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Abstract: At present, the massive emissions of carbon dioxide and nitrogen oxides and other green-
house gases caused by human activities have caused more and more serious negative effects on
global climate change. In order to cope with global warming and achieve sustainable development,
achieve “carbon neutrality” as soon as possible. In the refrigeration industry, it is necessary to reduce
greenhouse gas emissions related to refrigerants, including the production, use, and recycling of
refrigerants. This paper has carried out the calculation of greenhouse gas emissions during the
refrigerant preparation process, and compared and analyzed the emission reductions of refrigerant
recycling and reuse; the research based on the energy consumption of the refrigerant production
process uses the greenhouse gas emission inventory analysis method to Taking refrigerant R134a
as an example, the carbon emission accounting boundary of the production process is set, the
emission source is determined, the emission is calculated based on the emission factor method,
and the emission inventory is established; the carbon offset effect of the recycling and reuse of the
refrigerant is analyzed. The research results show that if the entire refrigerant industry fully recy-
cles waste refrigerants, it can reduce carbon emissions by about 29.7% compared to just producing
new refrigerants.

Keywords: global warming potential; refrigerant production; refrigerant recovery; carbon emissions;
carbon offset; R134a

1. Introduction

In the past 40 years, the frequency and intensity of extreme weather have increased
significantly due to global climate change, posing a huge threat to the survival and de-
velopment of mankind. It has also become the consensus of the international community
to reduce carbon emissions and reduce global climate change. In recent years, countries
and intergovernmental organizations around the world have taken a series of measures to
promote climate change governance, demonstrating the active efforts of all mankind in
tackling climate change. On 22 September 2020, Chinese President Xi Jinping delivered
an important speech at the general debate of the 75th United Nations General Assembly
and announced that China will adopt more powerful policies and measures to strive to
reach the peak of carbon dioxide emissions by 2030. Strive to achieve carbon neutrality
by 2060 [1]. This commitment by China is a milestone event in the global collaborative
response to climate change, and it also ushered in a new era in which China’s energy
system, economic system, and technological innovation system are driven towards a green
transition with the goal of carbon neutrality.

As the second largest economy in the world, China’s economy was less than 10 trillion
yuan 20 years ago. In 2018, the total economic volume exceeded 90 trillion yuan, and GDP
grew by 6.6% year-on-year. At present, the current situation of China’s economy has been
regarded as a medium-to-high-speed growth. Compared with developed countries such
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as Europe and the United States, China’s carbon neutralization process faces more severe
challenges such as large carbon emissions, a high proportion of fossil energy in the energy
structure, and a short time between carbon peak and carbon neutrality. China is currently
the world’s largest carbon dioxide emitter. In 2019, China’s carbon dioxide emissions
accounted for 29.4% of the world’s total emissions, more than the United States (14.4%),
India (6.9%) and Russia (4.5%) combined [2]. As shown in Figure 1, China’s total primary
energy production and total energy consumption are increasing year by year. Energy
consumption has gradually exceeded the total primary energy production, and it needs to
rely on imported energy and other secondary energy. In the current complex international
situation, mastering the right to carbon emissions is essentially mastering the opportunity
for future development. The development of any technology is inseparable from the
support of energy. Old-brand capitalist countries such as Europe and the United States
have revolutionized their productivity through the industrial revolution in recent centuries,
and they have emitted carbon dioxide and become developed countries [3]. At present, they
have reached the peak of carbon and are gradually moving towards carbon neutrality. The
country has not yet reached its carbon peak, and China’s annual carbon dioxide emissions
are still increasing year by year. China faces more difficulties and challenges in achieving
carbon neutrality than developed countries. China’s energy demand is large and has not
reached its peak. The proportion of industrial energy consumption is high and the power
supply structure is dominated by fossil energy such as coal. Transportation, construction,
and big data The decarbonization technology of other industries has yet to be broken
through [4]. This is a problem that China has to solve in 30 years from carbon peak to
carbon neutrality.

