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Abstract: Monitoring the structural health of wind turbine blades is essential to increase energy
capture and operational safety of turbines, and therewith enhance competitiveness of wind energy.
With the current trends of designing blades ever longer, detailed knowledge of the vibrational
characteristics at any point along the blade is desirable. In our approach, we monitor vibrations
during operation of the turbine by wirelessly measuring accelerations on the outside of the blades.
We propose an algorithm to extract so-called vibration-based fingerprints from those measurements,
i.e., dominant vibrations such as eigenfrequencies and narrow-band noise. These fingerprints can
then be used for subsequent analysis and visualisation, e.g., for comparing fingerprints across
several sensor positions and for identifying vibrations as global or local properties. In this study,
data were collected by sensors on two test turbines and fingerprints were successfully extracted
for vibrations with both low and high operational variability. An analysis of sensors on the same
blade indicates that fingerprints deviate for positions at large radial distance or at different blade
sides and, hence, an evaluation with larger datasets of sensors at different positions is promising. In
addition, the results show that distributed measurements on the blades are needed to gain a detailed
understanding of blade vibrations and thereby reduce loads, increase energy harvesting and improve
future blade design. In doing so, our method provides a tool for analysing vibrations with relation to
environmental and operational variability in a comprehensive manner.

Keywords: vibration monitoring; structural health; wind turbines; wireless sensors

1. Introduction

Wind energy as a source of renewable energy is one of the essential pillars in the fight
against climate change. In 2020, wind energy accounted for 16% of the overall electricity
demand in the EU (EU27+UK) [1]. A further increase in capacity is urgently needed to
reduce carbon emissions and requires: (i) improving the energy capture per turbine; (ii)
reducing the levelised cost of energy; (iii) increasing the number of turbines and parks; and
(iv) re-powering of inefficient turbines.

This paper proposes a method for studying the vibrational characteristic of wind
turbine blades. Detailed knowledge of the blades’ dynamic response in operation of the
turbine is essential: First, blades can optimally be controlled in operation to increase the
energy capture. Second, costs can be reduced by reducing loads acting on the blades and
thereby prolonging the lifetime of the blades. Blade costs amount to 20% of capital costs
and blade damage is responsible for up to 18.2% of downtimes for onshore energy [2,3]. By
reducing those costs and downtimes, the competitiveness of wind energy can be increased.
Third, monitoring is essential to detect structural changes and damage at an early stage and
therewith guarantee safety. Finally, detailed knowledge of the dynamic behaviour of the
blade in operation helps engineers in future blade design. With blades being designed ever
longer in current trends, this knowledge gets increasingly important since aerodynamic
forces as well as costs increase with blade length.
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1.1. Related Literature

Blade monitoring refers to both monitoring of vibrations, e.g., fluttering at the blade
tip, and monitoring of blade bending, e.g., alternate bending in nonuniform wind profiles.
Those two aspects intertwine, i.e., a reduction of blade bending and loads, reduces vibra-
tions and vice versa. This study solely focused on monitoring blade vibrations; however,
our proposed sensing principle is also suited for monitoring blade bending as studied
in [4]. In general, blade vibrations refer to global properties, e.g., eigenfrequencies, and
local properties, e.g., increased vibrations due to fluttering at the blade tip. Both highly
depend on environmental conditions such as temperature and wind speed and operational
conditions such as rotation speed.

Since measuring the vibrational response is costly and technically challenging, charac-
teristics of blade vibrations have been derived in several simulation studies [5–8]. Acar
and Feeny [5] and Liu et al. [6] demonstrated that eigenfrequencies depend on the stiffness
of the blade and vary with operational and environmental parameters. Consequently,
eigenfrequencies need to be studied under a large variety of conditions. In addition, Yoo
and Shin [7] showed that centrifugal inertia forces increase with both blade length
and rotation speed. In addition, Acar and Feeny [5] studied parametric stiffness effects
due to centrifugal and gravitational forces and found that the first eigenfrequency of a
100-m blade varied by up to 1.5% with the rotation angle. In all simulation studies, results
varied strongly with parameters and respective models. Rafiee et al. [8] summarised beam
theories for rotating composite beams such as the Euler–Bernoulli beam theory, the classical
beam theory and shear deformation theories with reference to influences such as material
nonlinearities, shear stresses and centrifugal stiffening.

Simulations form the basis for further development and testing but can never fully
mimic blade properties and environmental conditions. Hence, vibration measurements
on wind turbine blades in operation are needed to confirm simulations and investigate
vibrations under real-world conditions. Even though few camera-based approaches were
developed to monitor vibrations by means of semi-autonomous unmanned aerial vehicles
(UAVs) [9] or multiple cameras in a test facility [10], mounting sensors directly on the
blades is advantageous in sight-impairing conditions such as fog. In addition, it allows for
continuous monitoring during the lifetime of the turbine.

In a small-scale test, Ou et al. [11] conducted a benchmark study and tested accelerom-
eters, force sensors and strain gauges on a 1.75 m turbine blade in a climate chamber. They
demonstrated the temperature variability of the frequency characteristic of the blade and
proposed further investigation to consider those influences. Moreover, Tcherniak and
Mølgaard [12] excited a 34 m blade on a test rig by means of an electromechanical actuator
inside the blade and collected the vibrational response with an array of accelerometers.
Their developed unsupervised learning method was able to detect a 20 cm damage on the
trailing edge based on a damage indicator and a statistical model of the healthy blade.
Tcherniak and Mølgaard [13] tested the same algorithm in a follow-up study in operation
of a turbine and successfully identified damage. However, the study also demonstrates
a major challenge of sensor mounting in real-world applications: Sensors were mounted
on the outside of the turbine blade, which resulted in complicated wiring and potentially
increased aerodynamic noise. In addition, García and Tcherniak [14] applied active excita-
tion to a 34 m blade on a test rig. Damage could successfully be detected; however, sensors
had to be mounted in the vicinity of the damage location.

In addition, Bull et al. [15] studied environmental and operational effects with regard
to damage detection on an operating Vestas V27 turbine. Accelerometer measurements
and weather mast data suggest that temperature and rotation speed highly influence
results. In addition, damage detection performed better for actuator excitation than for
wind excitation. Last, Al-Khudairi et al. [16] studied the effect of crack propagation in a
test facility and determined the frequency response function by using strain gauges and
accelerometers. Their experiments demonstrate that damage only leads to minimal changes
in eigenfrequencies.
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A variety of approaches has been proposed for analysing vibration measurements
in related applications, e.g., monitoring of bearings [17–19] or bridges [20]. In many ap-
proaches, time–frequency-based methods such as empirical mode decomposition [17],
wavelets [18] and correlation measures [20] were combined with machine learning and
artificial intelligence (AI). For example, Kumar et al. [19] detected bearing defects by us-
ing a sparse cost function and convolutional neural networks and therewith addressed
the challenges of a small training dataset. However, labelled datasets and precise physi-
cal models are unavailable for measurements on wind turbine blades—as occurring for
many large-scale structures [21]. Hence, a different approach is needed to analyse those
measurements with respect to environmental and operational variability.

