
applied  
sciences

Article

Stochastic Predictions of Ore Production in an Underground
Limestone Mine Using Different Probability Density Functions:
A Comparative Study Using Big Data from ICT System

Dahee Jung , Jieun Baek and Yosoon Choi *

����������
�������

Citation: Jung, D.; Baek, J.; Choi, Y.

Stochastic Predictions of Ore

Production in an Underground

Limestone Mine Using Different

Probability Density Functions: A

Comparative Study Using Big Data

from ICT System. Appl. Sci. 2021, 11,

4301. https://doi.org/10.3390/

app11094301

Academic Editor: Federico Divina

Received: 17 April 2021

Accepted: 5 May 2021

Published: 10 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Energy Resources Engineering, Pukyong National University, Busan 48513, Korea;
jungdahee98@gmail.com (D.J.); bje0511@gmail.com (J.B.)
* Correspondence: energy@pknu.ac.kr; Tel.: +82-51-629-6562; Fax: +82-51-629-6553

Abstract: This study stochastically predicted ore production through discrete event simulation using
four different probability density functions for truck travel times. An underground limestone mine
was selected as the study area. The truck travel time was measured by analyzing the big data
acquired from information and communications technology (ICT) systems in October 2018, and
probability density functions (uniform, triangular, normal, and observed probability distribution of
real data) were determined using statistical values. A discrete event simulation model for a truck
haulage system was designed, and truck travel times were randomly generated using a Monte Carlo
simulation. The ore production that stochastically predicted fifty times for each probability density
function was analyzed and represented as a value of lower 10% (P10), 50% (P50), and 90% (P90).
Ore production was underestimated when a uniform and triangular distribution was used, as the
actual ore production was similar to that of P90. Conversely, the predicted ore production of P50 was
relatively consistent with the actual ore production when using the normal and observed probability
distribution of real data. The root mean squared error (RMSE) for predicting ore production for ten
days in October 2018 was the lowest (24.9 ton/day) when using the observed probability distribution.

Keywords: mining; underground mine; truck-loader haulage system; Monte Carlo simulation;
stochastic simulation; ore production

1. Introduction

A mine project generally seeks to maximize production profits by using minimum
capital and operating costs over the mine’s lifetime [1]. Accordingly, mines require optimal
operating methods and equipment utilization strategies to increase productivity and
minimize operating costs. In particular, efforts are being made to efficiently operate a truck
haulage system, which constitutes greater than half of the operating cost [2]. The efficiency
of a truck haulage system varies depending on the combination of the equipment used and
operating patterns [3]. Therefore, it is necessary to operate an optimal truck haulage system
capable of maximizing ore production and minimizing the equipment delay time [4].

An effective method for operating truck haulage systems is to simulate a virtual system
model, using various optimization techniques. The input factors of the truck haulage
system model include the system operating parameters (e.g., operating time, number of
equipment, and load capacity) and truck cycle time. The outputs of the model include
the truckload, production rate, equipment utilization, and equipment latency [4]. For the
virtual system model, a simulation algorithm can be designed based on discrete events
comprising truck haulage operations, such as traveling, spotting, loading, dumping, and
queuing. In addition, mathematical optimization techniques can be applied to determine
an optimal solution for the truck haulage operations. To date, several algorithms for
truck haulage systems have been developed based on linear programming [5–8], genetic
algorithms [9], queuing theory [10–15], fuzzy logic [16], and deep neural networks [17,18].
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The system operating parameters and truck cycle times are not constant or defini-
tive for each haulage operation cycle and frequently fluctuate according to the working
conditions [19]. For instance, the daily working time and number of dispatched trucks
can fluctuate according to the ore production schedule. The truck cycle time may vary
depending on the equipment breakdown, plant interruption, and haul road conditions.
For these reasons, an uncertainty exists in the deterministic simulation method, which
predicts the truck haulage system, using constant input values. One method to simulate
the system model considering the variability of input parameters is to apply the stochastic
simulation technique. This method randomly extracts the input values from the probability
distribution of a random variable and predicts the distribution of the output factors through
iterative simulations [20].

