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Abstract: While human activity recognition and pose estimation are closely related, these two
issues are usually treated as separate tasks. In this thesis, two-dimension and three-dimension
pose estimation is obtained for human activity recognition in a video sequence, and final activity is
determined by combining it with an activity algorithm with visual attention. Two problems can be
solved efficiently using a single architecture. It is also shown that end-to-end optimization leads to
much higher accuracy than separated learning. The proposed architecture can be trained seamlessly
with different categories of data. For visual attention, soft visual attention is used, and a multilayer
recurrent neural network using long short term memory that can be used both temporally and
spatially is used. The image, pose estimated skeleton, and RGB-based activity recognition data are
all synthesized to determine the final activity to increase reliability. Visual attention evaluates the
model in UCF-11 (Youtube Action), HMDB-51 and Hollywood2 data sets, and analyzes how to focus
according to the scene and task the model is performing. Pose estimation and activity recognition are
tested and analyzed on MPII, Human3.6M, Penn Action and NTU data sets. Test results are Penn
Action 98.9%, NTU 87.9%, and NW-UCLA 88.6%.

Keywords: activity recognition; deep neural network; visual attention; pose estimation

1. Introduction

Human activity recognition and pose estimation have attracted many applications
such as video-based recognition and human–computer interfaces. However, in terms of
accuracy and speed, a lot of research is still being conducted. Activity recognition and
pose estimation are usually handled separately. Despite the fact that pose is very related to
activity recognition, for the advantage of activity recognition, a method of solving both
problems at once is not actively studied [1]. Therefore, this paper focuses on a unique
end-to-end deep learning algorithm for jointly processing two-dimensional (2D) and three-
dimensional (3D) human activity recognition and pose estimation.

One of the main advantages of deep learning is that it can perform end-to-end op-
timization. As suggested by Kokkinos et al. [2], there are many advantages in the case
of a deep learning problem that can perform end-to-end optimization. Recent methods
based on deep convolutional neural networks have obtained results with high accuracy
in both 2D and 3D pose estimation tasks thanks to the advent of a new architecture and
the availability of large amounts of data [3]. Similarly, activity recognition has recently
been improved using deep neural networks that depend on human pose [4]. Since most
of the pose estimation methods perform heat map prediction, the two tasks have yet to
be combined and joint optimization has not been performed. This detection-based ap-
proach requires a function that maximizes the value to recover the joint coordinates as
a post-processing step, which breaks the backpropagation loop required for end-to-end
learning. Therefore, if this problem is solved, the pose estimation method and the activity
recognition method, which are very closely related, can be processed together to achieve
higher accuracy. When learning is performed using RGB-based image data and activity
recognition is performed, it is difficult to distinguish very similar activity such as drinking
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water or receiving a phone call. However, in pose estimation, it is possible to know that
the pose is clearly different using the joints of the body, and if the activity recognition is
performed using this joint data, the activity can be more accurately recognized.

Performing human activity recognition using deep learning made learning by imitat-
ing human neural networks. However, it is known that human visual recognition does
not focus on the entire scene at once [5]. Instead, humans focus sequentially on different
parts of the scene to extract relevant information. Most of the existing computer vision
algorithms do not use an attention mechanism and are not actively studied in various
fields of image/video. With the recent surge in deep neural networks, attention-based
models have been shown to achieve promising results in several challenging tasks includ-
ing subtitle generation, machine translation, and games. Many of these models use RNN
(Recurrent Neural Network)-based Long Short Term Memory (LSTM) and show good
results in the training sequence. The visual attention model can be classified into a soft
attention model and a hard attention model [6]. Soft attention models are deterministic
and can be trained using backpropagation, while hard attention models are probabilistic
and are trained with reinforcement learning algorithms [7]. Hard attention models can be
computationally expensive because they require sampling when training. On the other
hand, in the soft-attended approach, differentiable mappings can be used from any posi-
tional output to the next input. Therefore, the computational amount is less than that of
hardattention models. The attention-based model can potentially infer activity occurring in
the video by focusing only on the relevant position of each frame. Therefore, in this paper,
we propose a final activity recognition algorithm in which the soft visual attention model
is preceded, the weight is increased to the relevant location, and the activity is recognized
using visual data, and the data through pose estimation are considered together. Related
work to the proposed work in this paper is presented in Table 1.

