friried applied
b sciences

Article

Speeding up Statistical Tolerance Analysis to Real Time

Peter Grohmann and Michael S. J. Walter *

check for

updates
Citation: Grohmann, P.; Walter,
M.S.]J. Speeding up Statistical
Tolerance Analysis to Real Time. Appl.
Sci. 2021, 11, 4207. https://doi.org/
10.3390/app11094207

Academic Editor: Maurizio Faccio

Received: 27 February 2021
Accepted: 23 April 2021
Published: 5 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Faculty of Engineering, University of Applied Sciences Ansbach, 91522 Ansbach, Germany;
peter.grohmann@hs-ansbach.de
* Correspondence: michael. walter@hs-ansbach.de; Tel.: +49-981-4877-559

Abstract: Statistical tolerance analysis based on Monte Carlo simulation can be applied to obtain a
cost-optimized tolerance specification that satisfies both the cost and quality requirements associated
with manufacturing. However, this process requires time-consuming computations. We found that
an implementation that uses the graphics processing unit (GPU) for vector-chain-based statistical
tolerance analysis scales better with increasing sample size than a similar implementation on the
central processing unit (CPU). Furthermore, we identified a significant potential for reducing runtime
by using array vectorization with NumPy, the proper selection of row- and column- major order, and
the use of single precision floating-point numbers for the GPU implementation. In conclusion, we
present open source statistical tolerance analysis and statistical tolerance synthesis approaches with
Python that can be used to improve existing workflows to real time on regular desktop computers.

Keywords: computation time; statistical tolerance analysis; Monte Carlo simulation; sample size;
statistical tolerance synthesis; tolerance engineering; Python

1. Introduction

Manufactured components are subject to deviations that reduce the functional and
aesthetic quality of the final product. For this reason, tolerances are specified based on the
results of statistical tolerance analyses to minimize the degradation of geometrical accuracy
and number of rejects in manufacturing. Additionally, economic aspects must also be con-
sidered. Needlessly tight tolerance specifications lead to higher expenses and an increase
in production time due to the stricter demands on the manufacturing process. A common
approach to satisfying both of these requirements is establishing statistical tolerance analy-
ses based on Monte Carlo simulation to identify the cost-optimal manufacturing tolerance
specification based on repeated random sampling and statistical analysis [1]. Monte Carlo
simulation has consistently been the preferred choice of the tolerance community to eval-
uate the statistical implications of manufacturing deviations on the key characteristics of
mechanical assemblies. Furthermore, Monte Carlo simulation is an established and common
standard in a large variety of different scientific and industrial areas, because it allows
simulating and tackling complex systems and processes. However, Monte Carlo simulation
is computationally intensive, which means that the associated execution times can range
from seconds to hours and even days. The ongoing digital transformation of manufacturing
through the adoption of Industry 4.0 [2—4] requires that product characteristics be analyzed
after each manufacturing process in order to establish a continuous information flow to
enable a self-learning and self-adapting manufacturing process [5,6].

To support the digitization of manufacturing products with high geometric accuracy,
it is therefore important to accelerate the statistical tolerance analysis. The runtime opti-
mization of Monte Carlo simulation is nothing new to academic research. Various studies
have discussed approaches to speed up Monte Carlo simulation, mainly focusing on either
a proper distribution of the random sample generation among several local computers
(such as [7]) or on carrying out the Monte Carlo simulation on a single GPU or on multiple
GPUs (such as the application of NVIDIA’s Compute Unified Device Architecture (CUDA)

Appl. Sci. 2021, 11, 4207. https:/ /doi.org/10.3390/app11094207

https:/ /www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11094207
https://doi.org/10.3390/app11094207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11094207
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11094207?type=check_update&version=2

Appl. Sci. 2021, 11, 4207

20f 17

in [7]). However, none of the existing work considers the specifics of tolerance engineering
and investigates whether a Monte Carlo simulation using the GPU architecture has the
potential to significantly speed up statistical tolerance analysis and statistical tolerance
synthesis. The present paper attempts to investigate this using scientific open source
computing libraries provided by the Python programming language.

The rest of this paper is structured as follows. Section 2 gives an overview of the
software solutions used in tolerance engineering and provides a sufficient background
concerning the basics of the programming language Python. Section 3 defines the research
question and the main challenge of the paper. In Section 4, an overconstraint door hinge
assembly is introduced, which serves as a case study. The implementations of a statisti-
cal tolerance analysis and statistical tolerance synthesis of the door hinge assembly are
detailed in Sections 5.1-5.4. This is followed by a brief description of the runtime mea-
surement procedures and details on the software and hardware used in Sections 5.5-5.7.
The runtime results of the statistical tolerance analysis and statistical tolerance synthesis
implementations are presented and discussed in Sections 6.1 and 6.2. In Section 6.2.2, the
sample size required for credible statistical tolerance synthesis for the tolerance model is
determined, followed by some conclusions in Section 7, in which recommendations for
tolerance engineers and researchers are given to speed up statistical tolerance analysis to
real time.

2. Numerical and Programming Foundations for This Study

For already about 30 years, commercial software tools for the analysis and optimiza-
tion of tolerance specifications have been available. These so-called software tools for
computer-aided tolerancing (CAT) enable the design engineer to carry out a statistical
tolerance analysis of any given mechanical assembly in a virtual 3D-CAD environment.
All of them use Monte Carlo simulation to obtain the statistical results. However, due to
their high complexity and the high costs, very few companies employ commercial CAT
tools. According to a survey from [8], 80% of the questioned companies in Germany use
the spreadsheet program MS Excel to carry out vector-chain-based statistical tolerance
analyses while the remaining respondents “relied on analytical calculation of tolerance
stacking problems by hand, using established and simple approaches such as a worst-case
tolerance analysis [9] or the root-sum-square approach” [8]. In research, however, the use
of the commercial numeric computing environment MATLAB is the common standard.

In the present paper, the authors expand this portfolio of programming languages
with Python. Python is an open-source dynamic scripting programming language which
reduces the effort of implementing an initial prototype. It also provides a large number of
libraries, already shipped, as well as external libraries, which are useful for a wide variety of
scientific and engineering applications. The fact that Python is a dynamic programming lan-
guage unfortunately is also one of its biggest weaknesses. This makes Python significantly
slower than statically-typed programming languages, especially when a large number
of operations needs to be performed repeatedly, as in the case of loops [10]. An efficient
approach to improving the performance of Python code is to use NumPy Arrays, to replace
explicit loop structures with “pre-compiled code written in a low-level language (e.g., C)
to perform mathematical operations over a sequence of data” [11]. Figure 1a illustrates the
general procedure and the runtime advantages for the Ishigami Function [12]:

y(x1, %2, x3) = sin(x;) +7 - sin?(xp) + 0.1 - x3 - sin(x;). 1)

Due to the drastic performance increase, NumPy Array programming has become the
standard within the Python community, especially in the context of scientific computing.
According to [13], NumPy played an important role in the software stack that led to the dis-
covery of gravitational waves. For additional information on NumPy, see [14,15]. Another
external open source Python library used in this paper is the CuPy library [16]. It can be
implemented as a drop-in replacement for the NumPy library to execute computations on
the GPU without having to apply NVIDIA’s CUDA programming syntax (see Figure 1b).

