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Abstract: Background: COVID-19 represents a severe inflammatory condition. Our work was
designed to monitor the longitudinal dynamics of the metabolomic response of blood plasma and
to reveal presumable discrimination in patients with positive and negative outcomes of COVID-19
respiratory symptoms. Methods: Blood plasma from patients, divided into subgroups with positive
(survivors) and negative (worsening condition, non-survivors) outcomes, on Days 1, 3, and 7 after
admission to hospital, was measured by NMR spectroscopy. Results: We observed changes in energy
metabolism in both groups of COVID-19 patients; initial hyperglycaemia, indicating lowered glucose
utilisation, was balanced with increased production of 3-hydroxybutyrate as an alternative energy
source and accompanied by accelerated protein catabolism manifested by an increase in BCAA
levels. These changes were normalised in patients with positive outcome by the seventh day, but still
persisted one week after hospitalisation in patients with negative outcome. The initially decreased
glutamine plasma level normalised faster in patients with positive outcome. Patients with negative
outcome showed a more pronounced Phe/Tyr ratio, which is related to exacerbated and generalised
inflammatory processes. Almost ideal discrimination from controls was proved. Conclusions:
Distinct metabolomic responses to severe inflammation initiated by SARS-CoV-2 infection may serve
towards complementary personalised pharmacological and nutritional support to improve patient
outcomes.

Keywords: NMR metabolomics; human plasma; COVID-19

1. Introduction

COVID-19, which develops after SARS-CoV-2 infection, represents a severe inflamma-
tory condition. Over the past two decades, a close link between metabolism and immunity
has emerged [1,2]. The immune reaction in severe inflammation is intimately associated
with a dependency on amino acids included in the proteosynthesis and specific metabolism
of immunocompetent cells [3]. In addition, the immune response of the organism is also
closely related to glucose energetical metabolism [1,2,4–6]. Synergic interactions between
metabolism and immune processes serve as a tool to monitor the particular state of an
organism relating to immunological response via metabolomics analysis. The increasing
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number of studies confirms the great potential of the metabolomic approach in the evalua-
tion of COVID-19 disease, its course, and its outcome [7–10]. A comprehensive metanalysis
of COVID-19 patients showed several key metabolic characteristics for disease progres-
sion and clinical outcome [11]. Untargeted metabolomics on patients’ serum via mass
spectroscopy revealed potential prognostic markers of both severity and outcome [10,12].
Interestingly, metabolomics may also predict antiviral drug efficacy in COVID-19 [13], and
metabolomic analysis of patients’ exhaled air can identify patients with COVID-19 in acute
respiratory distress syndrome. NMR-based metabolomic profiling of blood samples has
been already used to monitor COVID-19 patients’ response to tocilizumab [14].

We focused herein on the dynamics of metabolomic changes in blood plasma at
three successive time points during the first week of COVID-19 patient hospitalisation,
with patients divided into two groups: (i) those with a positive outcome (survivors) and
(ii) those with a negative outcome (non-survivors or obviously worsening condition).
Hospitalised COVID-19 patients with clinically proven moderate-to-severe pneumonia
with acute hypoxemic respiratory failure were included. We were interested to explore the
metabolic changes in blood plasma that could be associated with immune cell response, as
well as with energy metabolism, in comparison to control subjects representing a sample of
the normal population, without any acute or chronic inflammatory or pulmonary diseases.
Secondarily, it was of interest as to whether there are metabolomic features in blood plasma
that could predict patient outcome, at which time point are they recognisable, and to what
extent. Complementary to testing significant changes, we also employed a discriminatory
algorithm in the search for metabolites that could serve alone or in combination as plasma
biomarkers.

2. Materials and Methods
2.1. Subjects

Altogether, 53 patients with PCR-confirmed SARS-CoV-2 were included in the study.
Patients were admitted to the Clinic of Pneumology and Phthisiology, Martin University
Hospital, Slovakia, due to chest X-ray/CT signs of bilateral pneumonia and acute hypox-
emic respiratory failure requiring oxygen supplementation (oxygen saturation at <94%
in room air). In general, patients presented with typical symptoms of COVID-19: fever,
cough, dyspnoea, weakness, fatigue, myalgia and arthralgia, loss of smell and taste, and
loss of appetite. Some patients suffered from gastrointestinal symptoms (diarrhoea) as
well. Laboratory results on admission showed increased inflammatory markers (CRP, IL-6,
ferritin, fibrinogen) and hypoxemic respiratory failure, and changes in differential blood
count included leucocytosis, lymphopenia, neutrophilia, and eosinopenia in most patients.

