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Abstract: Patients with the COVID-19 condition require frequent and accurate blood oxygen satura-
tion (SpO2) monitoring. The existing pulse oximeters, however, require contact-based measurement
using clips or otherwise fixed sensor units or need dedicated hardware which may cause incon-
venience and involve additional appointments with the patient. This study proposes a computer
vision-based system using a digital camera to measure SpO2 on the basis of the imaging photo-
plethysmography (iPPG) signal extracted from the human’s forehead without the need for restricting
the subject or physical contact. The proposed camera-based system decomposes the iPPG obtained
from the red and green channels into different signals with different frequencies using a signal
decomposition technique based on a complete Ensemble Empirical Mode Decomposition (EEMD)
technique and Independent Component Analysis (ICA) technique to obtain the optical properties
from these wavelengths and frequency channels. The proposed system is convenient, contactless,
safe and cost-effective. The preliminary results for 70 videos obtained from 14 subjects of different
ages and with different skin tones showed that the red and green wavelengths could be used to
estimate SpO2 with good agreement and low error ratio compared to the gold standard of pulse
oximetry (SA210) with a fixed measurement position.

Keywords: COVID-19; pandemic; non-contact SpO2 monitoring; SpO2; face detection; imaging
photoplethysmography (iPPG); complete Ensemble Empirical Mode Decomposition (EEMD); Inde-
pendent Component Analysis (ICA)

1. Introduction

Eighteen months after the emergence of COVID-19, the number of cases worldwide
amounts to more than 152 million people, with more than 3.2 million deaths. In Iraq, the
COVID-19 pandemic has infected more than 1 million people and caused more than 15,000
total deaths [1]. COVID-19 causes several symptoms, including fever, cough, fatigue and a
respiratory illness whereby the patient often suffers from shortness of breath which causes
a decrease in blood oxygen saturation level [2,3]. As cases rise, the terms ‘oxygen saturation’
and ‘pulse oximetry’ regarding COVID-19 infection have been extensively utilised. Pulse
oximetry is a non-invasive optical technique based on a photoplethysmography (PPG)
signal obtained from the wavelength illumination transmitted or reflected by a tissue
that is used to measure blood oxygen saturation (SpO2) level in both hospital and home
environments [4]. With the urgent need for this device in hospitals or during home
quarantine, it has become a significant concern for researchers to develop it and find
suitable alternatives at the lowest possible cost.

Extracting SpO2 is often essential to maintain patients’ health because of its primary
role in diagnosing respiratory diseases and in patient monitoring, especially during this
global pandemic. Pulse oximetry relies on direct contact, most commonly with a fingertip,
which restricts the patient and may become uncomfortable [5]. In addition, it may cause
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skin damage in subjects with a very fragile skin, especially infants in neonatal care, if it
is left attached to the skin for long periods [6]. Moreover, pulse oximetry devices do not
always fit well with people’s fingertips, depending on patient’s age and fingers’ size, which
may lead to distorted readings [7]. In addition, direct contact with the device exposes
people to the risk of infection and skin irritation [8,9]. Other reported limitations that may
introduce errors include motion artefacts, and are linked to anaemia, venous pulsations,
skin pigmentation, low perfusion, light interference and presence of nail polish [10–13].
Therefore, there is a need to monitor SpO2 when contact with the skin is either undesir-
able or unsafe. With the rapid growth of remote-imaging technologies, non-contact and
unobtrusive SpO2 monitoring has become feasible.

Colour-based techniques using cameras in a variety of forms (such as digital cameras,
thermal cameras, IR cameras, Webcams, drone and Kinect), sometimes called imaging
photoplethysmography (iPPG), have been widely used in healthcare for monitoring ap-
plications, especially to evaluate vital signs, including heart rate (HR) [14–17], heart rate
variability (HRV) [18–20], breathing rate (BR) [21–23] and blood pressure (BP) [24–26]. The
principle of iPPG is the non-contact monitoring of human cardiac synchronous variations
by detecting optical features passing through or reflecting from the epidermis captured
by a camera sensor. Experiments regarding such techniques, however, were performed
under extremely controlled conditions in terms of subject movement, region of interest
(ROI), distance and illumination conditions. The advantages and disadvantage of iPGG
have been intensively discussed [9,27,28].

Conventional contact pulse oximetry mainly utilises two separate wavelength illu-
minations, the red light wavelength (660–700 nm) and the infrared (IR) light wavelength
(800–950 nm) [29]. SpO2 can be determined as a linear function by considering the ‘ratio of
ratios’ (RRs) relationship between the PPG signal in the red over IR wavelengths [29,30].