Appl. Sci. 2021, 11, 4207 30f17

[1]: import math as math
import numpy as np

[2]: def ISHIGAMI vectorized(samples):

samples[:, 0]

x2 = samples[:, 1]

x3 = samples[:, 2]

return np.sin(x1)+7#np.power (np.sin(x2),2)+0.1%np.power(x3,4)+np.sin(x1)

x1 =

[7]: | import cupy as cp

[8]: def ISHIGAMI_GPU(samples):
x1 = samples[:, 0]

[3]: def ISHIGAMI(samples, sample_size): %2 _ samples[:, 1]
- - L
£ = ?1;‘0()) x3 = samples[:, 2]
for i in range(sample_size): return cp.sin(x1)+7+*cp.power(cp.sin(x2),2)+0.1*cp.power(x3,4)*cp.sin(x1)
f.append(math.sin(samples[i, 0])+7*math.pow(math.sin(samples[i, 11),2)+0.
1*math.pow(samples[i, 2],4)*math.sin(samples[i,0])) [91: dev = cp.cuda.Device()

return f samplesize = 1_000_000

generated_samples = cp.array(cp.random.rand(samplesize,7), order='F')
[4]: samplesize = 1_000_000

generated_samples = np.array(np.random.rand(samplesize,3), order='F') [10]: %timeit ISHIGAMI_GPU(generated_samples)

[6]: Utimeit ISHIGAMI vectorized(generated samples) 2.73 ms * 53.3 ps per loop (mean * std. dev. of 7 runs, 1000 loops each)

76.8 ms * 979 ps per loop (mean * std. dev. of 7 runs, 10 loops each)

(b)

[6]: %timeit ISHIGAMI(generated_samples, samplesize)

1.53 s # 3.48 ms per loop (mean # std. dev. of 7 runs, 1 loop each)

@)
Figure 1. (a) Vectorization with NumPy Arrays. (b) Use of the GPU architecture with CuPy.

Whenever one is working with larger array sizes with NumPy, as in the case of Monte
Carlo simulation, it is necessary to be aware of row-major and column-major ordering.
In order to have less overhead (due to memory access operations), the storage layout of
the language needs to match the loop structure [17]. With row-major order, the elements
are arranged consecutively along the row. With column-major order, they are arranged
consecutively along the column [15,17]. The choice of the floating-point number precision
defined in the IEEE/ISO/IEC 60559-2020 standard [18] is also of importance for both
the performance and memory use of the statistical tolerance synthesis. For example, the
GeForce 2060 RTX GPU used in this research, which is based on the NVIDIA Turing
architecture, provides, on each of the installed 30 streaming multiprocessors, 64 FP32
ALUs (arithmetic logic units) designed for floating-point calculations. This allows fast
floating-point arithmetic operations on the graphics units, see Table 1.

Table 1. Theoretical floating-point number performance of NVIDIA GEFORCE RTX 2060 [19].

Floating-Point Format

Theoretical Performance

FP16 12.90 TFLOPS 1
FP32 6.451 TFLOPS
FP64 201.6 GFLOPS

L FLOPS (floating-point operations per second); T = Tera; G = Giga.

3. Research Question

A comparatively high number of samples is required to obtain statistically reliable
results when performing statistical tolerance simulations (such as tolerance analysis and
tolerance synthesis) [20-22]. However, with an increasing sample size, not only does
the accuracy of the obtained results increase, but also the computational effort [23,24].
Recommendations range from 5000 [25] to 100,000 samples [24]. However, especially for
more complex tolerance simulations, a size of 10,000 samples has become established
among industrial experts and researchers [26]. The choice of the sampling procedure as
well as the corresponding sample size have a significant influence on the reliability of a
statistical tolerance simulation, and must therefore always be made with care. Hence, the
key to speed up vector-chain-based statistical tolerance simulations is to accelerate the
Monte Carlo simulation. The authors face the research question: Is it possible to realize an
implementation of the Monte Carlo simulation in real time on a regular desktop computer
with a sample size that satisfies the quality requirements in tolerance engineering?

Appl. Sci. 2021, 11, 4207

40f17

In this paper, the definition of real time is based on response times of only a few
milliseconds, which state-of-the-art automation solutions with a programmable logic
controller or fieldbus-based production lines manage. In the following sections, statistical
tolerance analyses and statistical tolerance syntheses are developed and executed with
different programming approaches and varying sample sizes. Therefore, a non-trivial case
study of an overconstraint door hinge assembly is used. We aim to quantify (i) how the
computation times behave for different sample sizes with different implementations and
(ii) whether, and if so how significantly, a tolerance simulation is sped up.

4. Case Study: Overconstraint Door Hinge Assembly

The overconstraint door hinge assembly is shown in Figure 2, following [27,28]. It
should be noted in advance that this supposedly ‘simple” assembly (the assumption of
a one-dimensional chain with purely linear dependencies seems obvious) is, however,
significantly influenced by interactions between the occurring deviations (due to the
overconstraint design), and thus is non-trivial.

housing| outer hinge plate pin |inner hinge plate |gasket

B

gapp/!/

O

J/

!l
ISO 8015

Figure 2. Overconstraint door hinge assembly.

The hinge consists of two main parts (the outer and inner hinge plates) connected by
a pin. The hinge enables the opening and closing of a cover plate. Due to manufacturing
deviations of the dimensions M; to My, a variation of the vertical position of the cover
results. These deviations are limited by the tolerances specified in Table 2. The tolerances
follow a Gaussian or a uniform distribution. In order to ensure a sufficient sealing gap,
the standard deviation of the gap p should not exceed the limit of 0.1 mm. Hence, the
functionally relevant key characteristic of the assembly is the vertical displacement of the
inner hinge plate with respect to the outer hinge plate, which directly influences the width
p of the gap for the gasket.

Appl. Sci. 2021, 11, 4207 50f17
Table 2. Dimensions and corresponding tolerance specifications.
Dimension Nominal (in mm) Tolerance T; (in mm) Distribution
My 75 +0.05 Gaussian (+30)
M, 5.1 +0.1 Uniform
M; 17.5 +0.05 Gaussian (+30)
My 5.1 +0.1 Uniform
Ms 5.05 +0.1 Gaussian (+30)
Mg 12.5 +0.05 Gaussian (+30)
My 5.1 +0.1 Uniform

First, the mathematical relation between the functional key characteristic p and the
deviating dimensions M; to My is required. The overconstraint design of the assembly
already comes into play here: Due to the design of the hinge and the resulting interactions of
the deviations, two assembly scenarios are possible (see Figure 3). The assembly scenarios
differ in how the plates’ surfaces are in contact. In scenario #1, the plates are in contact in
the upper slot, whereas in scenario #2, there is contact in the lower slot. Thus, the distances
A1 (upper slot) and A, (lower slot) can be determined from M; to M.

A = (M6 + %) - (Ma - %) @)
Ay = M5 — <M1—%>. 3)

If A; < Ajp the hinge will be assembled according to scenario #1. In this case, the
resulting key characteristic p is the determined value of the distance A; and vice versa.
This results in a piecewise-defined mathematical function of the gap p.

_fAif A< A W
AzifAl > Ay

assembly
scenario #1

A <A overconstraint Ao A assembly
1==2 assembly L scenario #2

<E©§

Figure 3. Two assembly scenarios occurring due to the overconstraint design of the door hinge assembly.

5. Methods: Detailing the Approach to Speeding Up Tolerance Simulations

The core of this work is the execution of the statistical tolerance analysis and the statis-
tical tolerance synthesis considering different programming and architecture approaches
as well as a varying sample size for the underlying Monte Carlo simulation. First, the
procedure (Section 5.1) as well as the implementation (Section 5.2) of the statistical toler-
ance analysis are presented. The following sections focus on the procedure (Section 5.3)
and the implementation of the statistical tolerance synthesis using numerical optimiza-

Appl. Sci. 2021, 11, 4207

60of 17

tion (Section 5.4). This is followed by details on the implementations and hardware used
(Sections 5.5 and 5.6).