1.2. Challenges in Vibration Monitoring

Based on related literature, the following challenges in the monitoring of blade vibra-
tions can be summarised:

• Sensors should be deployed along the full length of the blade to capture local changes
in the vibrational response [14]. In particular, monitoring of the blade tip is desirable
since it experiences largest aerodynamic forces [22].

• Active excitation of the blade is preferable but mounting of actuators is difficult,
especially in retrofit of existing turbines [15].

• Eigenfrequencies can be monitored in a global approach, but a local approach is
needed to detect local changes due to damage in the vibrational characteristics [16].

• Reference measurements under damaged conditions are unavailable; hence, analysis
methods cannot be based on labelled reference data [21].

• The vibrational characteristic of the blade varies with environmental and operational
conditions; hence, those conditions need to be taken into account when analysing
vibrations [11,15].

1.3. Approach and Objective

In our approach, we focus on establishing so-called vibration-based fingerprints along
different positions of a turbine blade. By mounting accelerometers on the outside of the
blade, local vibrations can be monitored at any position. In addition, mounting restrictions
due to support structures inside the blades can be avoided. Since actuator mounting is
not feasible for existing turbines, we only consider wind excitation. Thereby, our method
shall be applicable to existing turbines in retrofit. Vibration measurements at multiple
positions along the blade are then used to extract characteristic vibration-based fingerprints,
as visualised in Figure 1.

Figure 1. Proposed approach: The local vibration characteristic of the blade is measured by dis-
tributed sensors on the blade (left). Vibration measurements (middle) are used to extract characteris-
tic fingerprints with reference to a reference variable, e.g., rotation speed (right).

An analysis of spectrograms was proposed by Manhertz et al. [23] for the analysis of
laser-vibrometer measurements. Dominant frequencies were extracted for a four-cylinder
engine during different operational conditions. Their method was extended [24] by using
a moving average predictive method to consider the history of vibrations. Both meth-
ods worked well for detecting homogeneous changes in spectra; however, a strategy for
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identifying inhomogeneous changes is missing, i.e., a dynamic change versus a constant
behaviour for adjacent frequencies.

In this study, we propose a method for identifying dominant frequencies in vibration
spectra for both homogeneous and inhomogeneous frequency shifts. Extracted dominant
frequencies represent both eigenfrequencies and locally increased vibrations, and thereby
form characteristic vibration-based fingerprints. An algorithm for efficiently analysing
those vibration-based fingerprints is developed and allows for comparing vibrational
characteristics at different positions along the blade.

The remainder of this paper is organised as follows. The sensor system and the
measurement campaigns are described in Section 2. The proposed algorithm is presented
in Section 3, including the detection of vibrations with low and high operational variability
in Sections 3.3 and 3.5, respectively. The results from two test turbines are presented
in Section 4. The results are discussed and conclusions are drawn in Sections 5 and 6,
respectively.

2. Experiment

In this section, the sensor system and the test setup are presented. Since our approach
aims to measure vibrations at any position along the blade, sensors were mounted on
the outside of the blade by using self-adhesive erosion protection tape (see Figure 2).
Thereby, placement restrictions on the inside of the blade could be avoided. Vibrations
were measured by integrating accelerometers into a robust sensor solution by eologix [25],
originally developed for ice detection on the blade. Those sensors are flexible with a
thickness less than 2 mm to minimise additional aerodynamic noise. Any cabling on the
outside of the blade is avoided by using solar energy harvesting and a rechargeable energy
storage. In addition, wireless communication is used and measured data are transferred to
a base station in the tower or nacelle of the turbine.

Figure 2. (Left) Exemplary sensor mounting on the outside of the blade during construction of a
wind turbine. (Right) Demonstration of flexible sensor layout.

The wireless prototype sensor used triaxial MEMS accelerometers with a measurement
range of ±16 g and a sensitivity lower than 0.49 mg, with 1 g = 9.81 m s−2 corresponding
to acceleration due to gravity. Acceleration was measured in measurement campaigns
at a sampling rate of 400 Hz (Prototype 1) and 833 Hz (Prototype 2), respectively, for a
duration of 10 s each with cyclic transmission to the base station. For the proposed analysis
method, temporal synchronisation of measurements across sensors was not required but is
considered beneficial in future monitoring studies.

Vibration measurements were collected in two test setups: In a 2.5-month test period,
Sensors S1 and S2 of Prototype 1 were tested on a 63 m rotor blade in operation of the turbine
(see Figure 3, left). For this turbine, 1640 and 1100 measurements were available during
uniform rotation of the turbine for Sensors S1 and S2, respectively. Measurements during
standstill or steering of the turbine, i.e., non-uniform rotational movement, were not taken
into account. These measurements were conducted during a large range of environmental
and operational conditions and were used to develop our proposed fingerprint method as
presented in Section 3.
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Figure 3. (Left) Sensor positions of Sensors S1 and S2 on Test Turbine 1. (Right) Sensor positions
of Sensors S3–S32 on Test Turbine 2. Positions are marked with red circles and blue rectangles for
positions on pressure side and suction side, respectively. Marker faces are solid for sensors deployed
on all three blades and blank for sensors only deployed on the first blade (Blade A). Allocation of
sensor numbers and positions displayed with results in the remainder of this paper.

In addition, an operational 2 MW turbine with a 70 m rotor diameter was equipped
with Sensors S3–S32 of Prototype 2 in the eastern part of Lower Austria (see Figure 3,
right). For those sensors, a maximum of 170 measurements were available from a 2-month
test period. Characteristic fingerprints were extracted, and the results are presented in
Section 4. For readability, sensor positions are also displayed with results in Section 4.

3. Algorithm

Measured acceleration was analysed by computing vibration-based fingerprints for
each sensor position along the rotor blade. In the following, vibrations are classified as
Type 1 and Type 2 vibrations:

Type 1 Vibrations with small bandwidths and small variation with environmental or
operational parameters due to changes in stiffness of the blade. This applies to
eigenfrequencies as characterised in [5,6] but also to increased noise levels in
narrow-band frequencies.

Type 2 Vibrations with large bandwidths and large variation with environmental or opera-
tional parameters. For example, vibrations due to fluttering of the blade tip may
increase with the rotation frequency.

As a general remark, amplitudes of blade eigenfrequencies are usually small since
blade designers try to avoid any excitation of eigenfrequencies along the blade. However,
by considering varying environmental conditions and using signal processing methods,
those frequencies can also be extracted. Both Type 1 and Type 2 vibrations may correspond
to local or global properties of the blade, i.e., may be detected across multiple positions
along the blade or only at a selected position. In our analysis, vibration-based fingerprints
were created separately for each sensor and, hence, Type 1 and Type 2 vibrations were
primarily distinguished by their variability and bandwidth.