Liu Youbin, spokesperson of the Ministry of Ecology and Environment of China,
announced at a press conference on 26 May 2021 that the national carbon market online
trading will be launched before the end of June [5]. China’s carbon market covers more than
4 billion tons of emissions, and will become the world’s largest carbon market covering
greenhouse gas emissions [5]. The establishment of a carbon trading system will form
a signal for the price of carbon emissions throughout the society and lay the foundation
for low-carbon transformation. Some organizations predict that with the financialization
of the carbon trading market, carbon financial products such as carbon futures, carbon
options, carbon funds, and carbon bonds will also appear on the basis of carbon asset
spot such as carbon allowances and project emission reductions [6]. As an indispensable
chemical product in the construction and transportation fields, refrigerants will cause a
large amount of carbon emissions during the life cycle of their production and use, and there
is enough room for carbon reduction. In addition to optimizing different air-conditioning
systems to reduce refrigerant leakage and loss, reducing the carbon emissions caused by
the production of new refrigerants by recycling old refrigerants is also an important way
to reduce carbon in the refrigerant industry. At the same time, through carbon quota
management, companies can also get considerable returns from the carbon trading market
and promote the development of low-carbon industries [7].

The requirements for low-carbon development are not only closely related to the
energy industry, but also inextricably linked to various industries in China’s industrial
development. The direction of low-carbon development will have an incalculable impact
on China’s economic development in the next few decades. Among them, the construction
sector is one of the three major areas of energy consumption (industry, transportation,
and construction). The hydrofluorocarbon and hydrochlorofluorocarbon refrigerants com-
monly used in building air conditioning are important components of non-carbon dioxide
greenhouse gases. The greenhouse gas caused by the leakage of building-related refriger-
ants in China is equivalent to 100 million tons of carbon dioxide equivalent [8]. Since the
refrigerant used in vehicle air conditioners is in a moving and vibrating state for a long
time, the leakage of refrigerant is more serious than that in building air conditioners.
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Figure 1. Changes in China’s total primary energy production and total energy consumption [9].
Data source: “China Statistical Yearbook 2020”.

China is currently the world’s largest producer and consumer of refrigeration equip-
ment and refrigerants [10]. Refrigeration and air conditioning are widely used in various
industries in China’s national economy, national defense industry, and the improvement of
people’s living standards. During the “13th Five-Year Plan” period, the average annual
growth rate of the main business income of the refrigeration and air-conditioning industry
is expected to reach 5% to 8% [10]. More than one-third of the global demand for refriger-
ants comes from China. It is estimated that by 2030, the total refrigerant consumption of
China’s refrigeration and air-conditioning industry will reach 154,000 to 178,000 tons [11].
In the context of the vigorous development of refrigeration equipment and refrigerant
production, the elimination and restriction of some refrigerants that have adverse effects
on environmental pollution and climate warming are also underway [12]. Refrigerants can
only produce the greenhouse effect when they are discharged into the atmosphere. In order
to meet people’s needs for a comfortable environment and the use of refrigerants, while
reducing direct refrigerant emissions, the original waste refrigerant in the refrigeration
system is recycled and regenerated. Refrigerant capacity quota is an effective means to
reduce pressure and reduce refrigerant emissions [13].

There are three main current carbon emission evaluation methods. Global warming
potentials (GWP), to evaluate the greenhouse effect of refrigerants; Total equivalent warm-
ing impact (TEWI), to evaluate the climatic performance of refrigerants operating in a
refrigeration system for a certain number of years; Life cycle climate performance (LCCP)
is a comprehensive evaluation of the greenhouse effect during the operating life cycle of
refrigerants and refrigeration systems. On the basis of TEWI, the LCCP evaluation index
adds the influence of refrigerant and refrigeration system production and recovery process
and refrigerant decomposition products on the greenhouse effect.

The refrigerant R134a is a common fluorinated greenhouse gas, which is widely used
in automobile air-conditioning and refrigeration systems. The global warming potential
(GWP) of 1 kg of R134a refrigerant directly discharged into the atmosphere without any
treatment is equivalent to the greenhouse effect of releasing 1300 kg of carbon dioxide at
the same time. CO2 emission accounting is the basis for implementing emission reduction
measures, formulating national emission reduction strategies, and conducting international
verification and evaluation. CO2 itself is not a pollutant that directly harms the atmosphere
but a greenhouse gas. It harms the environment by causing the greenhouse effect. There is
no universal detection system in the world now. International institutions such as the IPCC
have developed methods to estimate national CO2 emissions based on the consumption
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of carbon-containing fossil energy and the carbon content of the energy itself, and are
widely used throughout the world [14]. This article will focus on the production and
recycling of refrigerants as the main research objects. Based on the survey data of a Chinese
refrigerant manufacturer, the emission factor method will be used to calculate and analyze
the carbon compensation benefits of refrigerant recycling compared to the production of
new refrigerants.