Until recently, several researchers applied stochastic simulation techniques to analyze
optimal equipment combinations and design truck dispatch scenarios in both open-pit and
underground mines [1,19,21–34]. In these studies, truck cycle time data were statistically
analyzed and a probability density function was selected using probability distribution
models, such as Gaussian, triangular, Weibull, gamma, lognormal, exponential, Erlang,
and uniform distribution models (Table 1). The optimal probability distribution model
was determined by evaluating the goodness-of-fit using the chi-squared test [35], Akaike
information criterion (AIC) [36], and Kolmogorov Smirnov tests [37]. The ore production,
equipment utilization rate, and equipment downtime corresponding to the truck-shovel
combination were analyzed probabilistically [25]. In addition, the ore production was
predicted based on the confidence level, using iterative stochastic simulation [30], and
the prediction sensitivity was analyzed by alternating the probability distribution models
of the truck cycle time data [32]. However, little attention has been paid to analyze and
use the probability distribution derived from a large amount of truck cycle time data for
stochastic simulations.

Table 1. Study cases for the stochastic approach-based truck haulage system simulation.

Reference
Theoretical Model Representing Probability Distribution

Gaussian Triangular Weibull Gamma Lognormal Exponential Erlang Uniform

[1] X X
[19] X X X
[21] X X
[22] X
[23] X
[24] X X X
[25] X X X X
[26] X
[27] X
[28] X
[29] X
[30] X X X X
[31] X
[32] X X X X
[33]
[34] X

The truck cycle time data were collected using the stopwatch method while boarding
the equipment. For this reason, the theoretical probability distribution model was utilized
in the stochastic simulations instead of the real statistical distribution pattern of the truck
cycle time data. However, this may reduce the accuracy of the outputs from the truck
haulage system simulations. Therefore, to improve the simulation accuracy, it is necessary
to analyze and derive the probability distribution from a large amount of truck cycle time
data collected over a long period.

Recently, mine safety management systems with information and communications
technology (ICT) have been developed and actively implemented in mine sites world-
wide [38–45]. The system recognizes the location of the equipment and workers in real time
and monitors the work environment. Equipment location recognition data are transmitted
to a web server through a wireless communication network and equipment locations are
visualized on a dashboard in an outside office. An outstanding feature of this system is
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that big data are generated by continuously accumulating equipment location recognition
data on the web server. Therefore, it is possible to analyze the long-term truck cycle time by
extracting the equipment recognition time from the big data and calculating the difference
in the recognition time. Baek and Choi [31] processed the big data acquired from a mine
safety management system and statistically analyzed the truck travel time. In addition,
the ore production and equipment utilization rates were predicted using a discrete event
simulation. However, in this study, the probability distribution of the truck travel time
data was assumed to be a normal distribution, as it was impossible to consider the exact
variability of the truck travel time data.

The objective of the study was to analyze the probability distribution of the truck
travel time using big data acquired from an ICT-based mine safety management system,
and stochastically predict ore production through discrete event simulations, using differ-
ent probability density functions for truck travel times. An underground limestone mine
was selected as our study area. The probability distribution of the truck travel time was
derived through statistical analysis of the big data acquired from the study area, and the
truck travel time was randomly generated using Monte Carlo simulations based on four dif-
ferent probability density functions (uniform distribution, triangular distribution, normal
distribution, and observed probability distribution of real data). A comparison between
each of the stochastically predicted ore productions was performed to discuss the value of
the truck cycle time data collected by the ICT-based mine safety management system.