5.1. Procedure for the Statistical Tolerance Analysis

The application of Monte Carlo simulation [29] in statistical tolerance analysis carries
out a virtual reproduction of the manufacturing, assembly and inspection of a large number
of products. Figure 4 illustrates these three steps. First, a defined number n of variants
of each individual part are generated virtually, which differ from each other in various
properties (e.g., dimensions), which are subject to tolerances [30]. The value of this deviation
is determined taking into account the associated probability distribution of each tolerance.
This step reproduces virtually the production of n single parts. In the next step, the single
parts generated are assembled into # final products. This corresponds to the n-fold virtual
assembly of the final product and is based on the “pulling without adding back” of the indi-
vidual parts according to Bernoulli’s urn model [31]. Finally, the relevant key characteristic
is determined using the vector-chain and documented for each of the n virtually assembled
products. This corresponds to the inspection of the products after their assembly.

Results

Prod. 1 | 14.9mm
Prod. 2 | 15.2mm
Prod. 3 | 15.4mm

Z L~

Manufacture |::> E:> Inspection

Figure 4. Virtual reproduction of the manufacturing, assembly and inspection of each part by statistical

Assembly

tolerance analysis using Monte Carlo simulation.

5.2. Implementation of the Monte Carlo Simulation

The sample generation and simulation are the most runtime-intensive steps of the
tolerance optimization process, as a sufficient number of samples must first be generated
and subsequently processed in the simulation step in order to obtain a trustworthy estimate
for each tolerance configuration. Accelerating either of these steps would therefore provide
the largest reduction of runtime of the overall process. Therefore the two steps ‘sample
generation’ and ‘simulation” have been implemented using the hardware architectures
of the CPU and GPU of present-day desktop computers. To investigate the influence of
different memory storage layouts and floating-point number configurations on the runtime,
different implementations have been included in this study as well as an implementation
in MATLAB (see Tables 3 and 4 for an overview of the CPU and GPU implementations).

Table 3. Implementations of statistical tolerance analysis using a CPU.

Label Backend Storage Layout Float Format

NumPy Float32 C-Order Python+NumPy Row-major Single-precision *
NumPy Float64 C-Order Python+NumPy Row-major Double-precision
NumPy Float32 F-Order Python+NumPy Column-major Single-precision *
NumPy Float64 F-Order Python+NumPy Column-major Double-precision
MATLAB Float32 MATLAB Column-major Single-precision
MATLAB Float64 MATLAB Column-major Double-precision

* Since only double precision was available for the sample generation process in NumPy v.1.18.4, the double

precision sample was cast to a single precision float after creation.

Appl. Sci. 2021, 11, 4207

7 of 17

Table 4. Implementation of the statistical tolerance analysis implementations using a GPU.

Label Backend Storage Layout Float Format
CuPy Float32 C-Order Python+CuPy Row-major Single-precision
CuPy Float64 C-Order Python+CuPy Row-major Double-precision
CuPy Float32 F-Order Python+CuPy Column-major Single-precision
CuPy Float64 F-Order Python+CuPy Column-major Double-precision
MATLAB Float32 GPU MATLAB Column-major Single-precision
MATLAB Float64 GPU MATLAB Column-major Double-precision

The generation of samples and the simulation is accomplished either on the CPU or with
the use of the graphics unit. In more detail, the NumPy implementations use np.random.normal
to generate a normal distribution pseudorandom sample and the np.random.uniform function
for a uniform distribution. The simulation step was realized with NumPy arrays for fast
vectorized array operations. The CuPy implementations use the same code as the NumPy
implementations, but with CuPy as a drop-in replacement for NumPy to perform the
sample generations and simulations on the GPU. For the MATLAB implementations,
mlfg6331_64, RandStream is used to generate the samples using the CPU, but mrg32k3a,
parallel.gpu.RandStream for the GPU implementation. The simulation is implemented
using MATLAB matrix and vector operations. The Python program used is available on
GitHub [32], accessed on 28 April 2021 (see page 17).

5.3. Procedure for Statistical Tolerance Synthesis

The purpose of statistical tolerance synthesis is to allocate the maximum tolerance
of the functional key characteristic to the characteristics of the parts of the product [9]. It
is thus the inverse or inversion of statistical tolerance analysis [9]. The goal of statistical
tolerance synthesis is to identify the best compromise between (usually two) divergent
requirements for a product and thus for tolerating the individual part. In the case of a cost-
driven statical tolerance synthesis, this compromise is the tolerance that is associated with
the lowest manufacturing costs, but at the same time ensures that a defined rejection rate of
the final product is not exceeded [9]. If this compromise is identified by means of numerical
optimization, the phrase statistical tolerance optimization has become established. Pseu-
docode for the implementation of a cost-driven statistical tolerance optimization algorithm
is provided in Figure 5. Let T be a selected set of tolerances, which is chosen by a global
optimization solver. The cost function is denoted by C. The total production cost is the sum
of the production costs of each tolerance C(T) on the basis of the tolerance cost model.
Cind - et

Tk ®)

C(T) = Cfix + Cour = Cfix +
and is usually specified by the coefficients C;,,4, m, and k to approximate the dependencies
between the costs and tolerances [33,34]. The manufacturing costs consist of the following
components: The variable costs Cy,; and the fixed manufacturing costs C Fix for each
tolerance T. Let S be the system model of the corresponding tolerance problem and D be
the probability distributions of the considered tolerances T.

Appl. Sci. 2021, 11, 4207

8of 17

Algorithm 1: Tolerance optimization pseudocode

Result: Cost-optimal tolerance setting Top¢
Initialize C, S, D, minimal_cost = co
while minimal_cost not converged do
select T;
current_costs = C(T);
if current_costs < minimal_cost then
sample generation based on selected T and given D;
input generated samples in S;
if output of S holds specified boundary conditions
then
minimal_cost <— current_cost;
Topt ~— T
end

end
end

Figure 5. Pseudocode of the implementation of the cost-driven statistical tolerance synthesis.

5.4. Implementation of Statistical Tolerance Synthesis Using Numerical Optimization

To investigate the impact on runtime, both open source CPU (NumPy) and GPU
(CuPy) implementations of the statistical tolerance analysis have been integrated into the
statistical tolerance synthesis process to calculate the cost-optimal tolerances using the dif-
ferential evolutionary algorithm of [35]. The chosen parameter settings of the algorithm are
listed in Table 5. For the CPU implementation with NumPy, the population is distributed
among all CPU cores. For the GPU implementation with CuPy, a single Python process is
sequentially executed.

Table 5. Settings for the differential evolutionary algorithm.

Parameter Value
strategy bestlbin
bounds [0.0,0.7] x 7
popsize 25

tol 0.01

mutation 05,1)

recombination 0.5
seed 1992

init latinhypercube
workers * ¥

** workers = —1: Distributes the populations among all available CPU cores for parallel computation, * workers = 1:
A single Python process is spawned.

The cost-driven tolerance optimization has been applied to the overconstraint door
hinge assembly defined in Section 4, leading to the following optimization problem:

min C(X) (6)
under given constraints:
op(X) <0.1 @)
with the bounds of:
X1-1,) <07 8)
Xr-1) >0)

To ensure the functionality of the assembly, the requirements for p are defined as an
inequality boundary condition. It demands that the standard deviation ¢}, must be less

Appl. Sci. 2021, 11, 4207

9of 17

than or equal to 0.1 mm in order to guarantee a sufficient tightness. The tolerance-cost
models are taken from [28]. Their coefficients are listed in Table 6.