2. Materials and Methods
2.1. Differences between This Study and Previous Studies

(1) The current calculation and research on greenhouse gas emissions in the refrigerant
production process are mostly based on the maximum limit announced by the regulatory
authority. Compared with the maximum limit of sanctions that will be taken by the
regulatory authority, the greenhouse gas emissions in the actual production process of the
factory are relatively low. Low. This article uses the actual production energy consumption
data surveyed by a Chinese refrigerant manufacturer to conduct a more complete analysis
of the raw materials and energy input and by-product emissions to the environment in the
R134a production process.

(2) This study includes the energy required to convert raw materials into finished
products, including all energy-related inputs and energy input in the production process
of intermediate products, and includes efficiency losses, but does not include the energy of
raw materials that are chemically converted into finished products.

2.2. Refrigerant Carbon Analysis Method

The CO2 equivalent emissions caused by the consumption of a single fossil energy
can be calculated using the emission factor method:

C = Q × R (1)

where C refers to the CO2 equivalent emissions caused by the consumption of a single type
of fossil energy, Q is the amount of fuel or gas that produces greenhouse gases, and R is the
carbon emission factor, which represents the carbon content of the energy, and the quality,
properties and combustion of the energy fuel. The efficiency of time is related [14], and the
carbon emission factor can be further decomposed as:

R = EC × GWP × η (2)

where EC is the energy content of the fuel used in the reactor or other machinery, GWP (kg
CO2 eq /J) is the carbon content of the unit calorific value of the fuel, and η is the oxidation
rate level (combustion efficiency) of the fuel.

Using Formula (1), the carbon emissions caused by the consumption of a single type
of fossil energy can be calculated. The global warming potential GWP can be calculated by
adding the single GWP of carbon dioxide, methane, nitrous oxide and any other greenhouse
gases emitted during the fuel combustion process.

The production process of chemical products involves the consumption of more than
one type of fossil energy or secondary energy. The indirect greenhouse gas emissions
caused by the consumption of various types of energy in the system can be calculated by
the sum of the consumption and emissions of a single energy:

∑C = ∑(Q × R) (3)

In the refrigerant production process, a variety of chemical raw materials and energy
are involved in the reaction. The energy and different materials consumed in the reaction
process are converted into the carbon emissions of the refrigerant production process by
means of emission factors. At the same time, the production process of R134a is not directly
synthesized from raw materials. It also involves the synthesis of a variety of common
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chemical products and intermediate products. The production process of intermediate
products also consumes a lot of energy, which is converted into final products through the
calculation of emission factors. Carbon emissions data.

The research method includes four steps: setting the system carbon emission boundary,
determining the source of carbon emission, finding emission factors, and sorting out
the carbon emission inventory. In the research process, it is necessary to determine the
boundary of the system, that is, which parts of the refrigerant production process the
system includes to determine the carbon emission process that needs to be calculated in
the system, and appropriately simplify the system. Then determine the main source and
emission form of carbon emissions according to the determined research system. Then find
out the emission factors of each type of energy required according to the literature. Finally,
a comprehensive calculation of carbon emission is carried out and a carbon emission
inventory is compiled for analysis.

2.3. R134a Production Process

At present, most manufacturers of R134a use heterogeneous catalysts to fluorinate
trichloroethylene with hydrogen fluoride in the gas phase process to produce R134a. The
direct input and output of the R134a production process are shown in Figure 2.

Figure 2. The material and energy input of the direct reaction of the synthetic refrigerant R134a.