2. Study Area

The Yeongcheon underground mine (37◦4′14′ ′, 128◦18′46′ ′) of Baek Kwang Mineral
Products Co., located in Danyang-si, Chungcheongnam-do, South Korea, was selected as
the study area (Figure 1). The mine comprises four levels; the average altitude of Levels 1,
2, 3 were 310, 250, and 280 m, respectively, while the lowest for Level 4 was 220 m. The
mining method for room and pillar mining produces approximately 120 tons of limestone
ore per year. The mine consists of four loading points underground (the IDs of which are
203, 233, 235 and 237) and a dumping area with a crusher on the surface. The ore was
transported, using 30 ton dump trucks. The site’s production manager assigns trucks to the
loading point daily, accounting for the ore production goals and quality. Next, the truck
driver departs to the point to load the ore. The ore is loaded and subsequently moved to
the dumping area. The truck driver checks the amount of ore accumulated in the crusher; if
the ore quantity does not exceed the crusher capacity, the ore is unloaded into the crusher,
and if it exceeds the capacity, the ore is unloaded into the yard. This operation is repeated
during the working hours.

The study area was equipped with a mine safety management system based on
ICT. Owing to the installation of a wireless communication network, it was possible to
implement a digital environment to track the location of equipment in real time, make
voice calls, and monitor the working environment at an underground mine site where
communication was not possible. Through the wireless communication network, the
location of the production equipment in the mine was received in real time on the dashboard
in the office. The data acquired through the safety management system were stored in
real time. In this study, the location tracking data of the production equipment were used
in the mine safety management system. When the production equipment passes by a
wireless access point (AP) installed in the study area, its location is tracked and stored
as tag-recognition data. Figure 2 shows the process of a truck being recognized by the
wireless APs as it passes by them while transporting ore in an underground mine. The
tag recognition packet data, stored as the truck passes, includes information regarding the
data category, presence of an emergency, tag recognition sequence, ID of the recognized
tag, and distance between the wireless APs and the tag. These data are transmitted once
every second, and approximately 200,000 packets are stored in the web server per month;
the size of the data packet is 20 bytes each.
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Figure 2. Diagram showing the sequence of wireless APs in the underground mine; W01 (W02): 1st (2nd) wireless access
point (AP) installed underground.

3. Methods

Big data collected for the location tracking of production equipment in the mining
safety management systems were analyzed to compare and predict the ore production
based on probability density functions. For the simulation, time and simulation parameters
were received as input variables, and ore production was obtained as a probability distri-
bution. Through big data analysis, the truck cycle time (TCT), which is the time parameter,
was acquired. We designed a stochastic simulation model to fit the truck haulage system
of the underground mine selected as the study area. Uniform, triangular, normal, and
observed probability distributions were generated by measuring the truck travel time.
Travel times and ore production rates were predicted by the Monte Carlo simulation (by
applying the probability density functions) and stochastic simulation model, respectively
(Figure 3).
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3.1. Measuring Truck Travel Times from Big Data

The truck travel time was measured through the following process using big data.
In this study, truck tag recognition packet data were extracted from big data for October
2018. The truck tag recognition packet data store approximately 200,000 packets per month.
Among the packet data properties, tag recognition time, the IP address of wireless APs,
and distance packet information were considered and classified according to the truck
workplace. The study area consists of four loading points and four routes were identified.
If all the wireless AP recognition data of the identified route do not exist and there are
missing data, the data are deleted. By calculating the difference in the recognition time
of the wireless APs, we obtained the truck travel time between each wireless AP. If the
trucks remained in the recognized range for a considerable amount of time, the distance
packet information was used to extract the tag recognition time, which is the minimum
distance between the wireless APs and the truck. The difference in tag recognition time of
the APs was calculated to measure the truck travel time. The types of truck travel times
are as follows: the time lapsed when the truck moves from the portal to the loading point
in an empty state (TEu); the time needed to load ore into the truck (LT); the time needed
to transport the ore from the loading point to the portal with the ore loaded (TLu); the
transport time from the portal to the dumping area and the unloading time in the dumping
area (TLs); and the time to return to the portal (TEs) (Figure 4).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 16 
 

 
Figure 4. An illustration of the process of classifying the truck tag recognition packet data and measuring the five types of 
truck travel time: TEs1—empty truck surface travel time; TEu2—empty truck underground travel time; LT3—loading time; 
TLu4—loaded truck underground travel time; TLs5—loaded truck surface travel time. 