Table 1. Comparison with other methods.

Purpose Feature Difference

Wang et al. [8] Sitting posture recognition
Pose estimation
Sitting pose

Visual attention and activity recognition
are performed with pose estimation
Performing not only sitting pose
but also other poses

Nadeem et al. [9]
Posture estimation for
sport activity recognition

Pose estimation for
activity recognition
Entropy markov model

Visual attention is also additionally
combined to perform Activity recognition
is performed by combining it with
an end-to-end model

Kulikajevas et al. [10] Detection of sitting posture
pose estimation
Sitting pose

Visual attention and activity recognition
are performed with pose estimation
Performing not only sitting pose
but also other poses

Proposed

Activity recognition
with combination of
deeply learned visual
attention and pose estimation

Pose estimation,
visual attention,
activity recognition
60 activities

Visual attention, pose estimation,
and appearance based activity recognition
are performed

2. Related Work
2.1. Visual Attention

Convolutional neural network (CNN) has been very successful in image classification
and object recognition [11]. Classifying videos instead of images adds a temporal dimension
to the image classification problem. Learning temporal dynamics is a difficult problem,
and previous approaches use optical flow, Histogram of Gradient (HOG), and hand-
crafted features to generate appearances and a variety of information-encoded descriptors.
LSTM has recently been shown to show high recognition performance in the areas of
speech recognition, machine translation, image description, and video description [12,13].
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In addition, many studies have begun on LSTM based on high recognition performance
in activity recognition [14]. Most existing activity recognition methods tend to classify
sequences directly with CNN, which is the basis of LSTM, or perform temporal pooling
of features before classification [15]. In addition, LSTM was used in the encoder-decoder
framework to learn effective representation of video in an unsupervised setting using video.
Recently, Yao et al. [14] proposed to generate video description using 3D CNN function
and LSTM decoder in the encoder-decoder framework. In this paper, we unify the focus on
video by defining the probability distribution over the frames used to generate individual
words. In general, analyzing the interior of a deep neural network is difficult because it is
called a black box. However, when performing a specific task, the visual attention model
adds a weight to the location where the model focuses to add interpretation possibilities.
Karpathy et al. [16] performed behavior recognition in video using a multi-resolution CNN
architecture. In this paper, the concept of center is mentioned and focus is focused on the
center of the frame. Recent work by Xu et al. [17] generated image descriptions using both
soft focus and hard focus mechanisms. Their model actually sees each object when creating
the description. This paper is based on this model. However, Xu et al. [17] mainly worked
on the caption generation of static images, and this paper focuses on using the soft attention
mechanism for activity recognition in video. Recently, Jaderberg et al. [18] proposed a soft
attention mechanism that adds a spatial converter module between CNN layers. Instead of
weighting the position using the softmax layer that is performed, an affine transform was
applied to several layers of the CNN to process the relevant parts, and experiments were
conducted on the Street View House Numbers data set [19]. Yeung et al. [20] performed
dense task labeling using a temporal attention-based model based on the input-output
context and showed the result of helping a better understanding and higher accuracy of
the temporal relationship of the working video. In Figure 1, a man is playing soccer with a
ball. The image above is the original image, and the image below is the image with visual
attention applied. The man and the ball are marked in white. The part marked in white is
the part that has a higher weight by applying visual attention.

Figure 1. Original image (top), image with visual attention applied (bottom). The area marked in
white has a high attention weight.