The direct reaction to produce R134a is divided into two stages and is completed
under the action of solid metal oxide catalyst under high temperature and high pressure:

CHCl = CCl2 + 4HF→CH2FCF3 + 3HCl (4)

The first-stage reactor fluorinates the intermediate material trichloroethylene into
R133a, and the conversion can be completed at one time. R133a does not need to be
separated and stored in the reactor to wait for the next reaction. In the second stage,
when fluorine is used to replace the last remaining chlorine substituent, the chemical
reaction equilibrium will be biased toward the raw material end, so hydrogen chloride, the
reaction product, needs to be removed, so that the reaction moves toward the product end
equilibrium. The entire reaction process is completely closed, the intermediate product
remains in the reactor, and the amount released into the atmosphere is very small, so it is
not included in the calculation of greenhouse gas emissions. All gases that may enter the
atmosphere will undergo thermal oxidation treatment. The gas emitted after the process
will not contain ozone-depleting substances.

The main by-product of the reaction is hydrochloric acid, which can be sold directly.
Other by-products that may be released into the environment are fluorinated volatile
organic compounds (VOCs), including greenhouse gases and spent catalysts. The former
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is usually removed from the process exhaust gas stream by thermal oxidation treatment.
Compared with the main raw materials, the amount of catalyst used in the reaction is very
small, so it is not included in the calculation.

In the direct reaction, the sources of carbon raw materials are crude oil and natural
gas, and ethylene is produced by pyrolyzing natural gas and refined oil products. Ethylene
reacts with chlorine to be chlorinated into dichloroethane, which is then further chlorinated
into trichloroethylene and tetrachloroethylene. Chlorine is produced by membrane electrol-
ysis and mercury electrolysis in traditional chlor-alkali plants. The source of the fluorine
raw material is fluorspar (a calcium fluoride mineral). Acid-grade fluorspar reacts with
fuming sulfuric acid (a mixture of sulfuric acid and sulfur trioxide) to produce anhydrous
hydrogen fluoride. Fuming sulfuric acid is made from mined sulfur ore. The production
process of raw materials and intermediate products is shown in Figure 3. Materials and
energy input are taken into consideration in the production of these intermediate products.

Figure 3. Raw materials and intermediate products in the production process of refrigerant R134a.
(The input in the production process is various types of energy and materials, and the output in the
production process is r134a products.).

In the literature, each ton of R134a requires about 1.3 tons of trichloroethylene and
0.8 tons of HF. It also requires electricity, heat (in the form of steam or natural gas), nitrogen,
air, and water [15]. Operation mode. The average production of R134a per ton requires
1.2 MWh of electricity, 28 GJ of thermal energy (from various sources), 0.5 ton of nitrogen,
and 13 m3 of water.

Different countries and factories have different production processes and raw material
production methods and sources, resulting in certain differences in the energy consumption
and carbon emissions of the final product. The source of the literature data referenced
above is mainly Mcculloch A in 2003 The research results, the data is relatively old, and
the research results are based on the global raw material trade in developed countries
such as Europe and the United States. Based on this, this article cooperates with a well-
known domestic refrigerant manufacturer to analyze the raw material consumption and
electricity and heat input of the factory’s R134a refrigerant production workshop. The
survey calculation is carried out, and the results are shown in Section 3.1.

2.4. Determination of Carbon Emission Accounting Boundary and Emission Source

The production process of refrigerant R134a includes the direct production process and
the production process of other intermediate products involved in the direct production.
In each independent production process, there are inputs of various materials and energy
in the system. Counting the energy input and material input in the entire system and
analyzing and sorting can obtain the energy input status of the entire system.
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System boundary: In the entire industrial chain of refrigerant production, not only the
process of directly producing R134a by trichloroethylene and hydrogen fluoride through
catalysis, but also the production process of all input materials and energy, the research
system should include direct trichloroethylene, hydrogen fluoride, etc. The production
process of materials, the production process of energy such as electricity and heat. At the
same time, because the direct materials trichloroethylene and hydrogen fluoride are not
produced by a single chemical process, the production process also includes other complex
reactions, mineral exploration, and oil extraction. In the production process, other direct
materials and energy input such as electricity and heat to produce other materials are
also considered in the system. When the factory reaches the 20-year service life and the
annual output of 10,000 tons [16], the building energy input per ton of product and the
environmental impact can be ignored. This article assumes that long-term operation or
annual output is not less than 10,000 tons and building carbon emissions are not considered
for the time being. At the same time, the carbon emissions caused by the transportation
of intermediate products to factories and finished products to users are very small (less
than 1%) [15]. This article does not consider the carbon emissions of all raw materials,
intermediate products and finished products emission.