3.2. Design of a Truck Haulage System Model for Stochastic Discrete Event Simulation 
A simulation model of a truck haulage system was designed to fit the study area 

(Figure 5). When the truck moves to the loading point, it determines whether a loader is 
available. If a loader is available, the truck loads the ore and proceeds to the dumping 
area. If another truck is loading, the truck waits for the job to be completed, loads the ore, 
and subsequently, proceeds to the dumping area. The trucks move to the dumping area 
and unload at the crusher or loading dock. If the simulation is not completed, the truck 
returns to the underground loading point. At the end of the simulation, the rate of ore 
production is predicted. 

 
Figure 5. Flow chart displaying procedures for implementing the truck haulage simulation algo-
rithm. 

The truck haulage system simulation algorithm was modified for the measured truck 
travel time based on the TCT theory proposed by Suboleski [46]. TCT consists of the time 
a truck requires to travel from the portal to the loading point (TEu), the time a truck re-
quires to load the ore at the loading point (LT), the time a truck needs to move to the portal 
from the loading point (TLu), the time taken by a truck to move to the dumping area (TLs), 
the time the truck needs to remain at the dumping area for the ore unloading process and 
the time needed to return to the portal (TEs) (see Equation (1)). 

Figure 4. An illustration of the process of classifying the truck tag recognition packet data and measuring the five types of
truck travel time: TEs1—empty truck surface travel time; TEu2—empty truck underground travel time; LT3—loading time;
TLu4—loaded truck underground travel time; TLs5—loaded truck surface travel time.



Appl. Sci. 2021, 11, 4301 6 of 16

3.2. Design of a Truck Haulage System Model for Stochastic Discrete Event Simulation

A simulation model of a truck haulage system was designed to fit the study area
(Figure 5). When the truck moves to the loading point, it determines whether a loader is
available. If a loader is available, the truck loads the ore and proceeds to the dumping area.
If another truck is loading, the truck waits for the job to be completed, loads the ore, and
subsequently, proceeds to the dumping area. The trucks move to the dumping area and
unload at the crusher or loading dock. If the simulation is not completed, the truck returns
to the underground loading point. At the end of the simulation, the rate of ore production
is predicted.
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Figure 5. Flow chart displaying procedures for implementing the truck haulage simulation algorithm.

The truck haulage system simulation algorithm was modified for the measured truck
travel time based on the TCT theory proposed by Suboleski [46]. TCT consists of the time a
truck requires to travel from the portal to the loading point (TEu), the time a truck requires
to load the ore at the loading point (LT), the time a truck needs to move to the portal from
the loading point (TLu), the time taken by a truck to move to the dumping area (TLs), the
time the truck needs to remain at the dumping area for the ore unloading process and the
time needed to return to the portal (TEs) (see Equation (1)).

TCT = TEu + LT + TLu + TLs + TEs (1)

Table 2 lists the input and output values of the truck haulage system simulations.
The input data include time parameters that control the TCT (which can control the truck
operating time) and simulation parameters (which can control the operating facility or
operating time). Time parameters were generated through Monte Carlo simulations and
used as the input for the simulation model. The simulation parameters can be set as the
conditions to be simulated. The simulation result is the rate of ore production.
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Table 2. Description of the input and output parameters of the truck haulage system simulation.