During the study, patients received either standard hospital enteral nutrition or a
diabetic diet (patients with diabetes). Patients incapable of oral food intake received the
equivalent for enteral nutrition via nasogastric tube. None of the included patients had
percutaneous endoscopic gastrostomy/jejunostomy. Neither nutritional supplementation
nor parenteral nutrition was administered. When necessary, but only sporadically, patients
received crystalloid solutions to treat dehydration or mineral imbalance.

Oxygen was administered via nasal cannula, face mask, or face mask with a rebreath-
ing bag with flow adjusted to achieve target oxygen saturation of 94%. Seven patients
required high-flow nasal oxygen therapy (HFNO), and in case of hypoxemic–hypercapnic
respiratory failure, three received non-invasive ventilation (NIV). In patients with severe
and critical clinical condition requiring a very high flow of oxygen, saturation of 90% was
considered sufficient. None of the included patients received mechanical ventilation during
sample collection; however, two patients were later intubated and mechanically ventilated.
Apart from oxygen supply, patients were treated with dexamethasone (all patients, dose
of 6 mg/day for a duration of 10 days); antivirals (remdesivir or favipiravir if eligible
according to local guidelines—duration of symptoms less than 7 days), n = 17; antibiotics
(in case of bacterial superinfection or its suspicion), n = 53; LMWH, n = 49; vitamins:
vitamin C, n = 17, vitamin D, n = 19; zinc, n = 14; and betaglucans, n = 44.
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Patients were divided into two subgroups: Group A (n = 34) contained patients
with a positive outcome (survivors), while Group B (n = 19) contained patients with a
negative outcome, i.e., patients with a worsening condition during the sampling period, or
those who died (10 were dead at the time of manuscript preparation). All known patient
comorbidities at the time of study enrolment are listed in Table 1. To assess the patients’
condition, the determining criterion was the need for increasing/decreasing oxygen flow
or switch to HFNO, NIV, or mechanical ventilation to achieve target oxygen saturation,
together with clinical evaluation and known clinical outcome. Due to various causes such
as hospital discharge before Day 7, death, or even patient disagreement with other blood
collections, the number of samples on Day 3 or Day 7 is slightly reduced. All details about
subjects included in the study are summarised in Table 1.

Table 1. Characteristics of patients included in the study.

Parameter: Median (IQR) Group A Group B

size 34 19
age, years 65 (21) 71 (16)

gender 15 female 8 female
number of samples Day 1 34 19
number of samples Day 3 31 16
number of samples Day 7 26 10

oxygen 34 19
HFNO - 7

NIV 1 * 2
smoker 2 2

non smoker 23 10
ex-smoker 5 5

smoking not known 4 2
chronic obstructive
pulmonary disease 2 4

obesity 11 11
hypertension 22 13

asthma 2 -
kidney disease 4 4

ischemic heart disease 9 9
diabetes 14 7
cancer 1 2

cancer history 1 3
thyroid disease 3 1
liver cirrhosis - 1

rheumatoid arthritis 1 3
stroke history 1 1
acute stroke 1 -
sarcodiosis 1 -

* Patient with chronic hypoxemic–hypercapnic respiratory failure due to COPD on home NIV (non-invasive
ventilation) with LTOT (long-term oxygen therapy).

As controls, plasma samples from age- and gender-matched subjects without any
acute or chronic inflammatory diseases, any type of respiratory failure, or any pulmonary
diseases, regardless of common highly age-related conditions (hypertensia, obesity, and
others in the representative sample of the population) were used, representing a ‘sample of
the normal population’, collected in a fasting state without any additional criteria. Included
were 55 subjects: median age 64, IQR 18, female n = 25.

2.2. Sample Preparation

Blood was collected in EDTA-coated tubes, in the fasting state, after the first night
in the hospital (Day 1) and then 2 and 6 days later (Day 3 and Day 7). Within 1 h after
collection, blood was centrifuged to plasma at 4 ◦C, at 2000 rpm, for 20 min and stored
at −80 ◦C until use. Plasma denaturation was carried out according to Gowda et al. [15]:
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600 µL of methanol was added to 300 µL of blood plasma. The mixture was briefly
vortexed and frozen at −24 ◦C for 20 min. After subsequent centrifugation at 14,000 rpm
for 15 min, 700 µL of supernatant was taken, dried out, and stored at −24 ◦C. Before NMR
measurement, the dried matter was mixed with 100 µL of stock solution (consisting of:
phosphate buffer 200 mM pH 7.4 and 0.30 mM TSP-d4 (trimethylsilylpropionic acid -d4)
as a chemical shift reference in deuterated water) and 500 µL of deuterated water. Finally,
550 µL of the final mixture was transferred into a 5 mm NMR tube.