The proposed analysis method consists of six steps, as visualised in Figure 4. First,
frequency spectra were computed and resulting spectra were averaged by converting
unscheduled measurement campaigns to a reference grid, e.g., the rotation frequency (Spec-
trum Averaging). Second, dominant frequencies called peaks were identified in computed
frequency spectra (Peak Detection). Next, Type 1 vibrations were detected by means of those
peaks, i.e., vibrations with small variation with the reference variable (Type 1 Detection).
Then, Peak Denoising was conducted and least prominent peaks corresponding to noise
were discarded. Last, Type 2 vibrations with large variation with the reference variable
were identified by using the remaining set of peaks (Type 2 Detection). Detected Type 1 and
Type 2 vibrations were then stored for subsequent analysis. The results were visualised
separately or jointly for selected sensors (Export and Visualisation).

The proposed fingerprint algorithm can be applied to vibration measurements in
many structural health monitoring applications by adjusting parameters to the proper-
ties of measurements. In the subsequent analysis, parameters were empirically selected
for acceleration measurements on wind turbine blades. Since vibration measurements
collected on Test Turbines 1 and 2 differed with respect to sample size and measurement
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noise, parameters were adapted separately for each turbine and are specified along with
corresponding results in Section 4.

Figure 4. Overview of the proposed fingerprint algorithm in six analysis steps. Processing blocks are
visualised for each step and presented in the corresponding sections.

3.1. Spectrum Averaging

In the following analysis, only measurements during stationary operational conditions
were included, i.e., measurements during steering processes or non-stationary rotation
speeds were not considered. Since measurements were conducted for a short period of
10 s in regular measurement campaigns, the Fourier transform was sufficient to monitor
operational and environmental variability and no additional temporal resolution (e.g.,
by using the Short-time Fourier transform (STFT)) was needed. For each measurement
campaign, the Discrete Fourier Transform (DFT) X(k) of the signal x[n] was computed,
and single-sided power spectra S(k) were derived as

X(k) =
1
N̂

N−1

∑
n=0

x[n]e
−i2πnk

N̂ , (1)

S(k) =

{
|X(k)2| if k = 0
|2X(k)2| if 0 < k ≤ N̂

2 ,
(2)

with the discrete frequency bins k = 0, 1, ..., N̂ − 1 corresponding to measured frequencies
f = 0, ..., fs

2 with fk = k · fs
N̂

and fs being the sampling rate of the accelerometer. The size of
the Fourier transform was selected as N̂ = 216 to increase precision of frequency detection.

The signal x[n] was derived from the vector sum av =
√

a2
x + a2

y + a2
z of triaxial acceleration

measurements ai with i = x, y, z. Thereby, vibration information from three measurement
axes could be combined to one fingerprint per sensor location. This procedure also enabled
comparability between different sensors in case of a non-ideal alignment of sensor axes
to the dimensions of the rotor blade due to mounting tolerances. Most signal energy
was contained in the direct current (DC) component of the acceleration signal, which
corresponded to centripetal acceleration. Since we focused on analysing vibrations with
smaller amplitudes, the DC component was removed. In addition, a Hann window w was
applied to account for discontinuities at beginning and end of each measurement campaign.
Hence, the signal

x[n] = w ·
(

av[n]− 1
N

N−1

∑
n=0

av[n]

)
(3)

was used to compute single-sided frequency spectra, in the following denoted as spectra.
Figure 5 displays an exemplary triaxial acceleration measurement and the computed vector
sum av (left) as well as the corresponding single-sided frequency spectrum (right).
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Figure 5. (Left) Exemplary triaxial measurement ai and corresponding vector sum av displayed
in the time domain, i = x, y, z. Acceleration measured at fs = 400 Hz and denoted with reference
to gravitational acceleration (1 g = 9.81 m s−2). (Right) Single-sided power spectrum S(k) for the
exemplary measurement, computed from the vector sum av.

Next, environmental and operational conditions were taken into account to analyse
spectrograms. To monitor operational and environmental variability, a separation of
variables is needed and sufficient measurements have to be collected for each variable. In
our case, measurements were collected during a large range of rotation frequencies, which
additionally were expected to have the strongest impact on vibrations. Therefore, the
demonstration of the algorithm was based on the rotation frequency as reference variable r.
However, any other reference can be applied to the algorithm if a sufficient amount of data
is available.

Since measurement campaigns were not scheduled with the reference variable, the
number of available measurements was unevenly distributed across the reference. To
facilitate visualisation and detection of vibrations, spectra were first sorted by the reference
r, i.e., original spectra S1, S2, ..., SLM corresponded to reference measurements r1, r2, ..., rLM
with rj ≤ rj+1. The resulting set of spectra is denoted as non-linear-scale spectrogram in
the following. Reference measurements r were then converted to a fixed grid G of size
LG = LM · R with a reduction factor R as

G = {r̂1, r̂2, ..., r̂LG+1} with r̂i+1 − r̂i = ∆r. (4)

For example, a reduction factor of R = 0.1 led to an average of 10 measurements per
grid point r̂i. Spectra corresponding to the linear scale were computed from Ng spectra per
grid point i as

Ŝr̂i (k) =
1

Ng
∑

j
Sj(k) for r̂i ≤ rj < r̂i+1, (5)

with Ŝr̂i being the averaged spectrum corresponding to reference grid location r̂i. Each
averaged spectrum Ŝr̂i was normalised to account for different energy levels. In addition,
differences in spectra were enhanced by applying a median filter with length δk = 10.
Resulting spectra are denoted as linear-scale spectra, short spectra in the following. In
addition, the resulting set of spectra is denoted as linear-scale spectrogram.

Figure 6 displays original spectra sorted by the rotation frequency (reference r) on
a non-linear scale (left) and averaged spectra on the linear scale (middle). Averaging
of spectra notably reveals vibrations, which are otherwise hidden by noise. In addition,
vibrations appear more significant and noise is reduced. The following processing steps
were used to automatically extract those vibrations in the spectrogram, which are easily
detected by the eye. The analysis is split into the detection of Type 1 and Type 2 vibrations
(see Sections 3.3 and 3.5, respectively).
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Figure 6. Processing for an exemplary sensor with fs = 400 Hz and the rotation frequency frot selected
as reference variable. (Left) Non-linear-scale spectrogram with LM = 1640 single measurement
campaigns. (Middle) Linear-scale spectrogram with linear grid of size LG = 163. (Right) Peak
detection with Np̂,single =15 peaks per grid point, peak assignment to Type 1 vibrations (Pv1), noise
(Pnoise) and peaks used for detecting Type 2 vibrations (Pv2 + Prem) as discussed in the subsequent
analysis. Colours of spectrograms corresponding to amplitudes on a logarithmic scale.

3.2. Peak Detection

The fingerprint algorithm is based on the detection of prominent frequencies called
peaks in the linear-scale spectrogram. In doing so, the prominence of peaks, i.e., the height
of a peak with reference to the closest local minimum, is essential to identify prominent
frequencies with relation to respective frequency bands and independently of overall peak
amplitudes. As a preparatory step, peaks were identified separately in each linear-scale
frequency spectrum.