The disadvantages of contact pulse oximetry have motivated research to use iPPG
based on camera sensors (visible light and/or IR cameras) as an alternative. For example,
the red–IR wavelengths were used in several studies [31–33] to predict SpO2. The possibility
of estimating SpO2 using only visible-light camera channels as reference wavelengths
instead of IR have been investigated in different studies. For example, the blue (B) and/or
red (R) wavelengths have been used instead of IR [8,34–37]. Another study by Alharbi
et al. [5] used the green (G) and orange wavelength illuminations as an alternative to IR to
extract SpO2. However, extracting SpO2 using visible light cameras presents additional
issues compared to standard pulse oximetry. First, an unclear ROI resulting from movement
may distort the reading. Second, using visible wavelengths means more interference with
the outer tissues and superficial vasculature than using the longer wavelengths of red and
IR. In addition, iPPG is prone to other artefacts, involving surface reflections, shadowing
and skin tone [8].

The principal contributions of the proposed system are: (1) the possibility of predicting
SpO2 based on RRs obtained from a visible-light camera using green wavelength instead of
IR while keeping red wavelength as the saturation-sensitive wavelength, (2) the extraction
of SpO2 directly from one camera using two channel components (R and G) and reducing
skin tone limitations resulting from the B channel, thus improving the accuracy of SpO2
measurement, (3) the automatic selection of the forehead region based on a skin detection
algorithm and the use of a signal decomposition technique based on complete EEMD [38]
and ICA [39] techniques to decompose iPPG signals into different frequency signals and to
remove noise artefacts embedded in the iPPG signal.

This paper is structured as follows: Section 2 introduces the principle of SpO2 mea-
surement; Section 3 presents the materials and methods, including research ethics consid-
erations, participants and experimental setup and an overview of the proposed system;
Section 4 reports and discusses the experimental results of SpO2 predictions with compari-
son to standard pulse oximetry readings, with statistical results; finally, Section 5 concludes
the work presented in this paper.
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2. Principle of SpO2 Measurement

The variation in blood concentration due to the amount of oxygen carried by
haemoglobin leads to a variation in reflected wavelength illumination captured by a photo-
diode or camera. This is because of the different light absorption properties of oxygenated
haemoglobin (HbO2) with respect to deoxygenated haemoglobin (Hb) that absorbs light at
different wavelengths. Under each illuminating wavelength, the absorption of Hb differs
from that of HbO2, and by measuring the absorption of the blood at both wavelengths, it is
possible to estimate the SpO2 level as follows [40]:

SpO2 (%) =
HbO2

Hb + HbO2
% (1)

According to the theory of light reflection and the Beer–Lambert law, measuring
SpO2 requires two different wavelengths (λ1 and λ2) to determine the maximum trans-
missive/reflective intensity of two-wavelength illuminations, which decays exponentially
with the absorption coefficient and the optical path length. The absorption ratio (Ka) can be
estimated from an RRs measurement as follows [5]:

Ka =
µ(λ1)

µ(λ2)
=

ACλ1 /DCλ1

ACλ2 /DCλ2

(2)

where µ is the absorption coefficient, AC is pulsatile absorption, and DC is non-pulsatile
absorption. To estimate the SpO2, the absorption coefficients of HbO2 and Hb should differ
significantly at one wavelength and be approximately equal at the other wavelength. The
absorption spectrum of HbO2 and Hb at different wavelength illuminations is shown in
Figure 1.
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Figure 1. Schematic diagram of the proposed measuring systems (adapted from [40]).

3. Materials and Methods
3.1. Research Ethics

The study adhered to the ethical standards of the Declaration of Helsinki (Ethical
principles for medical research involving human subjects) throughout the research pro-
cedures. Ethical clearance was granted by the Human Research Ethics Committee at the
University of South Australia (Protocol number: 0000034901). A written informed consent
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was obtained from all participants and their guardians to capture video recordings at
different times, and all participants were informed about the possibility of withdrawing
from the study at any time until data analysis. The confidentiality of the participants was
maintained by hiding their faces and preserving their privacy.