2.3. NMR Measurement

NMR data were acquired on a 600 MHz Avance III NMR spectrometer from Bruker,
Germany, equipped with a TCI CryoProbe at T = 310 K. Initial settings (basal shimming,
receiver gain, and water suppression frequency) were performed on an independent sample
and adopted for measurements. After preparation, samples were stored in a Sample Jet
automatic machine, cooled at approximately 5 ◦C. Before measurement, each sample was
preheated to 310 K for 5 min. An exponential noise filter was used to introduce 0.3 Hz line
broadening before Fourier transform. All data were zero-filled. Samples were randomly
ordered for acquisition.

We modified standard profiling protocols from Bruker as follows: denaturised plasma:
noesy with presaturation (noesygppr1d): FID size 64k, dummy scans 4, number of scans
64, spectral width 20.4750 ppm; profiling cpmg (cpmgpr1d, L4 = 126, d20 = 3ms): number
of scans 64, spectral width 20.4750 ppm. For 15 randomly chosen samples, 2D spectra were
measured: cosy with presaturation (cosygpprqf): FID size 4k, dummy scans 8, number of
scans 16, spectral width 16.0125 ppm; homonuclear J-resolved (jresgpprqf): FID size 8k,
dummy scans 16, number of scans 32. Samples were randomly ordered for acquisition. For
denaturised plasma samples, we kept the half-width of the TSP-d4 signal under 1.0 Hz. All
experiments were conducted with a relaxation delay of 4 s.

2.4. Data Processing

Spectra were solved using the human metabolomic database (www.hmda.ca, accessed
on 23 March 2021) [16], chenomics software free trial version, internal metabolite database,
and research in the metabolomic literature [15]. The proton NMR chemical shifts are
reported relative to the TSP-d4 signal assigned a chemical shift of 0.000 ppm. The peak
multiplicities were confirmed in J-resolved spectra, and homonuclear cross peaks were
confirmed in 2D cosy spectra. Peak assignments are listed in Table 2.

All spectra were binned to bins of size 0.001 ppm. No normalisation method was
applied to the data. Then, the intensities of selected bins were summed only for spectra
subregions with only one metabolite assigned or minimally affected by other co-metabolites.
Metabolites showing weak intensive peaks or strong peak overlap were excluded from
the evaluation. The obtained values were used as relative concentrations of particular
metabolites.

Besides principal component analysis (PCA) and partial least squares discriminant
analysis (PLS-DA), we applied the random forest (RF) discriminatory algorithm on the data.
We ran nonparametric ANOVA (Kruskal–Wallis) and the nonparametric Mann–Whitney
U-test to test significance. For data processing and analyses, we used the online tool
metaboanalyst 5.0 [17], Origin Pro 2019, PASW Statistics software, and Matlab 2018b.

www.hmda.ca
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Table 2. Chemical shifts (in ppm), J couplings (in Hz), and multiplicities (s, singlet; d, doublet; t,
triplet; q, quartet; m, multiplet; dd, doublet of doublets; dq, doublet of quartets) for the pool of
metabolites identified in blood plasma. Signals marked with # were not suitable for quantitative
analyses.

Metabolite NMR Peak Assignment, Confirmed by Jres and Cosy

lactate 1.33 (d; J = 7.0), 4.12 (q; J = 7.0)
glutamine 2.12 (m), 2.15 (m), 2.44 (m), 2.48 (m), 3.77 (dd)
isoleucine 0.94 (t; J = 7.5), 1.01 (d; J = 7.0), 3.68 (d; J = 4.2)

leucine 0.96 (d; J = 6.2), 0.97 (d; J = 6.1), 1.68 (m), 1.72 (m),
1.75(m)

phenylalanine 3.13 (m), 3.28 (m), 7.34 (d; J = 7.5), 7.38 (t; J = 7.4), 7.44 (t)

tyrosine 3.05 (dd), 3.20 (dd), 3.93 (dd), 6.91 (d; J = 8.5),
7.20 (d; J = 8.5)

valine 0.99 (d; J = 7.1), 1.04 (d; J = 7.1), 2.27 (m), 3.61 (d; J = 4.4)
pyruvate 2.38 (s)

citrate 2.54 (d), 2.67 (d)
acetate 1.92 (s)
alanine 1.48 (d; J = 7.30), 3.78 (q)

glucose 3.23 (m), 3.40 (m), 3.46 (m), 3.52 (dd), 3.78 (m), 3.82 (m),
3.89 (dd), 4.64 (d), 5.23 (d)