Emission sources: The most important emission sources in chemical production are
various types of energy consumption. Different processes require a large amount of energy
input, and carbon emissions caused by various types of energy input and consumption
account for a large proportion. In the direct and indirect production process of R134a,
the main types of energy consumed include natural gas, electricity, coal, gas, fuel oil,
water gas, etc. In addition to energy input, the system also inputs water, nitrogen, air,
etc., because the production process of this part of the material consumes less energy,
and the energy consumed by the input of water, nitrogen and air is not considered in the
calculation process. The chemical energy contained in various raw materials is contained
in the final product R134a through chemical reactions, and this part of the energy input is
not considered.

The schematic diagram of the multi-level material and various energy inputs in the
system is shown in Figure 4.

In addition to the system included in Figure 4, there are some other omitted factors,
including the transportation energy consumption of various raw materials and energy used
in refrigerant production, the transportation energy consumption of refrigerant products,
and the building energy consumption of different equipment factories and chemical plants.
Because the statistical difficulties of these factors have a low impact on the system, they are
excluded from the system. The information used in the figure refers to Tables 1 and 2.

Table 1. Energy consumption and material consumption in the direct production process of R134a
per ton.

Type Quantity Unit

Consumption of trichloroethylene quality 1.34 ton
Consume the quality of anhydrous

hydrofluoric acid 0.834 ton

Product R134a purity 99.98 %
power consumption 1586.6 kWh
Water Consumption 1.2 ton

Heat energy 27.14 GJ
Nitrogen consumption 42.5 ton
Emission of VOC, etc. 3 kg

HCl production quality 0.92 ton
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Figure 4. Schematic diagram of system boundary.

Table 2. Material consumption and energy consumption in the production process of other interme-
diate materials.

Type Ways to Produce Energy Consumption and Material Consumption

Hydrogen fluoride

It is prepared by reacting fluorspar (CaF2)
with fuming sulfuric acid (a mixture of
concentrated sulfuric acid and sulfur

trioxide) in a standard rotary kiln process.

Every ton of hydrogen fluoride requires 2.35 tons of
fluorite powder, 2 tons of fuming sulfuric acid, 0.7 tons of
sulfuric acid, 0.18 tons of coal, 0.4 tons of gas, 0.036 tons of
slaked lime, 600 kWh electricity, 8.37 tons of water [17].

sulfuric acid

Double absorption “contact” process, in
which sulfur is burned in air to generate
sulfur dioxide, which is further oxidized
to sulfur trioxide under the catalysis of

vanadium pentoxide.

Each ton of sulfur requires 3.36 GJ natural gas and
0.025 tons of fuel oil.

Calcium fluoride

Exploring fluorspar through the foam
flotation method, using soap such as oleic
acid or sodium stearate as a collector to
adsorb it on the refined fluorspar, and

then carbonizing in the HF kiln.

Each ton of calcium fluoride requires 5.54 kg of fuel oil,
34.6 kWh of electricity, and 0.9 GJ of natural gas.

Trichloroethylene

Ethylene is chlorinated to dichloroethane,
and dichloroethane is further converted
and chlorinated to trichloroethylene and

tetrachloroethylene.

Every ton of trichloroethylene requires 0.233 tons of
ethylene, 1.71 tons of chlorine, and 32 GJ of natural gas.
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Table 2. Cont.

Type Ways to Produce Energy Consumption and Material
Consumption

Electrolysis of chlorine, alkali
and hydrogen

The electrolysis of sodium chloride or
potassium chloride brine is usually done
in mercury batteries, and the hydrogen
produced by electrolysis is used as an

energy input in other reactions.

Each ton of chlorine requires 3.53 tons of water,
1.27 tons of sodium chloride, 2.06 MWh of

electricity, and 1.97 GJ of hydrogen production.