Table 6. Parameters of tolerance-cost models.

Parameter Value
Crixa—7 0 EUR
my_y 0
k1_7 1
Cind,l 1 EUR X mm
Cind,Z 9 EUR x mm
Cind,S 5EUR x mm
Cind,4 15 EUR x mm
Cind,S 2 EUR x mm
Cind,6 11 EUR x mm
Cind,7 18 EUR x mm

5.5. Runtime Measurement Notes

The Python built-in time function time.time is used to determine the runtime of each
Python implementation. For the MATLAB implementations, the integrated stopwatch
timer functions fic toc were used.

5.6. Software Details

The programming languages MATLAB 2018b and Python 3.8.2 (including the Python
libraries NumPy 1.18.4, CuPy 8.1.0, and SciPy 1.5.4) were used.

5.7. Platform Details

The runs were conducted on a Windows 10 workstation with an AMD Ryzen 9 3900
12-core processor (3.8 GHz clock speed) equipped with 32 GB of DDR4 RAM (3200 MHz
clock speed) and an Nvidia GeForce RTX 2060 graphics unit with 6.0 GB of VRAM that
supports CUDA up to version 7.5.

6. Results and Discussion

In this section, we present and discuss the results of the study. First, we review the
results of the statistical tolerance analysis implementations. Next, we discuss the results
of the Statistical Tolerance Synthesis and determine, based on an appropriate sample size,
which of the two best open source implementations is more appropriate for the underlying
tolerance problem.

6.1. Statistical Tolerance Analysis

The statistical tolerance analysis was performed on the basis of the implementations
described in Section 5.2. The results are presented for the CPU in Section 6.1.1 and the GPU
in Section 6.1.2.

6.1.1. CPU Implementations

Figure 6 and Table 7 present the average runtime in seconds with its standard error of
the mean of 25 executions of the steps of generating the samples and then simulating them,
using CPU architecture.

Appl. Sci. 2021, 11, 4207

10 of 17

16
X NumPy Float32 C-Order % X
14 NumPy Float32 F-Order X
X NumPy Float64 C-Order X %
" 124 X NumPy Float64 F-Order x X %
2 o] * MATLABFIoat32 v X x
S X MATLAB Float64 x | x X
(%]
£ 87 X ¥ X
o X
£ 61 x X
= ¥
5 X ¥ x X
X 44 X% X X ¥
X X X %
X x % X
2 % % X
¥ x X %
ol w X X
0 2 4 6 8
Sample size x107

Figure 6. Statistical tolerance analysis using CPU: Mean runtime results with error bars.

Table 7. Statistical tolerance analysis using CPU: Mean runtime results in seconds with standard error of the mean.

. NumPy Float32 NumPy Float32 NumPy Float64 NumPy Float64
Sample Size C-(;)r}::lering F_Orﬂering C_Or{’iering F_Ogc’lering MATLAB Float32 MATLAB Float64
1.0 x 10* 0.001241 =+ 0.000065 0.001181 =+ 0.000049 0.001201 =+ 0.000050 0.001181 =+ 0.000052 0.003724 £ 0.000925 0.004503 + 0.002241
5.0 x 10* 0.005965 + 0.000040 0.005705 =+ 0.000050 0.006506 =+ 0.000050 0.006325 + 0.000064 0.004189 =+ 0.000282 0.004814 + 0.000486
1.0 x 10° 0.012391 =+ 0.000066 0.012491 =+ 0.000061 0.013311 =+ 0.000050 0.012851 =+ 0.000048 0.006743 + 0.000183 0.007997 + 0.000464
5.0 x 10° 0.069539 =+ 0.000225 0.063134 + 0.000286 0.083852 + 0.000142 0.066497 + 0.000124 0.031448 + 0.000272 0.041315 =+ 0.000856
1.0 x 106 0.142923 + 0.000362 0.123606 + 0.000173 0.168165 + 0.000334 0.134275 + 0.000332 0.058773 + 0.000715 0.070176 + 0.002249
5.0 x 10° 0.712692 + 0.004422 0.633685 £ 0.003192 0.832475 + 0.001705 0.667433 + 0.002543 0.254988 + 0.001123 0.297843 £ 0.006478
1.0 x 107 1.404747 + 0.002412 1.242067 + 0.001219 1.637727 + 0.002124 1.340692 + 0.005562 0.493843 + 0.002063 0.572002 + 0.004212
1.5 x 107 2.099064 + 0.002512 1.852131 + 0.002354 2.453188 + 0.002672 1.993793 + 0.005053 0.732623 + 0.002102 0.851755 + 0.007814
2.0 x 107 2.772782 £ 0.006491 2.466719 + 0.002730 3.368234 + 0.004239 2.650779 4 0.005898 0.959620 =+ 0.001961 1.129460 + 0.005319
2.5 x 107 3.436272 + 0.003951 3.075642 + 0.003229 4.223949 + 0.005337 3.364491 + 0.010650 1.199648 + 0.001999 1.418932 + 0.005626
3.0 x 107 4.117858 + 0.004286 3.686407 + 0.003401 5.073099 + 0.006942 4.020194 + 0.005144 1.461204 + 0.003205 1.701652 + 0.005182
3.5 x 107 4.842020 =+ 0.005639 4.344172 £ 0.013985 5.916764 + 0.005374 4.714091 + 0.007223 1.719168 =+ 0.002966 1.984968 + 0.005454
4.0 x 107 5.573128 + 0.004716 5.021194 + 0.041395 6.765172 £+ 0.006502 5.380363 + 0.006298 1.981424 + 0.003639 2.222212 + 0.009649
45 x 107 6.269647 + 0.005735 5.510913 =+ 0.004690 7.609078 + 0.007418 6.060067 + 0.006725 2.243420 + 0.003477 2.476140 + 0.010313
5.0 x 107 6.959560 + 0.006334 6.134791 + 0.004377 8.455985 + 0.008600 6.756005 + 0.005361 2.491044 + 0.004360 2.723836 + 0.007641
5.5 x 107 7.660562 + 0.005350 6.798842 + 0.003901 9.315744 + 0.010400 7.446538 + 0.009688 2.755600 + 0.007505 2.968508 + 0.009055
6.0 x 107 8.359663 + 0.008355 7.454204 + 0.005153 10.138631 + 0.010530 8.113391 =+ 0.006551 3.006004 + 0.004333 3.227844 + 0.006248
6.5 x 107 9.055540 =+ 0.006843 8.113711 =+ 0.005656 10.995247 + 0.007439 8.796638 + 0.006242 3.260588 + 0.004717 3.503080 =+ 0.009699
7.0 x 107 9.749416 + 0.005656 8.751739 + 0.007032 11.900305 + 0.018304 9.474140 + 0.008674 3.538272 + 0.004528 3.756784 + 0.008264
7.5 x 107 10.464471 + 0.006690 9.388546 + 0.006888 12.709061 + 0.006853 10.178886 + 0.009369 3.792104 + 0.004796 4.043528 + 0.012855
8.0 x 107 11.163511 + 0.006766 10.009300 + 0.008521 13.604569 + 0.009452 10.858189 + 0.010415 4.052580 + 0.007483 4.329744 + 0.012126
8.5 x 107 11.865054 + 0.008723 10.657933 + 0.008216 14.453738 + 0.010055 11.546921 + 0.007045 4.323880 + 0.007407 4.556864 + 0.010179
9.0 x 107 12.560572 + 0.010832 11.341762 + 0.015154 15.269399 + 0.025013 12.380537 =+ 0.030369 4.578620 + 0.009665 4.883124 + 0.014633