3-hydroxybutyrate 1.20 (d; J = 6.23 Hz), 2.31 (m), 2.41 (m), 4.16 (m)
creatine 3.04 (s), 3.94 (s)
lysine 1.33 (d), 3.58 (d; J = 4.9), 4.25 (m)

2-oxoisocapronate (2-ketoleucine) 0.94 (d; J = 6.6), 2.11 (m), 2.61 (d; J = 7.0)
α-ketoisovalerate (2-ketovaline) 1.11 (d; J = 7.1), 3.01(dq)

3-methyl-2-oxo-valerate
(2-ketoisoleucine) 0.90 (t; J = 7.5), 1.10 (d; J = 6.7)

lipoprotein fraction 0.82–0.93 (m), 1.20–1.37 (m)
# creatinine 3.05 (s), 4.07 (s)
# histidine 7.07 (s), 7.80 (s)

# proline 1.46 (m), 1.50 (m), 1.73 (m), 1.89 (m), 1.93 (m),
3.03 (t; J = 7.6)

# threonine 1.34 (d), 3.56 (d;J = 4.9),4.26 (m)
# tryptophan 7.21 (t), 7.30 (t), 7.33 (s), 7.56 (d), 7.74 (d; J = 8.0)

3. Results

Altogether, 24 metabolites were identified in denatured plasma in both patients and
healthy subjects, where the signals from 19 compounds were sufficient for quantitative
evaluation (Table 2). Further in the text, we use the trivial names of 2-ketoacids derived from
leucine, isoleucine, and valine (IUPAC names are in Table 2). Besides molecular metabolites,
we also evaluated the lipoprotein fraction, which, as described by Liu et al., contains
very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), and high-density
lipoproteins (HDL), including up to one-third of triacylglycerides [18]. For multivariate
analyses, we used the relative concentrations of plasma metabolites (expressed as the
integral of a particular spectral region) as an input in order to target biologically informative
value. We avoided feeding the algorithms with binned NMR spectra as is common in
metabolomic studies, since there may be regions of NMR spectra marked as important that
are not straightforward and unambiguously related to biological relevance.

Firstly, the data of all patients were analysed (Group A and Group B together) on
Day 1 against controls by PCA and PLS-DA (Figure 1). In contrast to patients, controls
were relatively clustered together. The loading values were the highest for glucose, 3-
hydroxybutyrate, and leucine in PC1 and alanine, lactate, and glutamine in PC2. The
situation was very similar after the PLS-DA run. The 10-fold cross-validated PLS-DA
algorithm performed with accuracy of 0.954, R2 of 0.7926, and Q2 of 0.6749 for eight compo-
nents. The variables with the highest VIP scores were: glucose, 3-hydroxybutyrate, alanine,
leucine, valine, and glutamine (performance measured in accuracy). The incorporation of
additional variables did not improve the performance.
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Figure 1. PCA (left) and PLD-DA analyses (right) of the system: patients in the hospital on Day
1 versus controls; algorithms were fed by the relative concentrations of plasma metabolites, and
analyses were run in metaboanalyst [16].

The PCA and PLS-DA analyses of the ternary system comprising Group A and
Group B on Day 1 and the controls showed a very similar result to those for the previous
binary system, where the patients were clustered together relatively well and patients
were scattered among themselves without obvious differentiation between patient groups
(results shown in Figure S1 in the supplement). PLS-DA analyses were further used to
differentiate patient data on a given day. The results from these analyses can be summarised
as follows (the best result, performance measured in accuracy): Day 1, accuracy of 0.73, R2
of 0.138 (one component); Day 3, accuracy of 0.76, R2 of 0.3905 (five components); and Day
7, accuracy of 0.72, R2 of 0.387 (four components). In all cases, Q2 values were negative,
which suggests an overfitted model.