3.2. Participants and Experimental Setup

The participants in this study were 14, including 11 subjects (6 males and 5 females)
aged from 6 to 50 years and 3 male babies (<6 months old) with different skin tones. The
video data were recorded using a digital camera (Nikon D5300, Tokyo, Japan, 10 MP,
18–55 mm Lens) with a resolution of 1920 × 1080 and a frame rate of 60 fps. The distance
between the camera and the subject was approximately 1.5–2 m. All adults’ participants
were asked to be stationary while a video was captured. A pulse oximeter (Rossmax, Model
SA210, Taipei, Taiwan) was used as a reference for validation purposes. Figure 2 shows
video recordings from some participants using a Nikon D5300 digital camera with the
pulse oximeter attached.
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Figure 2. Video recordings from two participants using Nikon 3500 digital camera.

3.3. System Overview

In this section, we discuss the image and signal processing techniques that were de-
signed to extract the relevant wavelengths from the selected forehead signal and eliminate
noise artefacts embedded in the image spatial domain. These techniques include a face
detection method, a signal decomposition technique, the ICA technique, a spectral analysis
method and finding local maxima of the extracted signals. The overall system design of
the non-contact SpO2 prediction system is illustrated in Figure 3.

After converting the videos into frames, the skin detection algorithm based on skin
tone was applied on the first frame to select the ROI automatically. The algorithm returned
the bounding box of the skin portion, especially the face, and the ROI was detected
automatically based on skin tone. This process was repeated for all frames. In the skin
detection algorithm, the RGB image was converted to the LAB device-independent colour
space transformation, as this colour space is useful for image segmentation, as shown in
Figure 4a. The A (red-green) and B (yellow-blue) components of this colour space (see
Figure 4b,c) were chosen and then converted into binary images, as shown in Figure 4d,e.
Image binarisation was done based on the gray image threshold histogram method. After
that, binary images were multiplied and AND logic was performed on the image, as shown
in Figure 4f.
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As a result, a matrix was obtained having 1 and 0. One (1) indicated the presence
of skin. Thus, facial ROI could be detected automatically, followed by determining face
border points to select the forehead, as shown in Figure 3.

After that, the red and green channels could be represented by the brightness of the
colour images as follows: [41,42]:

R =
∫

EλSR dλ, (3)

G =
∫

EλSG dλ, (4)

where Eλ is the light spectrum, and SR and SG are the sensitivity functions of the red and
green channels at a wavelength of λ. The average time-series signal of the brightness pixel
values for the red and green channels can be expressed as [28,43]

iR (t) =
∑x,y∈ROI F (x, y)

|ROI| (5)

iG (t) =
∑x,y∈ROI F (x, y)

|ROI| (6)

where F(x, y) is the brightness pixel value at a location (x, y) from the red and green
channels, and |ROI| is the pixel area of the selected forehead ROI, where the average value
for each channel is in a range from 0 to 255. The average pixel signals from both channels
are illustrated in Figure 5.
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Figure 5. Average pixel signals for the red and green channels.

The next processing stage consisted in using a complete EEMD method [38]. This
decomposition technique is commonly used to remove noise artefacts from biomedical
signals [44–46]. Using this technique, iR (t) and iG (t) were composed into a set of sig-
nals with different frequency scales, called intrinsic mode functions (IMFs), as shown in
Figures 6 and 7.
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In order to estimate oxygen saturation, we used the low-frequency IMF5 from the
red channel and the high-frequency IMF2 from the green channel that is representative of
the infrared wavelength used in traditional pulse oximetry. Next, IMF5 (Red) and IMF2
(Green) were chosen as inputs to the ICA technique because they provide a low- and
high-frequency range with a clear peak as well as the best SpO2 estimation among other
IMFs. The schematic diagram of ICA is presented in Figure 8.
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ICA is a statistical signal processing technique for solving blind source separation
problems using high-order statistics [39] and is widely used to remove noise artefacts from
biomedical signals [47–49]. The input and output signals of ICA are shown in Figure 9.
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Figure 9. Signals based on the ICA technique.

Figure 9 (first row) shows 10 s of the raw IMFs signals obtained from EEMD that
contain the plethysmographic information. Figure 9 (second row) represents the observed
signals after the mixing process. Figure 9 (third row) shows the estimated signals after
applying a blind source separation. All power spectra of the raw IMFs signal and ICA
components contained visible peaks, but the power spectrum of the outputs of ICA (third
row) yielded the highest SNR and the closest estimate of SpO2. Since the output signals
of ICA (u1 and u2) have different wavelengths, Equation (2) based on RRs measurement
was used to obtain the absorption ratio (Ka). Now, the SpO2 level was calculated using the
following equation:

SpO2 = A− BKa (7)
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where A and B are empirical coefficients determined by a calibration, whose values were
selected as 100 and 20, respectively.