It can be seen that both CPU MATLAB implementations perform better than the Python
open source implementations with NumPy for nearly all sample sizes. This is due to MAT-
LAB’s default being able to work with all processor cores of the workstation, while the Python
implementations are limited to one CPU core by the ‘Global Interpreter Lock’ (GIL) [36]. How-
ever, in Section 6.2.1, the GIL constraint is bypassed using the multiprocessing feature of
the numerical solver in the tolerance synthesis. Multiprocessing is the creation of several
new Python processes (each with its own GIL), in which each process takes a portion of the
computation. A difference in runtime between the use of C-Order and F-Order as well as
single precision and double precision can also be identified. For all CPU implementations,
the use of F-Order as the NumPy array storage layout tends to be more advantageous than
C-Order. On the other hand, runtime gains can also be achieved using single precision
instead of double precision floating-point numbers for the CPU implementation. This,

however, involves a loss of precision in the estimation.

Appl. Sci. 2021, 11, 4207

11 0of 17

6.1.2. GPU Implementations

Figure 7 and Table 8 show the average runtime in seconds with the standard error of
the mean of 25 executions of the statistical tolerance analysis, subject to the sample size
using the GPU architecture.

¥ CuPy Float32 C-Order %
2.51 CuPy Float64 C-Order
% CuPy Float32 F-Order
w 204 % CuPy Float64 F-Order x
2 % MATLAB GPU Float32
§ ¥ MATLAB GPU Float64
® 1.5 i)
o
(0]
£10
€ | X X
X % X X X
051 x X ¥ X X X
g ¥ X %
x X ¥ x X X X %
0.0-%iXX§§§§§§xxxxxXxx
0 2 4 6 8

Sample size x107

Figure 7. Statistical tolerance analysis using GPU: Mean runtime results with error bars.

Table 8. Statistical tolerance analysis using GPU: Mean runtime results in seconds with standard error of the mean.

Sample Size CuPy Float32 CuPy Float64 CuPy Float32 CuPy Float64 MATLAB GPU MATLAB GPU
C-Order C-Order F-Order F-Order Float32 Float64
1.0 x 10* 0.000520 =+ 0.000143 0.000629 =+ 0.000140 0.000440 =+ 0.000101 0.000440 =+ 0.000098 0.096187 =+ 0.000887 0.094625 =+ 0.000577
5.0 x 10* 0.000541 =+ 0.000028 0.000721 = 0.000051 0.000520 = 0.000020 0.000600 =+ 0.000041 0.098829 =+ 0.001141 0.098982 =+ 0.000765
1.0 x 10° 0.000681 =+ 0.000057 0.001041 =+ 0.000028 0.000480 =+ 0.000020 0.000641 £ 0.000046 0.096635 + 0.000422 0.098395 =+ 0.000749
5.0 x 10° 0.001982 =+ 0.000074 0.004324 + 0.000091 0.000721 + 0.000058 0.002867 + 0.000067 0.104505 + 0.001328 0.103663 + 0.000813
1.0 x 100 0.003633 =+ 0.000043 0.007451 =+ 0.000065 0.001381 =+ 0.000044 0.004314 £ 0.000058 0.106821 =+ 0.000827 0.110193 =+ 0.000804
5.0 x 10° 0.016455 =+ 0.000098 0.035831 =+ 0.000150 0.005782 =+ 0.000071 0.020137 £ 0.000098 0.144228 + 0.002474 0.159218 + 0.001141
1.0 x 107 0.032322 4 0.000123 0.071453 =+ 0.000602 0.011206 + 0.000103 0.039910 £ 0.000108 0.172592 + 0.001675 0.190616 + 0.001785
1.5 x 107 0.048098 + 0.000113 0.106091 =+ 0.000126 0.016413 + 0.000096 0.059422 + 0.000080 0.210516 + 0.004146 0.227843 + 0.001579
2.0 x 107 0.063791 =+ 0.000109 0.146295 + 0.001609 0.021844 =+ 0.000129 0.079300 £ 0.000127 0.222762 + 0.001016 0.270121 =+ 0.002696
2.5 x 107 0.079521 =+ 0.000093 0.178616 + 0.001031 0.027177 + 0.000078 0.099269 + 0.000239 0.250182 + 0.000624 0.315998 + 0.002046
3.0 x 107 0.095980 =+ 0.000200 0.212295 + 0.000292 0.032448 + 0.000081 0.118662 £ 0.000272 0.286288 + 0.000697 0.451989 + 0.004776
3.5 x 107 0.111210 =+ 0.000146 0.273510 =+ 0.005553 0.037825 + 0.000101 0.144299 + 0.001217 0.317789 =+ 0.000977 0.503447 + 0.001281
4.0 x 107 0.127250 + 0.000175 0.533831 =+ 0.005671 0.043096 + 0.000125 0.203151 =+ 0.003404 0.349101 + 0.002187 0.650528 + 0.004721
4.5 x 107 0.143477 + 0.000254 0.791146 + 0.006204 0.048402 + 0.000124 0.255648 + 0.000926 0.394972 + 0.001001 0.824722 + 0.004174
5.0 x 107 0.158769 =+ 0.000183 NaN 0.054847 + 0.000372 NaN 0.436220 =+ 0.001380 NaN
5.5 x 107 0.174816 + 0.000258 NaN 0.059154 + 0.000156 NaN 0.465871 + 0.001071 NaN
6.0 x 107 0.191430 + 0.000555 NaN 0.064545 + 0.000144 NaN 0.594289 + 0.004932 NaN
6.5 x 107 0.207075 =+ 0.000245 NaN 0.070035 =+ 0.000147 NaN 0.667256 + 0.006966 NaN
7.0 x 107 0.355644 =+ 0.028266 NaN 0.079949 + 0.001041 NaN 0.678562 + 0.003035 NaN
7.5 x 107 0.940129 + 0.028603 NaN 0.103767 + 0.001036 NaN 0.689129 + 0.001856 NaN
8.0 x 107 1.499938 + 0.027674 NaN 0.128240 + 0.001316 NaN 0.810690 =+ 0.002744 NaN
8.5 x 107 2.078780 =+ 0.028271 NaN 0.151778 + 0.001023 NaN 0.890743 + 0.002536 NaN
9.0 x 107 2.658023 + 0.064572 NaN 0.175046 + 0.000983 NaN 0.957543 + 0.003513 NaN

Since, for the GPU implementations, the generation and processing of the random
numbers does not take place in the workstation’s memory, but in the typically smaller
video memory of the GPU, some distinctive results can be observed compared to the CPU
implementations: (i) The video memory of the GPU in use reaches its capacity limit for
double precision floating-point numbers for sample sizes larger than 4.5 x 107 (NaN results
in Table 8). With single precision, which only requires half as much memory as double
precision floating-point numbers, the memory limit is reached at sample sizes greater than
9.0 x 107. (ii) The choice between single and double precision also has a greater influence on
the runtime, which is significantly lower in the case of single precision compared to using
double precision. (iii) As in the case of CPU implementation, the use of the F-order storage
layout seems to be more advantageous for the implementations. On the one hand, the run-

Appl. Sci. 2021, 11, 4207

12 of 17

time is consistently lower, and on the other, the GPU implementations with C-order storage
layout exhibit runtime spikes for higher sample sizes. We see the cause in the less efficient
memory access operations compared to the implementations using the F-Order storage
layout. (iv) In contrast to the CPU implementations, the GPU Python implementations
perform significantly better than the GPU implementations with MATLAB.