In the next step, we employed the random forest (RF) discriminatory algorithm to
obtain a more realistic estimation of the discriminatory power of the system since RF is
relatively robust to overfitting and outliers [19]. The RF algorithm used included cross-
validation via balanced subsampling. It worked with two-thirds of the data for training
and the rest for testing for regression, and about 70% of the data for training and the rest for
testing during classification to overcome the negative aspects of training and testing on the
same data. This approach partially substitutes the validation on an independent data set.
As input variables also for this algorithm, we used relative concentrations of metabolites in
plasma expressed by the spectral integrals of particular NMR regions. In the case of highly
correlating predictors, RF may label some of them as unimportant, so RF was launched
10 times. Within the RF re-runs, metabolites slightly permuted in the importance order.
As an output from these analyses, receiver operating characteristic curve (ROC) curves
were created. The ROC is defined only for binary systems, and it is created by plotting the
true-positive rate against the false-positive rate at various threshold settings. An important
output is the area under the curve (AUC), which represents ranking quality. The AUC of a
ranking is 1 (the maximum AUC value) when all samples are truly assigned into the groups.
An AUC of 0.5 is equivalent to randomly classifying subjects as either positive or negative
(i.e., the classifier is of no practical utility) [20]. We ran RF discriminatory analyses for the
systems of patients versus controls, Group A versus controls, Group B versus controls,
and Group A versus Group B on Days 1, 3, and 7. The results of RF classifications are
summarised in Table 3.
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Table 3. Outputs from random forest discriminatory analyses for selected systems.

System OOB Error
(5 Variables) AUC Number of

Variables
Metabolites in

Importance Order

All Patients Day
1/Controls 3/108 0.984

0.995
2
5

3-hydroxybutyrate,
phenylalanine,

Phe/Tyr ratio, acetate,
glucose

Group A Day
1/Controls 1/89 0.977

0.996
2
5

3-hydroxybutyrate,
phenylalanine,

glucose, Phe/Tyr ratio,
acetate,

Group B Day
1/Controls 1/74 0.972

0.991
2
5

phenylalanine,
3-hydroxybutyrate,

Phe/Tyr ratio, acetate,
glutamine or glucose

Group A/Group
B Day1 - 0.568

0.674
2
5 AUC value too low

Group A/Group
B Day 3 - 0.754

0.783
2
5

alanine, lysine,
glutamine, Phe/Tyr
ratio, phenylalanine

Group A/Group
B Day 7 - 0.487

0.503
2
5 AUC value too low

For significance testing among relative concentrations of plasma metabolites in pa-
tients against controls and patients’ dynamic data, we used nonparametric ANOVA, known
as the Kruskal–Wallis test. Due to the relatively low sample sizes, we continued with non-
parametric testing via the Mann–Whitney U-test for the combination of binary data sets.
The details are listed in Table 4. The Phe/Tyr ratio was also used as one variable. As the
threshold to claim significance, the p-value was set to 0.05, as established. In the discus-
sion, we did not strictly adhere to p-values, but we focused rather on the data behaviour
visualised in the box plots.

Table 4. Results from statistical tests; p-value derived from nonparametric ANOVA and Mann–Whitney U-test.

Metabolite Nonparametric ANOVA
(Kruskal–Wallis)

Mann–Whitney U-test,
Only Significant Changes (p < 0.05) are Listed,

Arrows Indicate the Direction of Change

chi.
Squared p-Value FDR p-Value

Adjusted

Group A
Against
Controls

Group B
Against
Controls

Group A
Against
GroupB

glucose 80 3.9 × 10−15 1.4 × 10−14 Day1↑, Day3↑ Day1↑, Day3↑,
Day7↑

3-OH-butyrate 130 1.1 × 10−24 1.2 × 10−23 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑ Day7, A < B

citrate 77 1.2 × 10−14 3.2 × 10−14 Day1↓, Day3↓,
Day7↓

Day1↓, Day3↓,
Day7↓

leucine 39 7.6 × 10−7 1.5 × 10−6 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑

isoleucine 31 2.8 × 10−5 4.9 × 10−5 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑

valine 13 0.040 0.047 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑

ketoleucine 25 3.7 × 10−4 5.5 × 10−4 Day1↑, Day3↓,
Day7↓ Day1, A > B
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Table 4. Cont.

Metabolite Nonparametric ANOVA
(Kruskal–Wallis)

Mann–Whitney U-test,
Only Significant Changes (p < 0.05) are Listed,

Arrows Indicate the Direction of Change

chi.
Squared p-Value FDR p-Value

Adjusted

Group A
Against
Controls

Group B
Against
Controls

Group A
Against
GroupB

ketoisoleucine 19 0.0042 0.0059 Day1↑, Day3↓,
Day7↓

ketovaline 17 0.0094 0.012 Day1↑, Day3↓,
Day7↓ Day1, A > B

creatine 64 8.5 × 10−12 2.0 × 10−11 Day3↑, Day7↑ Day3↑, Day7↑

alanine 49 8.5 × 10−9 1.8 × 10−8 Day1↓ Day1↓, Day3↓,
Day7↓

Day3, Day7, A
> B

glutamine 29 6.1 × 10−5 9.8 × 10−5 Day1↓ Day1↓,Day3↓

phenylalanine 120 1.2 × 10−23 8.5 × 10−23 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑

Phe/Tyr ratio 85 3.3 × 10−16 1.4 × 10−15 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑ Day1, A < B

lipoproteins 150 7.8 × 10−31 1.6 × 10−29 Day1↓, Day3↓,
Day7↓

Day1↓, Day3↓,
Day7↓

acetate 100. 2.1 × 10−19 1.1 × 10−18 Day1↓, Day3↓,
Day7↓

Day1↓, Day3↓,
Day7↓

lysine 79 6.6 × 10−15 2.0 × 10−14 Day1↑, Day3↑,
Day7↑ Day7↑

4. Discussion
4.1. Discriminatory Analyses

PCA and PLS-DA analyses are well-established tools when evaluating multidimen-
sional data. PCA analysis serves rather as a 2D visualisation of data sets indicating group
proximity. PLS-DA includes a discriminatory algorithm and may be used also to differenti-
ate among groups. PCA analysis of the patient data collected on Day 1 against controls
showed controls clustered together, whilst patients were scattered in 2D space. This sug-
gests the great data variability in patient samples, which was more or less confirmed
by PLS-DA. As PLS-DA is known to overfit the data [19], for biomarker discovery, we
employed a cross-validated RF algorithm. As an output, the ROC curve was created. For
the system of patients on Day 1 and controls, RF performed very well with an AUC of
0.995 for five variables with an out-of-bag error of 3/108. The variables Phe/Tyr ratio,
phenylalanine, 3-hydroxybutyrate, acetate, and glucose were of the highest importance.
The corresponding ROC curve is shown in Figure 2.

Very similar performance—almost ideal discrimination—was achieved for the sys-
tems of Group A on Day 1 against controls and Group B on Day 1 against controls (details
in Table 3). The five metabolites of the highest importance were identical to those be-
fore: phenylalanine, Phe/Tyr ratio, acetate, 3-hydroxybutyrate, glucose, permuted with
glutamine, and proline.

The possibility to discriminate between acute COVID-19 patients and healthy controls
has been proven in previous studies [7,10,11]. These studies covered another spectrum
of metabolites evaluated by different analytical tools as NMR spectroscopy. Here, we
also note that metabolites that were marked as the most important in the discrimination
algorithm may not be specific to COVID-19 disease, since as discussed in the next text, they
are generally related to inflammation, immune response, and energy metabolism.
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Figure 2. ROC curve with AUC values for systems of COVID-19 patients on Day 1 vs. controls,
determined by random forest algorithm with relative concentrations of metabolites in blood plasma
as input variables; analysis run in metaboanalyst [16].

It was of interest to see whether there are any metabolites in blood plasma that could
serve as potential predictors of disease progress/outcome. We ran RF discrimination for
binary systems of patients’ groups on collection days. Here the performance was weaker,
with AUC values of 0.67 on Day 1 and 0.78 on Day 3 for common, permuting variables:
Phe/Tyr ratio, alanine, lysine, glutamine, leucine, and phenylalanine. A further increase in
the number of variables did not improve the performance of the discrimination analysis.
For the data set of Group A versus Group B on Day 7, the system did not show any
discriminatory potential, with an AUC value of 0.503, in other words, the classification was
not relevant. Based on this, the biochemical changes observed were rather indicative, not
defining unambiguous biomarkers for patient outcome.