Ethylene Pyrolysis of mixed hydrocarbon raw
materials (from natural gas to heavy oil).

Each ton of ethylene requires 25.9 GJ of natural gas
and 1.6 tons of water.

3. Computational Research
3.1. Material Consumption and Energy Consumption in the Direct Reaction Process of R134a

The article cooperated with a well-known domestic refrigerant manufacturer to inves-
tigate the carbon emissions of the refrigerant R134a production process, and obtained the
monthly material consumption, energy consumption and product data of the refrigerant
R134a production workshop provided by the manufacturer (the data after processing is
shown in Table 1), the following will calculate the carbon emissions of the direct reaction
process based on the real data obtained from the manufacturer.

3.2. Material Consumption and Energy Consumption in the Production Process of Other
Intermediate Materials

The production process of R134a involves the synthesis process of a variety of common
chemical products and intermediate products. This article consults a large number of
documents and related standards to sort out and list the energy and material consumption
input data of the intermediate product production process, as shown in Table 2.

4. Result: Emission List for the Whole Process of Refrigerant Production

Based on a typical monthly material and energy input data in a R134a production
workshop of a refrigerant manufacturer in a cooperative investigation in Section 3.1, this
paper combines the energy consumption and material consumption of the intermediate
product production process obtained by querying various documents in Section 3.2 and
sorts out and calculates the whole process of refrigerant R134a production. Energy con-
sumption and carbon emissions are shown in Table 3. Among them, different types of
energy have different carbon emission factors R, and carbon emission factors are related to
the quality, attributes and efficiency of energy fuels during combustion. Differences in the
composition of energy fuels, energy utilization methods and energy utilization efficiency
in different countries will lead to different countries. The difference in energy carbon
emission factors between regions and regions. The emission factors used in this article refer
to the data from the national greenhouse gas inventory report submitted by the Chinese
government to the United Nations, which has a high degree of credibility. It should be
noted that due to the limitation of the amount of data, the emission factors used in this
article do not fully represent the types of energy consumed in the actual production process.
For example, coal includes anthracite, bituminous coal, coking bituminous coal, lignite and
other types. Only refer to the mean values of emission factors of various energy sources.

Table 1 shows the energy consumption and material consumption in the direct pro-
duction process of R134a per ton. Table 2 shows the material consumption and energy
consumption in the production process of other intermediate materials. Table 3 shows
the energy consumption and carbon emissions per ton of R134a production process. This
article uses the energy emission factor method to evaluate and calculate CO2. Table 3 uses
the relevant energy consumption data of the substances in Tables 1 and 2 are used for
calculation. The data in Table 3 uses the calculation methods in Formulas (1)–(3).
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Table 3. Energy consumption and carbon emissions per ton of R134a production process.

Type of Energy
Energy Input Emission Factor Information [18] Carbon Emissions

(kg)Quantity Unit Emission Factor Unit

natural gas 49.03 GJ 0.056 kg CO2 eq/MJ 2745.99
electricity 6875.09 kWh 1.35 kg CO2 eq/kWh 9281.38

coal 0.15 ton 2.46 kg CO2 eq/kg 369.29
gas 0.33 ton 2.663 kg CO2 eq/kg 888.37

fuel oil 0.019 ton 3.12 kg CO2 eq/kg 58.85
water gas 27.05 GJ 0.0944 kg CO2 eq/MJ 2553.82

total 15,897.73

It can be seen from the data in the table that for every ton of R134a refrigerant produced,
the direct and indirect energy consumption of the production process will cause 15.9 tons
of CO2 emissions, and the multi-stage composite carbon emission factor of the R134a
production process is 15.9 kg CO2 eq/kg. As shown in Figure 5, the carbon emissions of
various types of energy, in the production process of refrigerant R134a, the carbon emissions
caused by the input of electrical energy accounted for the highest proportion, reaching
58.4%, and electrical energy is also one of the most widely used secondary energy sources.

Figure 5. Percentage of various types of energy carbon emissions.