First, an estimate of the overall number of peaks Np̂,all was derived by using the
averaged linear-scale spectrogram

Ŝav(k) =
1

LG

LG

∑
i=1

Ŝr̂i (k) (6)

on a logarithmic scale, i.e., Ŝav,log = log10Ŝav. The overall number of peaks Np̂,all was
determined in the signal Ŝav,log by detecting peaks with a minimum prominence of 0.1.
This means that the height of peaks had to exceed the corresponding local minima by at
least 0.1. In addition, only peaks with a minimum distance of 10 frequency bins k to the
next peak were considered. Thereby, the high variability of the signal Ŝav,log was taken into
account and only one peak per relevant component was detected.

The overall number Np̂,all was then used to select the number of single peaks, which
should be identified per linear-scale spectrum. The best trade-off between minimum
noise and a maximum number of prominent peaks had to be found empirically for each
measurement setup. A reduction factor of pred was introduced and the most prominent
Np̂,single = pred · Np̂,all peaks were detected for each linear-scale spectrum. In the following
analysis, peaks p̂i,n are described by their prominence pi,n, width wi,n and location li,n,
with i = 1, ..., LG corresponding to the reference grid r̂1, r̂2, ..., r̂LG+1 and peak numbers n
corresponding to discrete frequency bins k with n ∈ {1, ..., N̂}. Figure 6 (right) displays
detected peak locations with colours corresponding to their properties (i.e. related to Type
1 and Type 2 vibrations or noise) as derived subsequently in Sections 3.3–3.5.

3.3. Detection of Type 1 Vibrations

As a first step, extracted peaks p̂i,n were analysed with regard to Type 1 vibrations,
i.e., those peaks were identified, for which peak locations exhibited a low variation with
the rotation frequency.
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3.3.1. Identification of Type 1 Vibrations

Those discrete frequency bins k were identified for which peaks p̂i,n were most fre-
quently detected. The prominence of peaks pi,n was analysed with respect to discrete
frequencies as

C(k) =
LG−1

∑
i

Np̂,single

∑
n

αi,n pi,n with α =

{
1 if n = k
0 if n 6= k,

(7)

in other words, all peaks were projected on the frequency axis and corresponding promi-
nences were summarised. To enable automatic detection of those locations, the pro-
jected prominence C(k) was smoothed by accumulating C(k) within frequency bands
δk = fwidth · k. The width factor fwidth was selected empirically for each test turbine.

The resulting cumulative prominence Ccum(k) was then used to detect most prominent
peaks PC with a minimum peak prominence of 0.1. Here, the minimum peak prominence
was empirically selected and resulted in the detection of J1 peaks in total. Those peaks
corresponded to frequency bins k in the linear-scale spectrogram, which: (i) occurred
across a significant range of the operational range (here, rotation frequency; general.
reference variable r̂); and (ii) only slightly varied with r̂. Hence, they fulfilled the properties
of Type 1 vibrations as defined in this section. Those peak locations and peak widths
determined the set of Type 1 vibrations V1,j1 at frequency bins kv1,j1 and with width wv1,j1
for j1 = 1, ..., J1, respectively, in the following analysis. Figure 7 displays the locations of all
peaks, cumulative prominence Ccum(k) and most prominent peaks PC corresponding to
identified Type 1 vibrations V1,j1 .

Peak Detection

0.1 0.12 0.14 0.16 0.18 0.2 0.22

rotation frequency in Hz (linear)

0

50

100

150

fr
e
q
u
e
n
c
y
 i
n
 H

z

0 0.2 0.4 0.6 0.8 1

cumulative prominence

0

50

100

150

fr
e
q
u
e
n
c
y
 i
n
 H

z

Detection of type 1 vibrations

cumulative prominence

P
C

Figure 7. Detection of Type 1 vibrations: (Left) Linear-scale spectrogram with identified peaks Pall
visualised; and (right) cumulative prominence Ccum(k) of identified peaks with highlighted locations
PC corresponding to locations of identified Type 1 vibrations.

3.3.2. Refinement of Type 1 Vibrations

For each identified Type 1 vibration V1,j1 , all corresponding peaks p̂i,n in the linear-
scale spectrogram were identified. If fewer than five peaks were identified, the vibra-
tion V1,i was considered invalid and removed from the result set. For each remaining
Type 1 vibration, the set of all peaks Pv1,j1 was created with elements Pv1,j1 = { p̂i,n} for
kv1,j1 − wv1,j1 ≤ n ≤ kv1,j1 + wv1,j1 and i = 1, ..., LG. Those peaks were used to derive the
dependency on the reference variable r̂ by fitting the first-degree polynomial

fv1,j1(r̂) = c0,j1 + c1,j1 r̂ (8)

to identified peak locations li,n ∈ Pv1,j1 by using robust linear least squares fitting. Here,
c0,j1 and c1,j1 corresponded to the fitting parameters for vibration j1 and estimated functions
fv1,j1 represent the variation of discrete frequencies kv1,j1 with the reference.

Resulting functions fv1,j(r̂) were stored for further analysis. The majority of peaks
corresponding to each Type 1 vibrations (67%) were removed from the set of all identified
peaks Pall . However, the most prominent 33% of peaks corresponding to each Type 1
vibration j were kept in the dataset to account for potential overlaps of Type 1 and Type 2
vibrations. All peaks related to Type 1 vibrations Pv1 are displayed in Figure 6 (right) in
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red colour. In addition, peak locations corresponding to Type 1 vibrations are displayed in
Figure 7 (right).

3.4. Peak Denoising

In the next step, peaks with low prominence were removed to increase the signal-to-
noise ratio. Those peaks may either result from eigenfrequencies or sensor noise. Since
blade design tries to prevent the excitation of eigenfrequencies, they can only be detected
as peaks with low amplitudes and low prominence. Hence, peaks with low prominence
were needed for Type 1 Detection to increase detection accuracy. In contrast, peaks with low
prominence reduced the signal-to-noise ratio in the detection of Type 2 vibrations as done
in in the next step (Type 2 Detection) and therefore corresponded to noise. Consequently,
peaks with low prominence were removed as an intermediate step.

A factor anoise was introduced and those anoise ·Np̂,single peaks with lowest prominence
per linear-scale spectrum Ŝr̂i were assigned to a set of noisy peaks Pnoise ∈ Pall . The set
of noisy peaks Pnoise was then excluded from subsequent analyses. Thereby, the factor
anoise provided a trade-off between sensitivity to Type 2 vibrations and robustness of the
subsequent algorithm and was selected separately for each test turbine. The set of noisy
peaks Pnoise is displayed in Figure 6 (right) with dots in black colour. In the following step,
the set of peaks Pv2

⋂
Prem = Pall \ {Pv1

⋂
Pnoise} was scanned for peaks corresponding to

Type 2 vibrations (Pv2).