Type Data Unit

Input

Time parameters

Travel time of the empty truck TEu Minutes
TEs Minutes

Travel time of the loaded truck TLu Minutes
TEu Minutes

Working time LT Minutes

Simulation parameters
Daily working time Minutes
Number of trucks Numbers

Capacity of a truck Tons
Number of simulations Numbers

Output Total amount of the loaded ore Tons

3.3. Generation of Truck Travel Times

In this study, we compared the simulation results of instances wherein different
probability density functions of the measured truck travel time were used as the input
variables. The simulation results were compared by creating five temporal elements of
the TCT with the Monte Carlo simulation, using the uniform, triangular, normal, and
observed probability distributions derived from actual truck travel time data. The uniform,
triangular, normal, and observed probability distributions were used in this study because
they are widely used as probability density functions and can be defined using the big data
of an ICT system. It should be noted that the uniform, triangular and normal distributions
are theoretical probability density functions defined mathematically; however, the observed
probability distribution is an empirical one. The uniform and triangular distributions were
generated by considering the maximum and minimum values. The normal distribution
was generated by considering the mean and standard deviation (STD), and the observed
probability distribution was obtained using actual accumulated data (Figure 6).
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Considering the measured truck travel time, a random variable for truck travel time
was created based on a Monte Carlo simulation. A Monte Carlo simulation is a numer-
ical, experimental method to obtain the output variable value of the system calculation
model by considering the statistical value of the input variable. The values of the input
random variable were sampled based on the statistical distribution, and the output variable
was calculated using a computational model [47]. To use the Monte Carlo simulation, a
cumulative relative frequency graph of the TCT was created.

The class width and relative frequency are required to generate the cumulative relative
frequency graph of the TCT. Using the statistical analysis results, the class width required to
create a cumulative relative frequency graph was calculated (Equation (2)). The frequency
of each class was calculated according to the data, and the relative frequency of each class
was calculated by dividing the total data recorded (Equation (3)). The cumulative relative
frequency was calculated using the relative power of each class, as shown in Equation (4):

Class width =
Maximum value−Minimum value

Number o f classes
(2)

Fr
i =

fi
N

(3)

Fc
n =

n

∑
i=1

Fr
i (4)

Using the cumulative relative frequency graph based on the probability function
distribution, a random variable for truck travel time was created by Monte Carlo simulation,
as follows: the cumulative relative frequency graph F(x) represents the probability P that
the truck travel time X is less than or equal to x (Equation (5)). Because F(x) is a probability,
it possesses a value from 0 to 1. Thus, we can determine the inverse function of F(x),
where G(F(x)) is the inverse function of F(x), and r is any real number between 0 and 1. In
this study, we generated the actual number between 0 and 1 and subsequently assumed
each generated actual number as the y value of the cumulative relative frequency graph
and predicted the trucking time by determining the x value corresponding to the y value
(Equation (6)).

F(x) = P (X ≤ x) (5)

G(F(x)) = G(r) = x (6)

3.4. Setting Simulation Parameters

To perform the simulation, we set the simulation parameters, which consisted of the
daily working time, number of trucks, capacity of a truck, and number of simulations. The
simulation parameters were set using the operational parameters analyzed from the big
data. On the morning of 16 October in the study area, two 30 ton trucks were used at the
loading point 237 from 7:00 a.m. to 12:50 p.m. The simulation was performed by setting the
following parameters: operating time as 350 min, two trucks, a truck capacity of 30 tons,
and simulation iterations as fifty times (Table 3).

Table 3. The value of the simulation parameters used for truck haulage system simulation.

Simulation Parameters Value

Daily working time (min) 350
Number of trucks 2

Capacity of a truck (ton) 30
Number of simulations 50
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4. Results
4.1. Statistical Characteristics of Truck Travel Times Measured from Big Data

In the study area, the TCT was analyzed using big data recorded in October 2018
(Table 4). Figure 7 shows the cumulative relative distributions of TEu, TEs, TLu, TLs, and
LT at each of the four loading points. Loading point 203 required the least time with an
average of approximately 22.74 min for a single haulage cycle; loading point 235 required
the most time with an average of approximately 34.07 min. Loading point 203 was located
closest to the portal, resulting in an average difference of approximately 11.33 min in TCT.

Table 4. Results of the statistical analysis of the truck travel time measured using the big data.