5. Discussion: Refrigerant Recycling and Carbon Offset

The process of refrigerant treatment includes three parts: recovery, purification and re-
generation. Refrigerant recovery refers to the process of extracting the refrigerant from the
original equipment. Refrigerant purification refers to the process of removing impurities
in the refrigerant one by one. Refrigerant regeneration refers to the process of recycling
the refrigerant after recycling. The energy consumption of refrigerant recycling treatment
equipment is mainly the power consumed by the heater and the power consumed by the
compressor, and the main type of energy consumed is electric energy. Because there is no
mature refrigerant recovery, purification and regeneration system available for experimen-
tation, this article chooses the Beomseok refrigerant recovery machine (model BSE-1500A,
an on-site refrigerant recovery machine) as a reference [19]. The power marked on the
nameplate is used as the energy consumption data for the refrigerant recovery and regener-
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ation process. Reference source. The equipment weight of the recovery machine is 2420 kg,
the recovery compressor power is 5.5125 kw, the condensing unit power is 5.5125 kw,
and the basic power of the machine is 2.205 kw. When the machine starts the recovery
mode, the recovery rate is 2100 kg/h (liquid refrigerant) and 164 kg/h (gas refrigerant),
when the machine starts the regeneration mode, the regeneration rate is 90~100 kg/h. The
calculation shows that it takes timeR = 10.5 h to regenerate 1 ton of refrigerant, and the
total power consumption is 138.9kWh.

Calculate the emission factor with reference to the “US Greenhouse Gas Emission
Inventory” issued by the US Environmental Protection Agency (EPA) [20], the emission
factor of electric energy is 1.35 kg CO2 eq/kWh, and the regeneration of 1 ton of refrigerant
will cause 0.188 CO2 emissions per ton equivalent. From the calculation results, it can
be seen that the use of recycling equipment to regenerate the refrigerant can reduce CO2
emissions by 98.9% compared with re-production of the same amount of new refrigerant,
which greatly reduces energy consumption and carbon emissions.

However, not all refrigerants produced in the year can be recycled and reused. Taking
the refrigerant used in automobile air-conditioning systems as an example, referring to
the relevant leakage data of the automobile air-conditioning system refrigerant R134a
emission rating [21], it is estimated that the average value of the regular leakage of R134a
is 11.5 g/y, 17 g/y for unconventional refrigerant leakage [22], the leakage caused by
professional maintenance is about 35 g [23], and the leakage caused by user maintenance
is about 52 g [23]. The amount of refrigerant leakage in the recycling process of each
scrapped car is 100–450 g, and the remaining recyclable portion of the refrigerant in the
actual air conditioner of each vehicle accounts for about 42.8% of the total refrigerant
used in the life cycle of the refrigeration system. In 2019, the annual output of R134a
refrigerant was 153,000 tons [24]. If the production quota is entirely composed of newly
produced refrigerants, the carbon emissions are estimated to be 2.432 million tons; if
the annual output of R134a refrigerant is composed of newly produced refrigerants and
recycled refrigerants. The two parts are composed of 107,000 tons of new refrigerants and
46,000 tons of recycled refrigerants. As shown in Figure 6, the estimated carbon emissions
are 1.849 million tons, and the emission reduction rate is 29.7%.

Figure 6. Carbon reduction effect of recycled refrigerant.

6. Conclusions

R134a is a refrigerant that does not contain chlorine. It has no destructive effect
on the atmospheric ozone layer, but it is a greenhouse gas. Once it is released into the
atmosphere, it will strongly absorb infrared rays radiated from the ground, resulting in an
increase in energy and an increase in the earth’s temperature. Affect climate change and
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ecological balance [25]. The increase in global temperature will also lead to an increase in
the average temperature in different regions, causing changes in the use of refrigerants in
the equipment. Therefore, we must actively deal with refrigerant emissions and global
temperature rise. At present, the popularity of the recycling and purification of refrigerants
in China is not high, and most of the polluted or discarded R134a is discharged into the
atmosphere without treatment.

This paper takes refrigerant production process and refrigerant recovery process as
the main research objects and uses the calculation method of carbon emission factor. With
the help of a refrigerant manufacturer, we investigated the energy consumption data of
the refrigerant production process and estimated the energy consumption data of the
refrigerant recovery process on the basis of the existing refrigerant recovery equipment.
The results of carbon emission analysis of the refrigerant production process and the
recycling, purification and regeneration process show that if the refrigerant industry fully
recovers the used refrigerants, it can reduce carbon emissions by about 29.7% compared to
only producing and using new refrigerants.