4.2. Metabolomic Changes

Patients hospitalised due to a severe course of COVID-19 showed a significantly
increased glucose level on Day 1. All patients were equally treated over the whole time
period with dexamethasone, which is known to impair glucose metabolism [21] via the
stimulation of gluconeogenesis from amino acids released from muscles, and even one
dose of 10 mg dexamethasone may lead to a temporarily increased blood glucose level [22].
The hyperglycaemia in COVID-19 patients treated with dexamethasone is presumably
caused by ‘triple insult’: dexamethasone-induced impaired glucose metabolism, COVID-
19-induced insulin resistance, and COVID-19 impaired insulin production [23]. Prolonged
uncontrolled hyperglycaemia, regardless of diabetes mellitus, seems to be important in the
pathogenesis of COVID-19 [24]. In our study, the hyperglycaemia normalised in Group
A, but not in patients with unfavourable outcome included in Group B (Figure 3). This
observed result is in line with general knowledge that hyperglycaemia is an unfavourable
state in many clinical conditions, i.a., in severe inflammation [25], and is one of the im-
portant risk factors of COVID-19 disease progression [26]. The plasma levels of glycolytic
products pyruvate and, eventually, lactate were not significantly changed in any group of
patients. The relative plasma level of alanine, a metabolite that contributes significantly to
liver gluconeogenesis, was decreased on Day 1 in both groups but normalised in patients
with a positive outcome on Days 3 and 7; however, it stayed decreased in Group B (figure
not shown).
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In the blood plasma of COVID-19 patients, we observed a significantly increased level
of 3-hydroxybutyrate, a ketone bodies representative. Besides serving as an energy source
for the brain, heart, and skeletal muscle, ketone bodies play pivotal roles as signalling me-
diators, drivers of protein post-translational modification, and modulators of inflammation
and oxidative stress [27]. 3-hydroxybutyrate exerts a predominantly anti-inflammatory
response [28–30], but can also be pro-inflammatory [31]. A recent study on COVID-19
patients already showed dysbalance in ketone bodies [32]. In our study, the initially in-
creased plasma level of 3-hydroxybutyrate decreased over Day 3 and Day 7 in Group A,
but it stayed at an elevated level in Group B on the third and seventh days (Figure 3).
Interestingly, the glucose level in this patient group also remained high. As we did not
analyse the level of C peptide as a representative of the insulin level, we can hypothesise
that the proposed glucose resistance or insufficient glucose utilisation is compensated
by ketone bodies. The increase in the 3-hydroxybutyrate level in COVID-19 patients is
accompanied by a decreased amount of lipoprotein fraction in blood plasma in patients
suffering from COVID-19, containing up to one-third of triacylglycerides [18] as one of the
additional substrates for ketone body synthesis (boxplot not shown).

We observed a decreased citrate level in the blood plasma in COVID-19 patients,
suggesting alteration of the TCA cycle (Figure 3), similar to the results of a recent study by
Pang et al. [11]. Besides including α-ketoglutarate, an essential substrate for endogenous
glutamate/glutamine synthesis, there is evidence that TCA cycle intermediates also have
an epigenetic impact by influencing DNA and histone methylation, including immune
cells [33]. Further, the metabolite creatine, a part of muscle energy metabolism, was
significantly increased in the blood plasma of COVID-19 patients compared with controls
in both groups, rising with the time of hospitalisation (Figure 3). Patients forced to lie in
bed for a sustained period lack spontaneous movement utilising muscle energy, which is
probably the reason for the increase of plasma creatine.

BCAAs (branched chain amino acids), including leucine, isoleucine, and valine, share
a common pattern of extrahepatic metabolism, and their relative plasma concentrations
were represented similarly in both groups of patients. In Figure 3, we show only the
dynamics of leucine since isoleucine and valine behaved almost identically. As a repre-
sentative of ketoacids derived from BCAAs, we show only the course of ketoleucine, as
the dynamics was repeated for the other two ketoacids: ketovaline and ketoisoleucine.
Increased leucine in COVID-19 patients was reported by Dierckx et al. [34]. There is an
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established association between elevated circulating BCAAs and their deleterious effects,
as their increased concentration may promote oxidative stress and inflammation [35], hav-
ing also a neurological impact [36,37]. By monitoring dynamic changes for two different
patient subgroups, we observed that initially increased plasma levels of BCAAs in both
groups slowly decreased in Group A but not in Group B (Figure 3). Interestingly, the mean
values of BCAAs in Group B obviously follow the course of the plasma glucose levels. The
increase of BCAAs at time of impaired glycolysis and increased use of fatty acids were very
recently discussed in a comprehensive review by Holecek [38], showing the important role
of BCAAs in energy metabolism.

Taking the above discussed results together, severe inflammation induced by COVID-
19 caused changes in energy metabolism, where we observed increased blood glucose
that implies lowered glucose utilisation (the influence of dexamethasone treatment cannot
be omitted). In balance, the body, including immune cells, uses ketone bodies (observed
increased 3-hydroxybutyrate together with decreased triacylglycerides) as an energy source,
and, alternatively also amino acids released by accelerated protein catabolism (increased
levels of essential amino acids BCAAs). Interestingly, although all patients in both groups
received the dexamethasone treatment during the follow-up period, the above mentioned
changes normalised only in patients with a positive outcome; however, they persisted in
patients with a negative outcome (more than half of them had died at the time of writing).
This course was independent of the patients’ diet (Figure S2 in Supplement).