Loading Point Statistics
Truck Travel Time

TEu TLu TLs TEs LT

203

Mean (min) 0.93 1.10 5.55 7.58 7.58
Min (min) 0.57 0.75 4.02 2.72 3.58
Max (min) 2.27 1.95 8.98 44.37 21.95
STD (min) 0.27 0.23 0.92 9.82 3.73
Kurtosis 7.14 4.33 3.70 7.09 3.19

233

Mean (min) 9.47 10.17 5.48 3.75 4.25
Min (min) 5.52 8.05 4.03 2.43 2.08
Max (min) 23.08 11.85 8.18 6.55 20.55
STD (min) 3.32 0.73 0.77 0.92 2.57
Kurtosis 4.46 0.23 4.01 2.18 26.67

235

Mean (min) 7.20 10.97 5.52 4.63 5.75
Min (min) 5.77 9.57 4.78 3.07 0.63
Max (min) 13.62 14.25 8.00 11.32 19.17
STD (min) 1.85 1.32 0.63 2.07 3.95
Kurtosis 28.00 28.00 27.00 23.00 28.00

237

Mean (min) 6.52 7.98 5.30 3.50 5.52
Min (min) 4.72 6.42 4.72 2.70 3.53
Max (min) 11.30 9.23 6.43 6.23 16.57
STD (min) 1.27 0.62 0.42 0.68 3.38
Kurtosis 7.90 0.23 0.90 10.47 4.18

The uniform and triangular distributions of the truck travel time were set using
the minimum and maximum values of the measured TCT. A normal distribution was
simulated using the mean and standard deviation of the TCT. The cumulative distribution
was simulated by calculating Equations (3)–(5), using actual data. For loading point 203,
the difference between the maximum and minimum classes of TEu, TLu, and TLs, which
are truck travel time elements, was 1.52, 1.10 and 4.40 min, respectively, whereas LT
and TEs, which are the time required to load or unload ore, were 18.10 and 34.53 min,
respectively, and exhibited additional differences than other factors. Loading point 233
exhibited significant differences in class at 17.30 and 18.40 min, respectively, for TEu and
LT. Loading point 235 displayed a difference between the maximum and minimum classes
at 7.80 min and 14.25 min for TEs and LT, and for loading point 237, at 11.65 min for LT.
The comparison proved the existence of a significant time lag when working with ores.
The TCTs were predicted using a Monte Carlo simulation. The generated times were used
for simulations to predict ore production rates.

4.2. Predictions of Ore Productions by Stochastic Discrete Event Simulation

The actual production in the field and the simulation results were compared. In
the designated study area, the simulation parameters were set and simulations with two
30 ton trucks and an operating time of 350 min were conducted, as shown in the data
for 16 October. The TCT was used as the input in the Monte Carlo simulation as the
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time obtained for each uniform distribution, that is, triangular, normal, and observed
probability distribution.

Figure 7. Histogram and cumulative relative frequency graphs of the truck travel time for each loading point.

The simulation results indicated the production volumes of P10, P50 and P90. P10
represents the value of the lower 10% ore production, P50 represents a production rate
lower than 50%, and P90 represents a simulated rate lower than 90%. If we cross-check
the results with the P10 values, we can conclude that the ore production is low, while P50
and P90 are the average and high production volumes, respectively. In all four probability
density functions, we confirmed that the actual field data are located within the range of the
simulation results. The uniform and the triangular distribution models exhibited similar
results for the actual and simulated results of P90. The overall prediction result was lower
than that of the actual data. It was determined that the truck cycle time was generated
longer than the actual truck cycle time owing to the distribution of the probability density
function when the truck cycle time was generated. Conversely, the normal distribution
and observed probability distribution models displayed results similar to that of the actual
values and P50 as a result of the simulation (Figure 8).
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5. Discussion

The truck haulage operations in the mine are not constant at each loading and unload-
ing cycle and vary from time to time depending on the working conditions [19]. Therefore,
the simulation results for each day were compared using data from October 2018 for long-
term simulations. Time parameters were created by the Monte Carlo simulation for each
loading point and the simulation parameters were set according to the date (Table 5). The
truck capacity was set to 30 tons, and fifty iterations of the simulation were run. The ore
production predictions achieved as a result of the simulation were expressed as P10, P50,
and P90.