A comparison of the CPU and GPU results shows that the statistical tolerance analysis
that uses the GPU scales significantly better with an increase in sample size (apart from
memory related effects). The most effective implementation (CuPy Float32 F-Order) is
able to perform statistical tolerance analysis in real time up to a sample size of one million,
which is sufficient to analyze even complex tolerance problems.

6.2. Statistical Tolerance Synthesis

In the following (Section 6.2.1), the fastest Python CPU and GPU implementations are
incorporated into the statistical tolerance synthesis (described in Section 5.3) to determine
how each implementation performs given various sample sizes. For this purpose, the
average runtime of the differential evolution step is used as a metric for comparing the CPU
and GPU implementations in the statistical tolerance synthesis. This will enable making
a statement about which implementation achieves better runtime results, independently
of how fast the solver converges to a solution in each individual case. In Section 6.2.2, we
then analyze what sample size is actually required in order to obtain a reasonably good
estimate from the statistical tolerance synthesis.

6.2.1. CPU vs. GPU Implementations

Figure 8 and Table 9 present the average runtime in seconds with its standard error of
the mean of 10 executions of the differential evolution for each configured implementation,
with the parameters shown in Table 5.

The results in Table 9 and Figure 8 show that the computational cost of the statistical
tolerance synthesis increases linearly with the sample size, analogous to the results of the
statistical tolerance analysis. CPU implementation (which, in the context of a statistical
tolerance synthesis, is able to use all CPU cores) provides faster computation of the dif-
ferential evolution for sample sizes smaller than 50,000. However for larger sample sizes,
GPU implementation is faster. This indicates that reaching a certain complexity, the calcu-
lation using a GPU architecture is faster than a computation using only the CPU. Given a
sample size of 10,000, which is a common standard in industrial applications, it therefore
is possible to perform a faster tolerance synthesis based on CPU implementation due to
a lower runtime for the differential evolution. To double check this assumed standard,
we determine in Section 6.2.2 how large the sample size actually needs to be to obtain a
reliable estimate for the given tolerance model.

Table 9. Average runtime of the differential evolution step in seconds with standard error vs. mean.

NumPy Float32 F-Order ** CuPy Float32 F-Order *

Sample Size

1.0 x 10* 0.028884 £ 0.000035 0.116859 + 0.000152
5.0 x 10* 0.170581 £ 0.000301 0.169545 + 0.000177
1.0 x 10° 0.328820 £ 0.000453 0.247073 £ 0.000258
5.0 x 10° 2.208728 + 0.003886 1.466514 + 0.001694
1.0 x 10° 4.272736 + 0.001130 3.268489 + 0.000054
2.0 x 10° 8.779391 £ 0.005388 6.490047 + 0.000075
4.0 x 10° 17.518838 £ 0.002645 12.932327 £+ 0.000107
6.0 x 10° 26.400617 + 0.005473 19.379022 £+ 0.000118
8.0 x 10° 35.812385 + 0.023610 25.812515 + 0.007956
1.0 x 107 45.290421 + 0.028137 34.823996 + 0.129419

** workers = —1: Distributes the populations among all available CPU cores for parallel computation, * workers = 1:

A single Python process is spawned.

Appl. Sci. 2021, 11, 4207

13 0f 17

% NumPy Float32 F-Order ** X
40 4 CuPy Float32 F-Order *
X
(%)
2
S 30
(9]
0] X
0w
£
(0] -
£ 20 X
€
3
&
10 A X
X
%
04 %
0.0 0.2 0.4 0.6 0.8 1.0
Sample size x107

Figure 8. Performing Statistical Tolerance Synthesis on CPU (NumPy) vs. GPU (CuPy): Average
runtime of the differential evolution step with error bars. ** workers = —1: Distributes the populations
among all available CPU cores for parallel computation, * workers = 1: A single Python process
is spawned.

6.2.2. Sample Size Required for a Reliable Estimate

Figure 9a displays the manufacturing costs calculated by the statistical tolerance
synthesis (with CuPy Float 32 F-Order) vs. the sample size, from Section 6.2.1. Figure 9b
displays, on the basis of a sample size of 1.0 x 107, the corresponding standard devi-
ation 0y, in order to determine if a sample size of 10,000 is sufficient for the tolerance
optimization problem.

13037 L.+ % : 1 T 0.10251 %
o« 13004 £ I ;T T § % e I
> Ft i £ 0.10201
£ 129.5 £+ + < 1
2 I S 0.10154F
o + o
S 12004 % S
o © ¥
£ 3 010101
g12857 % ° t
© + 2
= [}
212804 * € 010051 ;

©

= T 8 % I

127.54+ 0.1000 A +§ % % $; % %

+ - ¥ +
127.0 1— ; . ; . . T . : : . ;
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Sample size x107 Sample size x107
() (b)

Figure 9. Statistical tolerance synthesis using GPU (CuPy Float 32 F-Order): (a) Manufacturing costs vs. sample size for
10 runs, and (b) standard deviation ¢y, (calculated with 1.0 x 107 sample size) vs. sample size.

The spread of the results of the statistical tolerance syntheses in Figure 9a,b show
that for the given tolerance problem, a sample size of at least 50,000 samples should be
used to satisfy the boundary condition (¢, < 0.1 mm) with sufficient confidence. Smaller
sample sizes tend to result in manufacturing costs, and thus tolerances, that do not comply
with the required boundary conditions of the statistical tolerance synthesis. On this basis,
computation using the GPU is preferable due to its lower runtime for the differential
evolution. Figure 10 illustrates the reduction of manufacturing costs during optimization.
The optimization is carried out using the parameter settings shown in Table 5 and a sample
size of 100,000 with the CuPy single precision Float F-Order implementation. Hence, a cost-

Appl. Sci. 2021, 11, 4207

14 of 17

optimal tolerance specification is obtained after 55 steps of the evolution (approximately
13.5s).

147.5 4
—— CuPy Float32 F-Order
145.0 A
142.5 A

140.0 A

137.5 4

135.0 4

Manufacturing costs in EUR

132.5 4

AN

0 10 20 30 40 50
Evolution step

130.0 A

Figure 10. Manufacturing costs vs. differential evolution steps with 100,000 samples.

6.3. Additional Notes on Accuracy and Comparability of the Implementations

Although the NumPy and CuPy implementations are based on the same codebase
(with the exception of imports), the question arises whether the different implementations
provide the same level of accuracy. It might have been that the performance gain of the GPU
implementation was partially obtained at the expense of the accuracy of the estimation, for
example, by using a lower quality random sample generation process. A fair comparison
between the Python and the MATLAB implementation is considerably more difficult than
a comparison within only the Python implementations, due to the different programming
languages, their quirks, and individual restrictions. For this reason, the claim in this paper
is by no means meant to be a Python vs. MATLAB argument. Rather, the claim is that
one can accomplish a statistical tolerance analysis and a statistical tolerance synthesis with
open source software and methods.