In acute inflammatory conditions, the demand on glutamine increases [39] which
may lead to its plasma decrease if the endogenous synthesis of glutamine does not fulfil
the requirements of the body [39]. Glutamine serves besides others as a fuel for immune
cells—lymphocytes, neutrophils, and macrophages [39–42]—and plays a crucial role in
cytokine production [42]. In our study, we noticed a decrease in the glutamine plasma
level in COVID-19 patients on Day 1, observed to a lower extent in Group A, which is
in accordance with another study where glutamine deficiency may have contributed to
disease severity [43]. The glutamine plasma level normalised in both groups, but this was
faster in Group A (Figure 4). On Day 7, both groups of patients showed plasma glutamine
levels very similar to the level in control subjects, where probably the balance between
glutamine production and utilisation had stabilised (Figure 4). Accelerated spontaneous
stabilisation of glutamine levels in patients with better outcome supports the results from
another study, where the administration of glutamine in the early period of infection
suggested a shortened hospital stay and decreased the need for ICU stay [40].

Another significant metabolic parameter associated with immune activation and
inflammation is the Phe/Tyr ratio [44,45]. Perturbations in phenylalanine and tyrosine
biosynthesis were recognised in SARS-CoV-2 patients by Barberis et al. [46]. In our study,
both groups showed initially increased plasma phenylalanine levels, as observed in another
study [34], and the level tended to decrease in Group A but not in Group B (Figure 4).
The plasma tyrosine level did not show any substantial change. The Phe/Tyr ratio was
calculated by dividing the relative concentrations of both metabolites. The obtained
value is only the relative ratio, but for comparison, it has the same informative value. The
Phe/Tyr ratio was increased in both groups, obviously higher in patients with unfavourable
outcome, where a course towards control levels was slowed down in Group B against Group
A (Figure 4). Positive relationships between the Phe/Tyr ratio and immune activation
markers have been described earlier in several papers [44,45]. It was suggested that
suppression of body inflammation can, to a certain extent, improve abnormalities in
Phe metabolism within associated neuropsychiatric symptoms [44], among which, e.g.,
depression and fatigue are some of the most recognised post-COVID-19 difficulties [47].
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5. Conclusions

Metabolomic changes in blood plasma analysed by NMR in patients suffering COVID-
19 were strong enough to obtain almost ideal discrimination from controls, where the ROC
derived from random forest showed an AUC of 0.995 for the variables 3-hydroxybutyrate,
phenylalanine, acetate, glucose, and Phe/Tyr ratio. The inflammation by COVID-19
caused changes in the body’s energy metabolism, where we observed increased blood
glucose that implies lowered glucose utilisation, balanced with increased production of
3-hydroxybutyrate as an alternative energy source. Besides that, increased essential BCAAs
are a sign of accelerated protein catabolism, offering a further energy source. Interestingly,
although all COVID-19-positive patients received dexamethasone treatment during the
follow-up period, the above mentioned changes (increased glucose, 3-hydroxybutyrate, and
BCAAs levels in blood plasma) normalised only in patients with positive outcome by the
seventh day; however, they persisted for over one week in patients with negative outcome
(more than half of them had died at the time of writing). Further, patients suffering COVID-
19 showed decreased plasma glutamine that normalised faster in patients with a positive
outcome. With the length of hospital stay, plasma levels of creatine increased in patients in
both groups. Increased Phe/Tyr ratio, which is closely connected with neuropsychiatric
morbidities, often reported as post-COVID-19 symptoms, was more pronounced in patients
with a negative outcome. Based on our results, the ability of patients to normalise energy
metabolism seems to be one of the key factors determining the disease progression. This
trend was observed independently of patient diet, which differed with respect to diabetic
condition. This study documents evident differences in the course of the metabolomic
response to COVID-19 in relation to patient outcome. However, the described changes
may not be unique for COVID-19 since they reflect generalised immune response and
alterations in body energy metabolism as well. The presented results may serve towards
complementary personalised pharmacological and nutritional support in order to improve
patient outcomes in severe inflammatory conditions.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11094231/s1, Figure S1: PCA (left) and PLD-DA analyses (right) of the system of
patients divided into subgroups Group A and Group B on Day 1 versus controls; algorithms were
fed relative concentrations of plasma metabolites, and analyses were run in metaboanalyst [16].
Figure S2. The relative changes in two metabolites closely related to energy metabolism—glucose
and 3-hydroxybutyrate—where both Groups A and B were divided into subgroups according to
patient diet (according to presence of diabetes) on Days 1, 3, and 7 after hospital arrival; not dia
= non-diabetic patients on a normal diet, dia = diabetic patients on a diabetic diet. Values were
relativized to median of controls set to 1.
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