3.5. Detection of Type 2 Vibrations

From the remaining set of peaks Pv2
⋂

Prem, those peaks corresponding to Type 2
vibrations were identified, i.e., those vibrations related to a large variation with the reference
variable. The subsequent algorithm can be split in three parts, which are (i) scanning of
Type 2 vibrations, (ii) filtering of the scan result to detect the most prominent vibrations
and (iii) refinement of detected Type 2 vibrations.

3.5.1. Scanning of Type 2 Vibrations

First, peaks Pv2
⋂

Prem were scanned for those peaks Pv2 corresponding to Type 2
vibrations. The algorithm is displayed in Figure 8, left:

1. The location of remaining peaks li,n as resulting from Section 3.4 was normalised, i.e.,
both the range of i ∈ 1, ..., LG and n ∈ 1, ..., N̂ were normalised to [0,1]. Normalised
peaks are denoted as samples during the scanning part of the algorithm, and each peak
li,n was converted to a sample with coordinates [x, y] and x = i

LG
and y = n

N̂
.

2. Those samples were scanned by using first- and second-degree polynomials (see
Figure 8). For each outer loop iteration, an offset a0 was fixed. For each inner loop
iteration, inclinations a1 were varied in steps of ∆a1 up until a maximum inclination
of a1,max. Parameters a0, a1, ∆a1 and a1,max were selected empirically based on the
location of remaining peaks Pv2

⋂
Prem, as displayed in Figure 6 (right) (green colour).

3. For given a0 and a1, the following steps were conducted:

(a) The x coordinate [0,1] was divided into Nx discrete intervals x̂. The model
y1(x) = a0 + a1x was created for each iteration, and a boundary ε1 with
|y1 − ŷ| ≤ ε1 was introduced. This boundary was increased up until at least
one of the following conditions was fulfilled:

i. Strict: For at least aint · Nx of intervals, at least one sample [x̂, ŷ] had to
be found per interval which fulfilled |y1 − ŷ| ≤ ε1.

ii. Interval: For vibrations only occurring for specific values of the reference
variable, an additional restricted range Nx,local was introduced. In this
range, Condition (i) had to be fulfilled for at least Mx,local samples.

(b) The model was refined by fitting a second-degree polynomial y2(x) = b2x2 +
b1x + b0 to all those samples [x̂, ŷ], for which |y1 − ŷ| ≤ ε1 in the previous step.
Linear least squares fitting was used and the prominence pi,n of peaks related
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to samples [x̂, ŷ] were used as fitting weights. Again, the two conditions for
defining the range were applied as defined in Step 3(a) for a range ε2. An
example for both first- and second-degree polynomial fits and ranges is shown
in Figure 9 (left).

4. Those models y2 with a sum of squared errors (SSE) lower than a maximum error
SSEmax were selected as Type 2 vibrations and stored for further processing. In
our analysis, SSEmax was selected empirically for each test turbine depending on
respective data quality.

5. For each detected vibration, fit parameters b0, b1, b2 and ε2 were stored. In addition,
all samples [x̂, ŷ] for which |y2 − ŷ| ≤ ε2 were saved for subsequent analyses. To
improve robustness of scanning from bottom (a0 = 0) to top (a0 = 1), samples for
which ŷ < (y2(x̂)− 2ε2) were removed from the overall set of samples [x, y] for the
next iteration.

6. The offset a0 was adapted and increased by ∆a0 for the next iteration if either a
vibration was successfully detected or all inclinations a1 were tested without success.

7. Steps 3–6 were repeated up until the maximum offset amax = 1 was reached.

Here, only inclinations a1 ≥ 0 were tested since vibrations always increased with
the reference variable (rotation frequency) in our datasets. The algorithm can easily be
extended to also consider negative correlations by testing a1 < 0.

Figure 8. Visualisation of vibration scanning and vibration filtering for detecting Type 2 vibrations.
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Figure 9. Vibration scanning for detecting Type 2 vibrations. Peaks related to Type 2 vibrations Pv2

displayed as samples with x and y axes normalised to [0,1]. (Left) Exemplary fitting for first-degree
polynomial y1(x) and second-degree polynomial y2(x) and corresponding ranges ε1 and ε2. (Right)
Models y2,j(x) corresponding to Type 2 vibrations V2,j2 for vibrations j2 = 1, ..., 7.

3.5.2. Filtering of Scan Results

Second, scan results were filtered for the most prominent vibrations (see Figure 8,
right). Since scanning was conducted from bottom to top, only the lower part of corre-
sponding samples was deleted in Step 3(b) to increase robustness of fitting. Consequently,
samples [x̂, ŷ] could be assigned to a different vibration in the next iterations.
Hence, for each vibration m1, it was tested if there was a vibration m2 for which

• At least 10% of samples [x̂, ŷ] were assigned to both vibrations m1 and m2.
• A larger number of samples [x̂, ŷ] was assigned to vibration m2.

If these conditions were fulfilled, vibration m1 was deleted from the result set. The
remaining vibrations V2,j with j = 1, ..., J2 constituted the set of successfully scanned
Type 2 vibrations (e.g., see Figure 9, right). Detected peaks p̂i,n corresponding to those
vibrations are denoted as Pv2. Overall, the number of peaks Pall as detected in Section 3.2
can be written as Pall = Pv1

⋂
Pnoise

⋂
Pv2

⋂
Prem with Prem being those peaks, for which no

significant vibrations could be extracted in Section 3.5. The joint set Pv2
⋂

Prem is displayed
in Figure 6 (right) in green colour.

3.5.3. Refinement of Type 2 Vibrations

While detected peaks p̂i,n and samples [x, y] were considered during vibration scan-
ning, Type 2 vibrations were then refined by considering linear-scale spectrograms. For
this, normalised samples [x, y] were converted back to peak locations li,n. In addition,
boundaries were adapted from the normalised range to ε = ε · N̂ and models y2(x) were
adapted to y2(i). Then, refinement was conducted for each Type 2 vibration j = 1, ..., J2:

• A grid with elements di,k was created with i = 1, ..., LG and k = 1, ..., N̂
2 .

• Each model y2,j was refined by using spectra information as fitting weights for data
points di,k,

wi,k =

{
Ŝr̂i (k) if |di,k − y2(i)| ≤ ε2,j

0 else.
(9)

• Robust fitting was used as fv2,j2(r̂) = p2r̂2 + p1r̂ + p0 with parameters p0, p1 and p2.

An example of two Type 2 vibrations for the exemplary sensor is displayed in
Figure 10.
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Data fit of detected type 2 vibrations
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Figure 10. Refinement of detected Type 2 vibrations by using 2nd degree models, examples shown for
vibration V2,3 (left) and V2,5 (right) of an exemplary sensor. Model range ε2 was identified by using
vibration scanning and vibration filtering, as described in Figure 8. Robust fitting with spectrogram
amplitudes was used as weights, with coloured areas within range ε2 corresponding to non-zero
weights.

3.6. Export and Visualisation

Finally, detected Type 1 and Type 2 vibrations were combined to a characteristic
vibration-based fingerprint. Each fingerprint consisted of the following properties:

• Type 1 vibrations V1,j1 with j1 = 1, ..., J1 including detected peaks p̂i,n ∈ Pv1,j1 , first-
degree fitting models fv1,j1 and corresponding data ranges ε2,j1 .