2.2. Activity Recognition

Activity recognition in video is considered a difficult problem because it contains a
high level of description, and it is also difficult to deal with the temporal dimension easily.
The previous approach used the classical method for feature extraction [21]. The key idea
here is to use visual features in space and time using body joint position. 3D convolution
has recently been mentioned as an option that provides the highest classification score [22].
However, it has a large number of parameters, and requires a large amount of memory for
training. And we can’t use a lot of images efficiently. Activity recognition improves accu-
racy by a model focused on body parts, and a two-stream network can be used to merge
RGB images and expensive optical flow maps [23]. Most 2D activity recognition methods
use body joint information to extract visual features, similar to attention mechanisms. Some
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methods of directly exploring body joints do not create them and are therefore limited to
datasets that provide skeleton data. The approach of this paper removes this limitation
by performing pose estimation along with activity recognition. Therefore, the proposed
model only needs RGB frames that are input as input while performing identifiable visual
recognition according to the estimated body joints. Unlike video-based activity recognition,
3D activitiy recognition mainly uses skeleton data as basic information [24]. Depth sensors
such as Microsoft Kinect can be used to capture 3D skeleton data without the complicated
setup procedures required for a motion capture system (Mocap). However, due to the use
of infrared projectors, these depth sensors are limited to indoor environments. In addition,
since the range precision is low and it is not resistant to occlusion, noise often occurs in the
skeleton. In order to cope with a noisy joint, the spatio/temporal LSTM network applied a
gating mechanism to learn the reliability of the joint sequence or used an attention mecha-
nism [25,26]. In addition to the skeleton data, the multi-mode approach can benefit from
visual cues. In a similar way, Baradel et al. [27] proposed a spatio/temporal attention mech-
anism that represents a pose using joint sequences for both spatial and temporal attention
mechanisms, and the activity classification is based on the pose and appearance features
extracted by the same method. The architecture predicts high-precision 3D skeletons from
the input RGB frames, so there is no need to post-process Kinect’s noisy skeletons. Also,
in this paper, temporal convolution was used instead of the general LSTM. However, it
shows excellent performance for 3D activity recognition.

2.3. Pose Estimation

The problem of human pose estimation is a field that has been continuously stud-
ied over the past few years, from image structure-based methods to recent CNN ap-
proaches [28,29]. Research related to pose estimation can be largely divided into two
methods detection-based method and regression-based method. The detection-based
method estimates the pose as a heat map prediction problem. Each pixel of the heat map
represents the detection score of the corresponding joint [30]. Studying the concepts of
stacked architecture, remaining connections and multi-scale processing, Newell et al. [3]
proposed a stacked hourglass network, which significantly improved the accuracy of the
2D pose estimation problem. Since then, state-of-the-art methods have been proposing
complex variations of the stacked hourglass architecture [3]. For example, in the study of
CRF (Conditional Random Field) and Yang et al. [31], the residual unit was replaced by
PRM (Pyramid Residual Module). GAN (Generative Adversarial Networks) was used to
improve the heat map by improving the learning ability of structural information and learn-
ing predictions with high accuracy [32]. However, the detection approach does not directly
provide joint coordinates. The function that maximizes the value to recover the posture
from the (x, y) coordinate is usually applied as a post-processing step. The regression-based
approach, on the other hand, uses a nonlinear function that maps the input directly to the
desired output (joint coordinates). According to this paradigm, Toshev et al. [33] proposed
dependent regression for body part detection and Carreira et al. [34] proposed repetitive
error feedback. A limitation of the regression method is that the regression function is not
frequently optimized. To solve these weaknesses, Luvizon et al. [35] proposed that the
soft-maximum likelihood function can be converted directly from the heat map into joint
coordinates, and consequently, the detection method can be converted into a regression
method. The main advantage of regression methods over detection methods is that they
are mostly completely distinguishable. This means that the output of the pose estimation
can be used for further processing and the whole system can be modified little by little.
In recent years, thanks to the availability of high-quality data, a deep architecture has been
used to learn accurate 3D representations from RGB images, and it also outperforms depth
sensors [36,37]. First, 2D pose estimation considering camera coordinates is processed,
and second, the estimated pose is matched with 3D representation through nonparametric
shape model. Skeletal representation of human pose has been proposed to reduce data
variance, but this structural transformation can have a negative effect on tasks that depend
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on the skeleton of the human body because errors accumulate every time it moves away
from the underlying skeleton [38]. Pavlakos et al. [39] proposed a stacked hourglass archi-
tecture. However, this method greatly increases the number of parameters and memory
required to store all gradients. The approach of this paper also stores the representation of 3D
pose, but uses a much lower resolution than the algorithm proposed by Pavlakos et al. [39]
and uses much less memory by using the continuous regression function.