Author Contributions: Conceptualization, Y.W.; methodology, Y.W.; investigation, Y.W. and H.W.;
resources, H.M., J.Z. and S.W.; data curation, Y.W.; writing—original draft preparation, Y.W.; writing—
review and editing, H.W.; supervision, J.Z.; project administration, H.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data are not publicly available due to [Data involves corporate secrets].

Acknowledgments: Thanks are due to Tongji University for providing technical support. The
authors also appreciate all other scholars for their advice and assistance in improving this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xi, J. Speech at the General Debate of the Seventy-fifth United Nations General Assembly. In Bulletin of the State Council of the

People’s Republic of China; The State Council the People’s Republic of China: Beijing, China, 2020; pp. 5–7.
2. Zou, C. Develop a carbon neutral implementation path with “Chinese characteristics”. Chin. J. Sci. 2021, 6, 6–9.
3. Pan, J.; Liao, M.; Chen, S. Carbon Neutrality: How fast can China go? Reform 2021, 7, 1–13.
4. He, K. What challenges does the carbon neutral target bring to environmental technology? China Environment News, 22 June 2021; 3.
5. He, C. Facing the challenge brought by the “dual carbon” goal. China Business Times, 2 June 2021; 3.
6. Zhang, Y. The national carbon market has come. Investors can “snowball” from three aspects. Securities Daily, 21 June 2021; A02.
7. Fang, L. Green Finance and Low-Carbon Economy. China Banking and Insurance News, 27 May 2021; 008.
8. Jiang, Y.; Hu, S. The path of China’s construction sector to achieve carbon neutrality. HVAC 2021, 51, 1–13.
9. Energy Statistics Department, National Bureau of Statistics. China Energy Statistics Yearbook 2015; China Statistics Press: Beijing,

China, 2015.
10. China Refrigeration and Air Conditioning Industry Association. The 13th Five-Year Plan for the Refrigeration and Air Condition-

ing Industry. Refrig. Air Cond. 2016, 16, 4–13.
11. China Refrigeration and Air-Conditioning Industry Association. Research Report on the Trend of HFCs Refrigerant Usage in China’s

Industrial and Commercial Refrigeration and Air-Conditioning Industry; Energy Foundation; China Statistics Press: Beijing, China,
2014.

12. Jing, L.; Feng, H.; Guo, X. Introduction to the Kigali Amendment. Polyurethane Ind. 2017, 32 (Suppl. S1), 17–18.
13. Wang, H.; Sun, J.; Wang, X.; Chen, W.; Zhang, L. Analysis on the status quo of refrigerant emission recovery. Home Appl. Technol.

2014, 10, 85–87. [CrossRef]
14. Liu, Z.; Guan, D.; Wei, W. Data accounting of China’s carbon dioxide emissions. Sci. China Earth Sci. 2018, 48, 878–887.
15. Mcculloch, A.; Lindley, A. From mine to refrigeration: A life cycle inventory analysis of the production of HFC-134a. Int. J. Refrig.

2003, 26, 865–872. [CrossRef]
16. Roberts, H.L. Energy-efficient processes for the chemical industry. In Conservation of Resources; Chemical Society Special

Publication: London, UK, 1976.
17. Zhao, B.; Wu, Y.; Mao, L.; Jiang, X.; Yu, Z. Anhydrous hydrofluoric acid production process and environmental impact analysis.

Jiangxi Chem. Ind. 2010, 2, 91–99. [CrossRef]
18. United Nations Commission on Climate Change. Non-Annex 1 National Greenhouse Gas Inventory Submission Website.

Available online: http://di.unfccc.int/ghg_profile_non_annex1 (accessed on 9 September 2021).

http://doi.org/10.3969/j.issn.1672-0172.2014.10.030
http://doi.org/10.1016/S0140-7007(03)00095-1
http://doi.org/10.3969/j.issn.1008-3103.2010.02.029
http://di.unfccc.int/ghg_profile_non_annex1


Appl. Sci. 2022, 12, 1 13 of 13
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