• Type 2 vibrations V2,j2 with j2 = 1, ..., J2 including detected peaks p̂i,n ∈ Pv2,j2 , second-
degree fitting models fv2,j2 and corresponding data ranges ε2,j2 .

Those fingerprints were stored for the subsequent analysis of results. Algorithm results
were visualised by displaying averaged spectrograms, fingerprints and sensor positions
(see, for example, Figure 11). Thereby, characteristic vibrations of Type 1 (v = v1, j = j1)
and Type 2 (v = v2, j = j2) were visualised by displaying fitting models fv,j as solid lines.
The prominence of assigned peaks and the range of vibrations were considered by: (i)
normalising the prominence pi,n of assigned peaks p̂i,n to [0,1] (relative width); and (ii)
scaling the range ε2,j of each vibration (absolute width) with the normalised prominence. In
doing so, the maximum width of each visualised vibration corresponds to the deviation of
peak locations l̂i,n ∈ Pvi ,ji of the respective vibration. In addition, the variation of the width
over the reference variable r̂ corresponds to the prominence of assigned peaks. Thereby,
the following properties can be visualised:

• A large absolute width of vibrations indicates that the vibration is difficult to lo-
calise, e.g., due to an additional dependency on further environmental or operational
parameters.

• A small relative width of vibrations indicates that the vibration is difficult to detect,
e.g., either not excited or hidden in noise for the related reference r̂.

• A large relative width of vibrations indicates that the vibration can clearly be identified
in the linear-scale spectrogram.

In addition, fingerprints were compared for several sensors. Two vibrations Vm1 and
Vm2 were detected as joint or overlapping, i.e., being caused by the same physical behaviour
of the blade with high probability if any of the following conditions applied:

(i) At least 30% of assigned peaks overlapped: A number of joint peaks Np̂,joint ≥
0.3 ·min(Np̂,m1 , Np̂,m2) was found with Np̂,m1 being the number of peaks p̂i,n ∈ Vm1

and Np̂,m2 being the number of peaks p̂i,n ∈ Vm2 .
(ii) The difference at any point along the reference grid r̂i was smaller than 1.5%, i.e.,

|Vm1(r̂i)−Vm2(r̂i)| < 0.015 r̂.

In the case of joint vibrations being detected, vibrations Vm1 and Vm2 were averaged
to increase clarity of visualisation. Averaged vibrations are displayed by alternating
coloured dots and error bars represent the width of single vibrations. An example for the
visualisation of joint vibrations can be seen in Figure 12.
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Figure 11. Fingerprint results for Sensors S1 (top) and S2 (bottom) mounted on the blade tip of
test turbine 1. (Left) Linear-scale spectrogram with colour corresponding to logarithmic amplitude.
(Middle) Extracted fingerprints, both Type 1 (V1) and Type 2 (V2) vibrations displayed. (Right)
Sensor positions on the blade.

Figure 12. Fingerprint comparison for Sensors S1 and S2. Separate visualisation for Type 1 (left) and
Type 2 (right) vibrations. Solid lines represent vibrations only occurring in the fingerprint of one
sensor, while dotted multi-coloured lines represent vibrations occurring jointly in both fingerprints.
Error bars show locations of associated peaks with their length representing peak prominence.

4. Results

The fingerprint algorithm was tested by using measurements from several sensors,
which were mounted on two test turbines as discussed in Section 2. The results are
presented using the methods described in Section 3.6 for visualising fingerprints both
separately per sensor and jointly for several sensors. The following section is split into
results regarding Turbine 1 (Section 4.1), results regarding Turbine 2 (Section 4.2) and a
joint evaluation for sensors on both turbines (Section 4.3). Parameters of the fingerprint
algorithm were adjusted separately for sensors of both test turbines to account for: (i)
varying vibration characteristics of the turbines; and (ii) varying size and data quality of
sensor measurements (see Table 1). However, parameters were kept constant for sensors
of the same turbine to enable comparability of results. Selected parameters are discussed
subsequently and the reader is referred to Section 3 for a detailed description of the full set
of algorithm parameters.
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Table 1. Parameters of the fingerprint algorithm for sensors on Test Turbines 1 and 2.

Processing Parameter Turbine 1 Turbine 2

Spectrum
Averaging

LG 163 (S2), 109 (S2) 58
LM 1640 (S1), 1100 (S2) 141–170
∆r 7 × 10−4 5 × 10−3

frot,min[Hz] 1 × 10−1 1 × 10−1

frot,max[Hz] 2.2 × 10−1 3.9 × 10−1

Peak Detect. pred 3.3 × 10−1 2.5 × 10−1

Type 1 Vib. fwidth 1 × 10−3 5 × 10−3

Denoising adenoise 3.3 × 10−1 2.5 × 10−1

Type 2 Vib.

a0,min 0 0 0 1.5 × 10−1 2.5 × 10−1

a0,max 3 × 10−1 5 × 10−1 1.5 × 10−1 2.5 × 10−1 5 × 10−1

∆a0 5 × 10−3 2 × 10−2 1 × 10−2 2 × 10−2 2 × 10−2

a1,min 0 0

a1,max 8 × 10−1 1.4

∆a1 1 × 10−2 1 × 10−2

x̂ 100 46

aint 4 × 10−1 8 × 10−1 5 × 10−1

ε1, ε2 2 × 10−2 4 × 10−2 8 × 10−3 1 × 10−2 2.2 × 10−2

condition strict strict strict interval interval

Nx,local,min 0 7.5 × 10−1

Nx,local,max 1 1

Mx,local 10 10 10 10 5

SSEmax 5 × 10−3 2 × 10−2 5 × 10−3 1 × 10−2 3 × 10−2

4.1. Test Turbine 1

For the first test turbine, the two Sensors S1 and S2 were mounted at the blade tip
at 88% and 98% of the blade length, respectively. The fingerprint algorithm was applied
to the dataset of each sensor separately and parameters were adjusted as displayed in
Table 1. Since the dataset was large with 1640 and 1100 measurements for Sensors S1 and
S2, respectively, the reference grid could be set to a high resolution with ∆r = 7 × 10−4.
This led to a large number of averaged spectra and, thus, a low noise level, which allowed
localising Type 1 vibrations with a width of fwidth = 1 × 10−3. In addition, parameters were
set separately for the lower part (0 ≤ a0 < 0.3) and the upper part (0.3 ≤ a0 < 1) of the
data range during the detection of Type 2 vibrations. Thereby, different properties of mea-
surements such as well-localised and adjacent vibrations in the lower part of spectrograms
and vibrations with large bandwidth in the upper part of spectrograms were considered.