3. Proposed Algorithm

This section describes the detailed description of the proposed algorithm. As shown
in Figure 2, input image is used by dividing the video sequentially. And visual attention
is performed, and as a result, appearance based recognition is performed. The result of
performing pose estimation using the input image is also combined with the previous
result to select to final label. Activity recognition procedure is shown as pseudocode in
Algorithm 1. Section 3.1 describes the visual attention algorithm in detail, and Section 3.2
describes pose estimation-based activity recognition in detail. And in Section 3.3, activity
recognition is described in detail.

Algorithm 1 Activity recognition procedure.
Input: Video frame N
Output: Result of activity

1: for Activity recognition do
2: Visual attention based activity recognition (N)
3: Pose estimation based activity recognition (N)
4: Appearance based activity recognition (N)
5: Aggregation
6: end for

Figure 2. Overall structure of the proposed algorithm. Our method provides 2D/3D pose estimation
from video frames. Pose, visual and appearance are used to predict activities in a unified framework.
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3.1. Visual Attention
3.1.1. Convolutional Features

In this paper, we extract the last convolutional layer obtained by pushing video
frames through the GoogLeNet model [40] trained on the ImageNet dataset [41]. This last
convolutional layer has a D convolutional maps and is a feature cube of shape K× K× D
(7 × 7 × 1024 in our experiments). So, we extract K2 D-dimensional vectors. We refer to
these vectors as feature slices in a feature cube:

Xt = [Xt,1, . . . , Xt,K2 ], (1)

Xt,i ∈ RD. (2)

Each of these K2 vertical feature slices mapped to a different overlapping region in the
input space, and the model draws attention to these K2 regions. Xt,i refers to the i slice of
the D-dimensional vector Xt.

3.1.2. LSTM and Attention Mechanism

In this paper, we implemented using LSTM proposed by Xu et al. [17].
it
ft
ot
gt

 =


σ(Wixt + Wiht−1 + bi)

σ(W f xt + W f ht−1 + b f )
σ(Woxt + Woht−1 + b0)

tanh(Wgxt + Wght−1 + bg

M
(

ht−1
xt

)
, (3)

ct = ft � ct−1 + it � gt, (4)

ht = ot � tanh(ct), (5)

where it is the t input gate, ft is the t forget gate, ot is the t output gate, and gt is t memory
gate, and is calculated as shown in Equation (3). σ(·) is the sigmoid function, and σ(s) is
defined as follows.

σ(s) =
1

1 + e−s , (6)

Wixt, W f xt, Woxt, Wgxt, is 4 weights used in each gate of the t time with xt, and Wiht−1,
W f ht−1, Woht−1, Wght−1 is the 4 weights used in each gate of the t − 1 time with ht−1.
bi, b f , bo, bg is 4 weights bias used in each gate. ct is the t cell state, ht−1 is the t− 1 hidden
state, xt represents the input to the LSTM at time step t. and ft� ct−1 denotes the Hadamard
product of the t forgetting gate ft and the t− 1 cell state ct. tanh(·) is the sigmoid function,
and tanh(s) is defined as follows.

tanh(s) =
es − e−s

es + e−s , (7)

M is an affine transformation consisting of trainable parameters from dimension a to
dimension b (Ra → Rb). At each time step t, the model predicts lt+1, which is used as an
input to the next time step t + 1, through the LSTM model. Then, the model predicts the
label class yt corresponding to the t through tanh activation and Softmax (see Figure 3).
The location softmax is defined as follows:

lt,i = p(Lt = i | ht−1) =
exp(WT

t ht−1)