6.4. Current Drawbacks of the Method and Future Research Demands

The tolerance optimization methodology using sampling methods with stochastic
solution algorithms is approaching the limits of reasonable computation time according
to [37]. With our approach to compute the Monte Carlo simulation on the GPU, we show
a possible way to reduce the computation time that is expected to further increase in the
future due to the growing complexity of future tolerance synthesis models [37]. However,
several aspects require improvement and further research.

e The mathematical model used does not yet take into account geometric deviations
of the manufacturing components. The consideration of these however is warranted
because a majority of companies consider geometric deviations in the specification of
tolerances [8]. The implementation in this paper is not limited only to deviations in
size. Vector-chains with geometric tolerances can also be analyzed.

¢ The vector-chain needs an extension to fully account for 3D effects. This is due to the
assumption that most problems can be traced back to 1D or 2D is usually overly opti-
mistic [37]. However, the demonstrated approach using a derivative free optimization
algorithm already lays a foundation to implement this in the future, since the problem
does not have to be oversimplified [37]. The prerequisite is that a closed vector-chain
is available.

Appl. Sci. 2021, 11, 4207

150f 17

e The approach has been tested on an Nvidia GPU. However, the CuPy library also has
experimental support for RadeonOpenCompute (ROCm) [16], the non-proprietary
open-source alternative to CUDA from AMD. Further work could investigate how
applicable this is.

e Finally, we see a need for research concerning the support of multiple GPUs. This
would allow the statistical tolerance synthesis to be distributed across several graphics
units analogous to the already existing CPU implementation and thus to be accelerated.
For this purpose, the applied solver or alternative approaches could be investigated.

7. Conclusions

With the approaches presented in this study;, it is possible to reduce the runtime of
vector-chain-based statistical tolerance analysis to real time and thus to drastically speed
up statistical tolerance optimization. From the engineer’s point of view, it can be concluded
that the presented implementations of statistical tolerance analysis are capable of real time
execution: The calculation times of the statistical tolerance analysis with a sample size of
10,000 were all well below 1 ms and only with a sample size of more than 5 million samples
did runtimes (>5 ms) exceed the real time requirement set. It has therefore been proven
that statistical tolerance analyses (with a sufficient sample size) could be accelerated to
real time in order to establish a continuous flow of information for the implementation
of self-awareness and self-adjustment in manufacturing and thus finally promote the
implementation of Industry 4.0. Furthermore, the results provide information on how the
CPU and GPU architectures could be effectively used in the context of tolerance analysis
and tolerance synthesis and which of the considered parameters significantly influence the
runtime of the implementations. From this, concrete recommendations for future work
could be derived.

The general advice to improve the runtime of statistical tolerance analyses and statisti-
cal tolerance synthesis is to use NumPy Arrays for vectorization. The results clarify the
significance of an adequate choice of memory layout, especially for implementations that
use a GPU. We there recommend testing which memory layout option is more suited for
the code used. Another finding is that the choice of architecture depends on the complexity
of the considered tolerance problem. We recommend first evaluating how many samples
are needed to obtain a reasonable estimate. If a correspondingly powerful GPU is available,
it is highly recommended to carry out the calculations on a GPU instead of a CPU once
a certain computational complexity has been reached. This is due to the better parallel
processing options and the typically higher core count of a GPU. However, if the tolerance
problem is not computationally complex, the additional overhead of copying the data into
video memory may exceed the benefit generated by the faster computation on the GPU.
In this case, an implementation that uses a CPU architecture can be more advantageous.
If the calculation is carried out using the GPU, we recommend using single instead of
double precision floating-point numbers.

We hope that this work will help further improve existing approaches to statistical
tolerance analysis and statistical tolerance synthesis with respect to the ongoing transition
to Industry 4.0 and provide a practical guide as well as an entry point for future tolerance
engineering research that focuses more on tolerance engineering with heterogeneous
computer architectures and parallel computing. Finally, efficient open source alternatives
to the predominantly deployed software packages are available to speed up computer
simulations to real time.

Author Contributions: Conceptualization, P.G. and M.S.].W.; methodology, P.G. and M.S.].W.; soft-
ware, P.G. and M.S.J.W,; validation, P.G. and M.S.].W.; data curation, P.G. and M.S.].W.; writing—
original draft preparation, M.S.].W. and P.G.; writing—review and editing, M.S.].W. and P.G.; visual-
ization, M.S.J.W. and P.G; supervision, M.S.].W.; project administration, M.S.].W. All authors have
read and agreed to the published version of the manuscript.

Appl. Sci. 2021, 11, 4207 16 of 17

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The Python implementation is available in GitHub in [32], accessed on
28 April 2021. The MATLAB implementation is available on request from the corresponding author.

Acknowledgments: We are very grateful to Rolands Kalvans who provided valuable advice about
writing the paper as well as hands-on programming advice in Python.

Conflicts of Interest: The authors declare no conflict of interest.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.
24.

Harrison, R. Introduction To Monte Carlo Simulation. AIP Conf. Proc. 2010, 1204, 17-21. [CrossRef] [PubMed]

Cohen, Y.; Faccio, M,; Pilati, F; Yao, X. Design and management of digital manufacturing and assembly systems in the Industry
4.0 era. Int.]. Adv. Manufac. Technol. 2019, 105, 3565-3577. [CrossRef]

Azzi, A.; Faccio, M.; Persona, A.; Sgarbossa, F. Lot splitting scheduling procedure for makespan reduction and machine capacity
increase in a hybrid flow shop with batch production. Int. . Adv. Manufac. Technol. 2011, 59, 775-786. [CrossRef]

Matheson, E.; Minto, R.; Zampieri, E.G.G.; Faccio, M.; Rosati, G. Human-Robot Collaboration in Manufacturing Applications: A
Review. Robotics 2019, 8, 100. [CrossRef]

Boorla, S.M.; Bjarklev, K.; Eifler, T.; Howard, T.; McMahon, C.C.A. Industry 4.0-A challenge for variation simulation tools for
mechanical assemblies. Adv. Comput. Des. 2019, 4, 43-52. [CrossRef]

Soderberg, R.; Warmefjord, K.; Carlson, J.S.; Lindkvist, L. Toward a Digital Twin for real-time geometry assurance in individual-
ized production. CIRP Ann. 2017, 66, 137-140. [CrossRef]

Alerstam, E.; Svensson, T.; Andersson-Engels, S. Parallel computing with graphics processing units for high-speed Monte Carlo
simulation of photon migration. J. Biomed. Opt. 2008, 13, 060504. [CrossRef] [PubMed]

Walter, M.S.].; Klein, C.; Heling, B.; Wartzack, S. Statistical Tolerance Analysis—A Survey on Awareness, Use and Need in German
Industry. Appl. Sci. 2021, 11. [CrossRef]

Chase, K.W.; Greenwood, H.W. Design Issues in Mechanical Tolerance Analysis. Manufac. Rev. 1988, 1, 50-59.

Boulle, A.; Kieffer, J. High-performance Python for crystallographic computing. J. Appl. Crystallograph. 2019, 52, 882-897.
[CrossRef]

Soklaski, R. “Vectorized” Operations: Optimized Computationson NumPy Arrays. 2020. Available online: https://www.
pythonlikeyoumeanit.com/ (accessed on 22 February 2021).

Ishigami, T.; Homma, T. An importance quantification technique in uncertainty analysis for computer models. In Proceedings of
the First International Symposium on Uncertainty Modeling and Analysis, IEEE, College Park, MD, USA, 3-5 December 1990;
pp. 398-403. [CrossRef]

Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.;
et al. Array programming with NumPy. Nature 2020, 585, 357-362. [CrossRef] [PubMed]

Van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci.
Eng. 2011, 13, 22-30. [CrossRef]

The NumPy Team. NumPy-Open Source Scientific Computing Library for Python. 2020. Available online: https:/ /numpy.org/
doc/stable/ (accessed on 22 February 2021).

