. When the AFM component is added, the mAP of TMRC-SSD increases
to 0.9612. However, as the complexity of the model increases, and the MDCS, CLFF and
AFM components are added, and the real-time performance of the model decreases. The
test results show that the TMRC-SSD has a higher accuracy than the three variants models,
and can reach 24FPS in terms of detection speed. Experiments show that the combination
of MDCS, CLFF and AFM components effectively enhances the detection performance of
the network.

Table 6. Models with various designs.

Method TMRC-SSD(-3) TMRC-SSD(-2) TMRC-SSD(-1) TMRC-SSD

+MDCS X X X
+4 CLFF X X
+AFM X

Table 7. Performance with different components for five type of objects.

Method Gangue Bolt Stick Iron Sheet Iron Chain mAP FPS

TMRC-SSD(-3) 0.9591 0.9696 0.9709 0.9298 0.9023 0.9463 48
TMRC-SSD(-2) 0.9607 0.9711 0.9722 0.9584 0.9319 0.9589 33
TMRC-SSD(-1) 0.9686 0.9707 0.9728 0.9517 0.9407 0.9609 31

TMRC-SSD 0.9663 0.9714 0.9719 0.9529 0.9434 0.9612 24

5.3. Visualization of Detection Results

In order to more intuitively understand the detection performance of our proposed
network, in Figure 10, we show the visual detection results of tramp materials in raw coal.
In order to effectively evaluate the detection performance of the TMRC-SSD network, we
set the classification threshold score at 0.75. In Figure 10a–j, the images on the left and the
right represent the original image and the TMRC-SSD network detection effect respectively.
The red boxes indicate the detected gangue, the green boxes indicate the detected bolt, the
purple boxes indicate the detected stick, the yellow boxes indicate the detected iron sheet,
and the blue boxes indicate the detected iron chain. Due to the limitations of the basic
SSD network, the detection performance for small targets is poor. However, our proposed
network uses feature fusion and multi-scale prediction strategies to improve detection
performance. Experimental results show that this method can detect most objects well. For
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smaller targets in the scene, such as the iron chain in the upper right corner of Figure 10h, a
good detection effect has been achieved.
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6. Conclusions

Aiming at the problem of multiple tramp material detection in raw coal, this paper
proposed a new object detection framework based on feature fusion and dense networks
named TMRC-SSD, to detect five types of tramp materials such as gangue, bolt, stick, iron
sheet, and iron chain. In order to improve the detection accuracy, we have designed three
modules for the detection of tramp materials in complex environments, especially the de-
tection of small targets: MDCS, CLFF and AFM. Firstly, we designed a modified DenseNet
as the backbone of the detector, using a four-stage feature extractor to down-sample the
feature map stably. MDCS uses a multi-branch structure and dilation convolution to obtain
abundant receptive fields while reducing computational cost. In the feature fusion mod-
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ule, four CLFFs are used to fuse the shallow and deep feature maps to achieve semantic
interaction between different feature maps. AFM is used to fuse adjacent CLFF feature
layers. In the ablation experiment, the effectiveness of our proposed module is proved. In
addition, we constructed a dataset containing 5 categories of tramp materials, including
gangue, bolt, stick, iron sheet, and iron chain, to evaluate the performance of the detector.
Experimental results show that our proposed TMRC-SSD network achieves 96.12% MAP
at 24FPS, which is the most advanced result compared with other existing methods. The
TMRC-SSD network increases the AP of small objects by 4.1 to 95.57%.

In the next work, we will further improve the performance of our network in the
detection, speed and accuracy of tramp materials by expanding the dataset and improving
the network.
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Abbreviations

Abbreviations Full Name
SSD single shot multibox detector
TMRC-SSD tramp materials in raw coal single-shot detector
MAP mean average precision
FPS frames per second
CNN convolutional neural network
MDCS multi-branch dilation convolution structure
CLFF cross-layer feature fusion module
AFM attention fusion module
MIoU Mean Intersection over Union
FPN feature pyramid networks
YOLO You Only Live Once
DSSD Deconvolutional Single Shot Detector
M-Densenet a modified DenseNet
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