Algorithm results for Sensors S1 and S2 are presented in Figure 11. In averaged
spectrograms, several distinct Type 2 vibrations are visible below 25 Hz and two Type 2
vibrations with higher bandwidth appear in the higher frequency range above 75 Hz. In
addition, higher noise levels are visible for Sensor S2, which was mounted further towards
the tip of the blade. Extracted vibration-based fingerprints show that Type 2 vibrations were
correctly identified and extracted from averaged spectrograms. In those vibrations, a larger
bandwidth of vibrations reflects higher noise levels for Sensor S2. Furthermore, several
Type 1 vibrations width small bandwidth were identified for both sensors corresponding to
either eigenfrequencies of the blade or increased narrow-band noise. These vibrations are
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only visible in averaged spectrograms by a detailed close-up view; hence, the fingerprint
algorithm can be used for automatic extraction.

A comparison of both fingerprints is displayed in Figure 12. All Type 2 vibrations
could successfully be measured and detected by both sensors. For Sensor S2, the highest
vibration (first from top) was detected for a larger range of rotation frequencies than for
Sensor S1. This is represented by coloured error bars at those rotation frequencies, for
which peaks were assigned to the respective vibration. The majority of Type 1 vibrations
were detected by both sensors. Those vibrations exclusively being detected by Sensor S1
indicate eigenfrequencies with small amplitudes, which are hidden in noise for Sensor S2.
In contrast, Type 1 vibrations exclusively being detected for Sensor S2 indicates a detection
of sensor noise in distinct narrow-band frequencies.

To sum this up, fingerprints of both sensors overlap for the majority of vibrations
since the radial difference between both sensors is small. However, higher vibrations at the
blade tip, e.g., due to fluttering, are reflected in the fingerprint of Sensor S2 by the location
of detected Type 1 vibrations and the bandwidth of Type 2 vibrations.

4.2. Test Turbine 2

For the second test turbine, Sensors S3–S32 were mounted on all three blades of the
turbine. For comparability, selected sensors were deployed at the same positions on all
blades. Additional sensors were deployed at varying positions on the first blade (Blade A)
for a closer inspection of different positions along the blade. It needs to be noted that the
set of available measurements was much smaller for this turbine (9–15% with reference to
sensors on Test Turbine 1) and both size of datasets and data quality (e.g., increased noise
due to transmission errors) varied across sensors. Therefore, only selected sensors were
considered in the subsequent evaluation.

Due to smaller datasets, averaging of spectrograms had to be conducted with fewer
measurement campaigns per grid point. Hence, averaged spectrograms of Turbine 2
included higher noise levels. Parameters were adapted as displayed in Table 1:

• adaption of grid resolution with ∆r = 5 × 10−3;
• reduction of peaks to reduce noise for Type 1 detection (pred = 0.25);
• less noise reduction to find Type 2 vibrations hidden in noise (adenoise = 0.25);
• increased sensitivity to Type 2 vibrations hidden in noise (aint = 0.5); and
• increased range limits (SSEmax(x ≥ 0.75) = 3 × 10−2).

In addition, parameters were adjusted separately for three different parts of the data
range, i.e., a lower part (0 ≤ a0 < 0.15), a middle part (0.15 ≤ a0 < 0.25) and an upper
part (0.25 ≤ a0 < 0.5). The interval condition was used for the middle and upper part to
increase sensitivity to those vibrations, which did not occur for the full operational range
of the turbine.

Figure 13 displays exemplary fingerprints for Sensors S15 and S27 mounted on tip and
root of a rotor blade on Test Turbine 2. The effects of the smaller datasets are reflected in: (i)
white gaps in averaged spectrograms representing missing measurements for respective
grid points; and (ii) higher measurement noise, especially below 100 Hz. The fingerprint
algorithm identified several Type 2 vibrations, which correspond to those vibrations clearly
visible in averaged spectrograms. By using the interval condition for detection, vibrations
only occurring for parts of the operational range could be identified, e.g., see Sensor S27
with Vibrations 2 and 4 from the top.

Due to increased measurement noise, only Type 1 vibrations with large bandwidths
were detected. For frequencies below 75 Hz, those frequencies mostly overlapped with
Type 2 vibrations and, hence, decreased accuracy of Type 2 detection. Therefore, the
following analysis is focused on analysing Type 2 vibrations above 75 Hz. Fingerprints for
Sensors S15 and S27 only partly overlap for Type 2 vibrations and, hence, the properties
of fingerprints of different sensors are evaluated in the following with respect to sensor
positions. Due to the implications of data quality as discussed, only indications can be
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given in the following, and final conclusions on the vibrational characteristics of the blades,
optimal sensor deployment, etc. need to be confirmed by larger datasets.

Figure 13. Fingerprint results for Sensors S15 (top) and S27 (bottom) mounted on tip and root of the
same blade on Turbine 2. (Left) Linear-scale spectrogram with colour corresponding to logarithmic
amplitude. (Middle) Extracted fingerprints, both Type 1 and Type 2 vibrations displayed. (Right)
Sensor positions on the blade.

4.2.1. Comparison of Radial Positions

A comparison of sensors deployed at different radial positions along the blades is
displayed in Figure 14 (left). Fingerprints of four sensors are visualised including two
sensors mounted at the blade roots (S13 and S27) and two sensors mounted at the blade
tips (S15 and S29) of Test Turbine 2. All sensors were mounted at the leading edge.
Prominent Type 2 vibrations are reflected in the fingerprints of both root and tip sensors
and correspond to global vibrations of the blade (see Vibrations 1, 3, 5 and 6 from the top).
In addition, few vibrations were exclusively detected by Sensors S13 and S27 mounted the
blade root (see Vibrations 2 and 4 from the top). Hence, fingerprints vary with the radial
position of sensors, which corresponds to the extent of blade vibrations varying across
radial positions due to the varying stiffness of the blade.
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Figure 14. (Left) Fingerprint comparison for Sensors S13, S27, S29 and S15 with varying radial
positions on Turbine 2. (Right) Fingerprint comparison for sensors mounted on the blade tips of
all three blades of Turbine 2 (S15, S10 and S29). Solid lines represent vibrations only occurring in
the fingerprint of one sensor, dotted multi-coloured lines represent vibrations occurring jointly in
multiple fingerprints. Error bars show locations of associated peaks with their length representing
peak prominence.
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In addition, joint vibrations were detected in the lower part of spectrograms, i.e.,
f ≤ 25 Hz at frot = 0.1 Hz. However, regular block-wise gaps in data transmission
increased noise especially in the lower frequency range. Therefore, assessing those
vibrations is challenging and similarities or differences in fingerprints may be caused by
data impurities and not by physical principles.

4.2.2. Comparison of Different Blades (Same Turbine Type)

Next, the effect of different turbine blades was evaluated by comparing sensors
mounted at same positions but different blades. Each of Sensors S15, S10 and S29 was
mounted at one blade tip of Test Turbine 2 (see Figure 14, right). Fingerprints of Sensors
S29 and S15 on Blades A and B overlap, i.e., all identified vibrations in the mid to high
frequency range were detected by both sensors. In contrast, the fingerprint of Sensor S10
(Blade C) slightly deviates and an additional vibration was detected (see Vibration 3 from
the top for Sensor S10). A conclusion in favour of either a high sensitivity to measurement
noise or different physical properties of Blade C is difficult due to the small size of the
dataset. Besides the one additional vibration, characteristics of identified fingerprints
overlap and indicate that there is no significant difference in blade properties at the blade
tip for this test turbine. Again, joint vibrations in the lower part of spectrograms are not
considered in detail due to measurement noise.