ΣK×K
j=1 exp(WT

j ht−1)
i ∈ 1, . . . , K2, (8)

where Wi are the weights mapping to the ith element of the location softmax and Lt is
a random variable which can take 1-of-K2 values. And Wj is a weight mapped to the j
element calculated through a Softmax operation, and lt,i is the i element among K2 of lt
used as inputs. This softmax can be thought of as the probability with which our model
believe the corresponding region in the input frame is important. After calculating these
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probabilities, the soft attention mechanism computes the expected value of the input
at the next time-step xt by taking expectation over the feature slices at different region
(see Figure 4):

xt = Ep(Lt |ht−1)
[Xt] = ΣK2

i=1lt,iXt,i, (9)

where Xt is the feature cube and Xt,i is the i slice of the feature cube at time-step t. Note
that in the hard attention based models, we would sample Lt from a softmax distribution
of Equation (8). The input xt would then be the feature slice at the sampled location
instead of taking expectation over all the slices. Thus, hard attention based models are
not differentiable and have to resort to some form of sampling. We use the following
initialization strategy (see Xu et al. [17]) for the cell state and the hidden state of the LSTM
for faster convergence:

c0 = finit,c(
1
T

Σt
t=1(

1
K2 ΣK2

i=1Xt,i)) (10)

h0 = finit,h(
1
T

Σt
t=1(

1
K2 ΣK2

i=1Xt,i)) (11)

where finit,c and finit,h are two multilayer perceptrons and T is the number of time-steps in
the model. These values are used to calculate the first location softmax l1 which determines
the initial input x1. In our experiments, we use multi-layered deep LSTMs, as shown
in Figure 3.

Figure 3. Our recurrent model. At each time-step t, our recurrent network takes a feature slice xt,
generated as in Figure 4, as the input. It then propagates xt through three layers of LSTMs and
predicts the next location probabilities It+1 and the class label yt.
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Figure 4. Soft attention mechanism. The CNN takes video frame as its input and produces a feature
cube. The model computes the current input xt as an average of the feature slices weighted according
to the location softmax It.

3.1.3. Loss Function and Attention Penalty

We use cross-entropy loss coupled with the doubly stochastic penalty introduced
in Xu et al. [17]. We impose an additional constraint over the location softmax, so that
∑T

t=1 lt,i ≈ 1. This is the attention regularization which forces the model to look at each
region of the frame at some point in time. The loss function is defined as follows:

L = −ΣT
t=1ΣC

i=1yt,i log ŷt,i + λΣK2

i=1(1− Σt=1T lt,i )
2 + γΣiΣjθ

2
i,j, (12)

where yt,i is the i one hot label vector in time step t, ŷt,i is the i class probability vector in
time step t, T is the total number of time steps, C is the number of output classes, λ is the
number of attention penalty coefficient, and γ is the weight adjustment. And θ represents
all model parameters of the i, j.

3.2. Pose Estimation
3.2.1. 3D Pose Estimation and Data Alignment

Recent development in deep learning has enabled hierarchical systems to learn pow-
erful filters from data [42]. Furthermore, filters that are learned from large datasets can
effectively be used for problems with insufficient data, using what is called transfer learn-
ing. The VNect approach propose in [43] is one of the systems that use transfer learning
for effective 3D pose estimation directly from RGB images. VNect is based on a CNN
pose regression that allows the real-time estimation of 2D and 3D skeletons using RGB
image. For each estimated human joint, the network is trained to estimate a 2D confidence
heatmap along with locations maps (for each of the three dimensions). One of the main
advantages of estimating a 3D pose is the ability to estimate the positions of corresponding
3D points in different viewpoints. In which case, 3D pose alignment can be estimated
with a closed-form solution. To further explain, let x1 and x2 be the estimates of the same
subject’s 3D pose from two different viewpoints. Assuming the mean of the estimated pose
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is centered, the alignment of the estimated pose is performed by estimating the rotation R
through the following optimization:

argmin
R
‖x1 − Rx2‖2

2 (13)

The Equation (13) has a closed-form solution given as

R̃ = VUT (14)

where U ∑ VT = x1xT
2 , with U and Vbeing unitary matrices and ∑ a diagonal matrix

corresponding to the singular value decomposition (SVD) of x1xT
2 . The matrix R̃ denotes

the estimated rotation matrix. Given two sequences on n poses estimated from two different
viewpoints X1 = x1

1, · · · , xn
1 and X2 = x1

2, · · · , xn
2 , we estimate the alignment between the

first corresponding poses x1
1 and x1

2 using Equation (14). Afterwards, the estimated rotation
matrix R is used to align the rest of the subsequent poses of the sequence.