4. Experimental Results and Discussion

In this section, the performance of SpO2 was evaluated for 14 subjects, and the
obtained results are reported and compared with the results measured by the Rossmax
pulse oximeter. All subjects were healthy due to the difficulty of collecting data from
COVID-19 patients. For each participant, we recorded five videos at different times in
the stationary scenario. As a result, 14 subjects accounted for 70 video data samples in
total. Video processing was performed in a MATLAB environment due to its simplicity
that allowed easy application development.

First, to determine why the selected wavelengths from the output signals of ICA were
the best to estimate SpO2, a fast Fourier transform (FFT) was performed for spectrum
analysis of these signals and to obtain their spectrogram, as shown in Figure 10.
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The resulting images from Figure 10 clearly revealed distinct optical properties and the
wavelengths of the red and green signals resulting from applying ICA on the selected IMFs.

Second, to determine the correlation rate between the obtained SpO2 data using
the proposed method and the measured SpO2 data from the Rossmax pulse oximeter, a
correlation plots with some statistics, including Pearson’s correlation, Spearman’s Rho
correlation and Kendall tau correlation coefficient, was used, as shown in Figure 11.
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As shown in Figure 11, the slope of the correlation plot was −0.0914 with Pearson’s
correlation coefficient of −0.074, Spearman’s Rho correlation coefficient of −0.086 and
Kendall tau correlation coefficient of −0.058.

To determine the limits of agreement and error ratios between the measured and
the obtained SpO2 data, the Bland–Altman method [50], sum of square error (SSE), mean
absolute error (MAE) and root-mean-square error (RMSE) were used, as shown in Figure 12.
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Figure 12. The Bland–Altman and error ratios between the obtained SpO2 and the measured SpO2.

It is clear that the mean bias and the upper and lower limits of agreement between the
percentage of SpO2 readings were −0.57, +6.5, −7.6, respectively, with error ratios of 2.72,
3.02 and 3.62 for the SSE, MAE and RMSE, respectively. It can be observed that the results
from the proposed system agreed closely with those from a standard pulse oximetry device
and fell within the normal range of SpO2 values.

To evaluate the execution time of the proposed system, the MATLAB code was ex-
ecuted on a laptop with Intel(R) Core ™ i7-6700HQ, CPU of 2.6 GHz with 16 GBDDR4
(2400 MHz) under the Windows 10 operating system. The execution time to process a
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video (10 s) was 105 s, including 45 s for converting video to frames (600 frames), 55 s for
ROI selection and 5 s for SpO2 estimation.

This study has a number of limitations that might need to be overcome to achieve
its practical implementation. Video in normal environments is subject to movement and
unknown lighting conditions. The amount of direct and ambient light available outdoors
or in domestic environments cannot be known when the device design is done, possibly
leading to dim and noisy images. The background behind subjects is also uncontrolled,
and often affects the video quality of the subject’s face due to automatic gain controls
and automatic white balance. These difficulties can normally be managed by the digital
interface for camera controls in dedicated computer vision cameras, but for general-purpose
video cameras, many of these parameters cannot be disabled.

This study limited itself to the consideration of stationary subjects, yet in many
instances, children and some adults simply cannot be forced to remain still. For some types
of movement, it may be possible to stabilise the images using software or gimbal-mounted
cameras. For other motions, particularly when the subject changes the angle of their heads,
stabilisation might not be effective.

Although the image sequences and processing appeared to take a long time, the
Matlab environment is not representative of the speed of a dedicated application. A
fielded application of the algorithm would process each frame as it arrives, segmenting
and processing as quickly as possible. It is likely that an implementation in the C++
programming language would run in real time. Further validation of the results is required.
The sample size was very small, even though the theory supports the operation of the
system and validated the results that were obtained. A diversity of individuals and skin
tones would be desirable, as would a diversity of SpO2 levels amongst the subjects.

5. Conclusions

Currently, pulse oximetry relies on contact-based clips or otherwise fixed sensor units,
which may cause discomfort, infection or adverse reactions in patients with sensitive skin.
There is a need for a tool that will help people to remotely measure their SpO2, thus
decreasing the risk of infection during the pandemic and afterwards. This study presents
a new camera-based system to estimate SpO2 using visible-light wavelengths based on
RRs measurement. Based on the preliminary results, the proposed system shows similar
readings as those obtained by the standard pulse oximeter commonly used; thus, it holds
promise as a tool for predicting SpO2 with remote-imaging technologies in a way that is
cost-effective and highly available.
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