4.2.3. Comparison of Different Blade Sides

In addition, fingerprints were analysed for sensors mounted on different sides of the
same blade, i.e., pressure side (S14) and suction side (S4) of Blade A of Test Turbine 2 (see
Figure 15). Sensors were mounted at the same radial position at the blade root and at
50% distance to the trailing edge. The comparison of fingerprints shows that fingerprints
overlap for most Type 2 vibrations. This indicates that the vibrational characteristic of the
blade is very similar on both sides of the blade in the root section.
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Figure 15. (Left) Fingerprint comparison for sensors on pressure side (S14) and suction side (S04) on
the same blade and radial position (Blade A, Test Turbine 2). (Right) Comparison for tip sensors on
Test Turbine 1 (S01) and Test Turbine 2 (S15). Solid lines represent vibrations of a single sensor, dotted
multi-coloured lines represent jointly occurring vibrations. Error bars show locations of associated
peaks with their length representing peak prominence.

Differences can be noted for two vibrations: An additional vibration was detected
by Sensor S14 (fifth from the top) and covers a relatively large bandwidth in comparison
to other vibrations in the same frequency range. This suggests that the vibration is not
well-localised and is either nearly hidden in noise or falsely detected due to increased noise
levels. In contrast, the second additional vibration detected by Sensor S4 (first from the
top) also shows a large bandwidth; however, it corresponds to other vibrations in the high
frequency range, e.g., see Sensors S27 and S29. Hence, monitoring both sides of the blade
is promising for evaluating changes in the stiffness of the blade and identifying weak spots
for damage detection and prevention.
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4.3. Analysis across Turbine Types

Finally, vibrational characteristics were compared for both test turbines by analysing
fingerprints of Sensors S1 and S15 on the blade tips of Turbines 1 and 2, respectively.
Fingerprints are displayed in Figure 15 for the joint frequency range 0–200 Hz and joint
operational range 0.1–0.22 Hz.

While fingerprints show similar properties for sensors on same blade type, e.g., a
comparison of blade tips of Test Turbine 2 (see Figure 14, right), results strongly deviate
for sensors mounted on the blade tips of different turbine types as displayed in Figure 15.
For all detected Type 2 vibrations, the increase in frequency with the rotation frequency
is significantly higher for Turbine 2 with shorter blade length (represented by Sensor S15,
70 m rotor diameter) than for Turbine 1 with longer blade length (represented by Sensor
S1, 63 m blade length). Accordingly, no overlap of any Type 2 vibrations was detected. A
detailed comparison for several sensor positions is not possible at the current state since
Test Turbine 1 was only equipped with two sensors at the blade tip.

5. Discussion

In this study, we propose an algorithm for analysing distributed vibration measure-
ments on wind turbine blades. By extracting so-called vibration-based fingerprints, domi-
nant vibrations could be extracted from linear-scale spectrograms for subsequent analysis.
The functioning of the algorithm was demonstrated by using the rotation frequency of
the turbine as a reference variable; however, the algorithm can be applied to almost any
environmental or operational condition.

Fingerprints were analysed across multiple positions on the blades by mounting
wireless sensors on two wind turbines. For the first turbine, two sensors at the blade tip
showed matching fingerprints with higher noise levels for the sensor mounted at larger
radial distance. The results demonstrate that the vibration-based fingerprint algorithm
successfully identifies eigenfrequencies, narrowband noise and vibrations strongly varying
with the rotation frequency. In addition, the algorithm considers inhomogeneous changes
so that partly overlapping vibrations can be extracted, e.g., eigenfrequencies and narrow-
band vibrations with low and high operational variability, respectively.

For the second turbine, fingerprints were extracted at seven positions along the blade
and showed different characteristics for sensors mounted at: (i) different radial positions;
and (ii) different sides of the blade. However, those results can only be treated as indications
since detection results were impaired by low averaging due to a small dataset and high
noise levels due to transmission errors.

Hence, the following challenges in vibration-based monitoring can be summarised:
First, data loss and (semi-)systematic transmission errors in wireless sensors decrease
detection accuracy and, consequently, need to be avoided. For example, the detection of
eigenfrequencies with small amplitudes may be impaired by increased noise levels. Second,
sufficient measurements need to be collected during varying operational conditions to
optimally separate reference variables, e.g., rotation frequency and temperature. Finally,
algorithm parameters may need to be adjusted across turbine types for best performance
but need to be fixed for turbines of the same type to enable comparability. Hence, it is
planned to continue the measurement campaign on the second test turbine and evaluate
fingerprints on larger datasets and with reference to further reference measurements, e.g.,
the blade temperature.

6. Conclusions

In wind energy, monitoring of structural health is essential to minimise blade loads
and increase the energy capture per turbine. Blade vibrations need to be studied both at
different positions along the blade and during operation of the turbine. Thereby, turbine
settings can be optimised to decrease vibrations at relevant positions along the blade.

In our approach, we measure vibrations at multiple positions along the blade by
mounting wireless sensors on the blade surface. We propose an algorithm for automatically
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extracting the vibrational characteristic of the blade from acceleration measurements. The
algorithm was tested on two test turbines, and the results demonstrate that the algorithm
successfully extracts eigenfrequencies, narrowband noise and vibrations. In addition, the
results indicate different vibrational characteristics of the blade at different sensor positions
but will need to be verified with further measurements. Overall, the advantages of the
vibration-based fingerprint algorithm can be characterised as follows:

• Automated extraction of dominant vibrations (e.g., eigenfrequencies or narrow-band
noise) from measured frequency spectra.

• Analysis with regard to operational or environmental conditions.
• Continuous monitoring to track changes in the vibrational characteristic during the

lifetime of the blade.
• Comparison of fingerprints for several positions along the blade, e.g., to optimise

sensor positions in further monitoring applications or to improve blade design.

These benefits were demonstrated by means of acceleration measurements on wind
turbine blades. In addition, the algorithm is promising for additional sensor types and
structural health monitoring applications, in which vibrations have to be analysed with
regard to varying environmental or operational conditions. For this, algorithm parameters
can easily be adapted to the properties of measurements. With respect to wind energy,
our algorithm contributes to gain a detailed understanding of blade vibrations during
operation of the turbine. By incorporating this knowledge into operational turbine settings
for existing turbines and blade design for next-generation turbines, blade vibrations can be
minimised, thereby reducing wear of the blades and preventing preliminary aging.

In future work, it is planned to mount sensors on further test turbines and analyse
vibration-based fingerprints across various turbine types. In addition, the fingerprint
algorithm shall be extended by alarm thresholds in case of non-optimal turbine settings.
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