CuPy Team. CuPy—NumPy-Like API Accelerated with CUDA. 2020. Available online: https://docs-cupy.chainer.org/en/stable/
(accessed on 22 February 2021).

Thiyagalingam, J.; Beckmann, O.; Kelly, P. An Exhaustive Evaluation of Row-Major, Column-Major and Morton Layouts for Large
Two-Dimensional Arrays. In Proceedings of the 16th International Workshop, LCPC, College Station, TX, USA, 2—4 October 2003.
ISO/IEC/IEEE. ISO/IEC/IEEE International Standard—Floating-Point Arithmetic. ISO/IEC 60559:2020(E) IEEE Std 754-2019.
2020; pp. 1-86. Available online: https:/ /ieeexplore.ieee.org/document/9091348 (accessed on 5 May 2021). [CrossRef]
Techpowerup. NVIDIA GeForce RTX 2060. 2020. Available online: https://www.techpowerup.com/gpu-specs/geforce-rtx-2060
.c3310 (accessed on 22 February 2021).

Roy, U.; Liu, C.; Woo, T. Review of dimensioning and tolerancing: Representation and processing. Comput. Aided Des. 1991,
23, 466-483. [CrossRef]

Nigam, S.D.; Turner, J.U. Review of statistical approaches to tolerance analysis. Comput. Aided Des. 1995, 27, 6-15. [CrossRef]
Matala, A. Sample Size Requierement for Monte Carlo—Simulations Using Latin Hypercube Sampling; Helsinki University of Technology:
Helsinki, Finland, 2008.

Stuppy, J. Methodische und Rechnerunterstiitzte Toleranzanalyse fiir Bewegte Technische Systeme; VDI-Verl: Diisseldorf, Germany, 2011.
Chase, K.; Parkinson, A. A survey of research in the application of tolerance analysis to the design of mechanical assemblies. Res.
Eng. Des. 1991, 3, 23-37. [CrossRef]

http://doi.org/10.1063/1.3295638
http://www.ncbi.nlm.nih.gov/pubmed/20733932
http://dx.doi.org/10.1007/s00170-019-04595-0
http://dx.doi.org/10.1007/s00170-011-3525-x
http://dx.doi.org/10.3390/robotics8040100
http://dx.doi.org/10.12989/acd.2019.4.1.043
http://dx.doi.org/10.1016/j.cirp.2017.04.038
http://dx.doi.org/10.1117/1.3041496
http://www.ncbi.nlm.nih.gov/pubmed/19123645
http://dx.doi.org/10.3390/app11062622
http://dx.doi.org/10.1107/S1600576719008471
https://www.pythonlikeyoumeanit.com/
https://www.pythonlikeyoumeanit.com/
http://dx.doi.org/10.1109/isuma.1990.151285
http://dx.doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
http://dx.doi.org/10.1109/MCSE.2011.37
https://numpy.org/doc/stable/
https://numpy.org/doc/stable/
https://docs-cupy.chainer.org/en/stable/
https://ieeexplore.ieee.org/document/9091348
http://dx.doi.org/10.1109/ieeestd.2020.9091348
https://www.techpowerup.com/gpu-specs/geforce-rtx-2060.c3310
https://www.techpowerup.com/gpu-specs/geforce-rtx-2060.c3310
http://dx.doi.org/10.1016/0010-4485(91)90045-X
http://dx.doi.org/10.1016/0010-4485(95)90748-5
http://dx.doi.org/10.1007/BF01580066

Appl. Sci. 2021, 11, 4207 17 of 17

25.

26.

27.
28.

29.
30.

31.
32.
33.
34.
35.
36.

37.

Glancy, C.; Stoddard, J.; Law, M. Automating the Tolerancing Process. In Dimensioning and Tolerancing Handbook; McGraw-Hill
Education: New York, NY, USA, 1999.

Cvetko, R.; Chase, K.; Magleby, S. New Metrics for Evaluating Monte Carlo Tolerance Analysis of Assemblies; American Society of
Mechanical Engineers: New York, NY, USA, 1998.

Altschul, R.; Scholz, F. Case study in statistical tolerancing. Manufac. Rev. 1994, 7, 52-56.

Walter, M.; Spruegel, T.; Ziegler, P.; Wartzack, S. Berticksichtigung von Wechselwirkungen zwischen Abweichungen in der
statistischen Toleranzanalyse. Konstruktion 2015, 67, 88-92.

Sobol, .M. The Monte Carlo Method; Little Mathematics Library, Mir Publishers: Moscow, Russia, 1975.

Grossman, D.D. Monte Carlo Simulation of Tolerancing in Discrete Parts Manufacturing and Assembly; Technical Report; Stanford
University: Stanford, CA, USA, 1976.

Ostwald, W.; Thaer, C.; Heiberg, J. Ostwalds Klassiker der exakten Wissenschaften; Die Elemente von Euklid; Akademische
Verlagsgesellschaft m. b. h.: Leipzig, Germany, 1937.

Grohmann, P.; Kalvans, R. Statistical-Tolerance-Analysis-and-Synthesis-with-Python. 2021. Available online: https://github.
com/EinmalmitProfis /Statistical-Tolerance- Analysis-and-Synthesis-with-Python (accessed on 28 April 2021).

Andolfatto, L.; Thiebaut, F; Lartigue, C.; Douilly, M. Quality- and cost-driven assembly technique selection and geometrical
tolerance allocation for mechanical structure assembly. J. Manufact. Syst. 2014, 33, 103-115. [CrossRef]

Walter, M.S.J. Toleranzanalyse und Toleranzsynthese Abweichungsbehafteter Mechanismen; VDI Verlag: Diisseldorf, Germany, 2016.
The SciPy Community. Documentation. 2020. Available online: https://docs.scipy.org/doc/ (accessed on 22 February 2021).
The Python Software Foundation. Python Documentation. 2020. Available online: https://docs.python.org/3/ (accessed on
22 February 2021).

Hallmann, M.; Schleich, B.; Wartzack, S. From tolerance allocation to tolerance-cost optimization: A comprehensive literature
review. Int. J. Adv. Manufac. Technol. 2020, 107, 4859—4912. [CrossRef]

https://github.com/EinmalmitProfis/Statistical-Tolerance-Analysis-and-Synthesis-with-Python
https://github.com/EinmalmitProfis/Statistical-Tolerance-Analysis-and-Synthesis-with-Python
http://dx.doi.org/10.1016/j.jmsy.2013.03.003
https://docs.scipy.org/doc/
https://docs.python.org/3/
http://dx.doi.org/10.1007/s00170-020-05254-5

	Introduction
	Numerical and Programming Foundations for This Study
	Research Question
	Case Study: Overconstraint Door Hinge Assembly
	Methods: Detailing the Approach to Speeding Up Tolerance Simulations
	Procedure for the Statistical Tolerance Analysis
	Implementation of the Monte Carlo Simulation
	Procedure for Statistical Tolerance Synthesis
	Implementation of Statistical Tolerance Synthesis Using Numerical Optimization
	Runtime Measurement Notes
	Software Details
	Platform Details

	Results and Discussion
	Statistical Tolerance Analysis
	CPU Implementations
	GPU Implementations

	Statistical Tolerance Synthesis
	CPU vs. GPU Implementations
	Sample Size Required for a Reliable Estimate

	Additional Notes on Accuracy and Comparability of the Implementations
	Current Drawbacks of the Method and Future Research Demands

	Conclusions
	References