The observed probability distribution model was used to predict the actual field data
in the distribution of the simulation results (Figure 9); the TCT generated was higher than
the actual TCT. The actual field data were not included in the distribution of the results
of the simulation model that generated the TCT by providing a uniform distribution as
the input to the Monte Carlo simulation. In the triangular distribution model, only one
day—that is, 16 October—was included. In the simulation model that used the normal
distribution, the results for three days were not included in the ore production simulation
distribution. To quantify the simulation results, we calculated the root mean square error
(RMSE, ton/day) of the P50 results of each simulation result and the actual data (Figure 10).
The observed probability distribution model achieved the lowest value at 24.9 ton/day.
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Table 5. Description of the input data of the truck haulage system simulation for ten days in October 2018.

Simulation
Parameters

Date
12

October
13

October
15

October
16

October
19

October
22

October
24

October
26

October
29

October
30

October
31

October

Loading point 203 Daily working times (min) 400 100 355 55 385
Number of trucks 1 1 2 1 2

Loading point 233 Daily working times (min) 330 80 40 445 290 280
Number of trucks 2 2 2 1 2 1

Loading point 235 Daily working times (min) 245 370
Number of trucks 2 2

Loading point 237 Daily working times (min) 270 40 115
Number of trucks 2 1 3
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The results indicate that the case using observed probability distribution based on
the big data of an ICT system showed the best performance for ore prediction. This
demonstrates the value and importance of the data collected by an ICT system in the
mining site from a practical point of view.

6. Conclusions

This study stochastically predicted ore production through discrete event simulation,
using four different probability density functions for truck travel times, and compared the
simulation results for the four cases. The TCT was measured by dividing it based on the
four loading points, using the truck tag recognition time record big data obtained through
the mine safety management system based on a wireless communication network for an
underground limestone mine. The discrete simulation model was designed to stochastically
predict ore production in the designated study area. The uniform, triangular, normal, and
observed probability distribution obtained using the measured truck driving time were
fed into the Monte Carlo simulation to generate the respective TCTs. The generated TCTs
were input into a discrete simulation model. The results of the ore production prediction
were validated using field data of the morning of 16 October. As a result of the verification,
the data on 16 October 2018 included all four models in the distribution of the simulation
results. The uniform and triangular distribution models predicted relatively lower ore
production than the actual production because the results of P90 and the field data were
similar. The normal distribution and observed probability distribution models were similar
to the P50 results and the field data.

Because the working conditions at the mine site changed regularly, the stochastic
simulation model was used in the short term as well as in the long term in various
ways. Therefore, we performed a simulation with ten days of valid data for October
2018. Simulated with data for the month of October, the RMSE of the observed probability
distribution model was the lowest at 24.9 ton/day. The comparison results prove that
the developed observed probability distribution model can predict the rate of total ore
production within the range of actual values.

To use the observed probability distribution, the truck travel time data must be
recorded. Simulation results of higher accuracy can be derived, such as that of the simula-
tion of the observed probability distribution models used, by processing stored data. If the
ICT-based mine safety management systems are introduced at various sites, simulations of
higher accuracy can be achieved. It was possible to consider time through a Monte Carlo
simulation using the data stored in the field without excluding various events occurring in
the field. Thus, it is possible to obtain the resulting distribution of various ore productions.
Because the stochastic simulation result is displayed as a distribution rather than a single
value, various statistical values, such as the maximum and minimum, were confirmed in
the field. It will be helpful for managers to use simulation results to set up or modify work
plans according to desired production goals or perspectives.

Delay time is an important indicator for evaluating the performance of mining opera-
tion. This study did not use the delay time as an input or output parameter of the simulator;
however, the delay time was considered during the simulation process. In future work, it
would be interesting to stochastically estimate the delay time with simulation output to
make decisions for maximizing ore production.
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