3.2.2. Pose Sequence Modelling

In general, 3D pose estimation from RGB data can be noisy depending on the es-
timation model and the available training dataset. In this subsection, we propose an
LSTM-based temporal model that is suitable for estimating the temporal dependency
between noisy skeletal pose estimates. Our approach has two main components: (1) a feed-
forward network for expanding the data to a high-dimensional space, and (2) multi-layer
LSTM units for modelling the temporal dependency. (see Figure 5) First, the description
of data expansion. An estimated 3D skeleton with J number of joints is a vector in R3J .
Hence, a noisy joint estimate is directly reflected on some of the dimensions of the observed
vector. One typical solution for removing noise and redundancy is to contract the data to
a lower dimensional space [44]. On the contrary, in this paper, we expand the data to a
higher dimensional space. The main motivation for expanding the data is to disentangle
explanatory factors that are obscured by noisy joint estimates. Consequently, the parame-
ters of the expansion function are learned directly from the training dataset. Expansion of
an observed skeleton is defined as follows:

x̃ = tanh(Wx + b), (15)

where W is a k× 3J matrix with k� 3J, b is a bias vector in a k-dimensional space, and the
x̃ denotes the expanded pose estimate. Second, the description of temporal model and
activity labeling. The temporal dependency between the sequential data points modelled
using layers of LSTM units [6]. An LSTM is a gated recurrent neural network that models
temporal dependency as a stationary process. While it has several components, we herein
will refer to the integrated computational unit as LSTM. Subsequently, given an expanded
input data x̃, we estimate hierarchical latent variables by layering LSTM units one on top
of another, see Figure 5. Consequently, the inferred latent space from the i pose estimate is
given as

hL
i = LSTM(x̃i), (16)

where L denotes the index of the last LSTM layer. Finally an activity label from a set Ψ is
assigned to a sequence as

ψ̃ = argmax
ψ∈Ψ

(tanh(WhL
n + b)), (17)

where n is the index of the last pose estimate. Ψ is the set of activity labels, ψ is the
activity label that can be output as a result, and ψ̃ is the final determined activity label.
The connection weights and biases of the overall network (temporal model and data
expansion) are trained together by minimizing the cross-entropy between the predicted
and the given probability of an activity label via back-propagation and back-propagation
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through time [42]. In Figure 6, you can see that each joint represents a human skeleton. This
uses VNect, and if the pose estimation result and the RGB-based result are combined as a
result, the accuracy of similar motions that could not be properly classified is improved.

Figure 5. Proposed network for activity recognition using pose estimation. FC refers to the fully
connected layer at the end of the main LSTM block.

Figure 6. Result of pose estimation. Figure shows the skeletons for pitching, bench press, and bowling
poses, respectively.

3.3. Activity Recognition

In Figure 7, visual features and probability maps are extracted using Inception V4.
Visual features are extracted from the first network, and probability maps corresponding to
each of the prediction blocks up to the K are extracted. Using the extracted visual features
and probability maps, they are combined as shown in Figure 7 to create an appearance-
based feature. Activity recognition is called appearance based recognition. The appearance
based part is similar to the pose based part, with the difference that it relies on local
appearance features instead of joint coordinates. In order to extract localized appearance
features, we multiply the tensor of visual features Ft ∈ RW f×H f×N f obtained at the end
of the global entry flow by the probability maps Mt ∈ RW f×H f×NJ obtained at the end
of the pose estimation part, where W f × H f is the size of the feature maps, N f is the
number of features, and NJ is the number of joints. Instead of multiplying each value
individually as in the Kronecker product, we multiply each channel, resulting in a tensor of
size RW f×H f×NJ×N f . Then, the spacial dimensions are collapsed by a sum, resulting in the
appearance features for time t of size RNJ×N f . For a sequence of frames, we concatenate
each appearance features for t = 0, 1, ..., T resulting in the video clip appearance features
V ∈ RT×NJ×N f . To clarify the above appearance features extraction process, a graphical
representation is shown on Figure 8. Appearance features extraction from low level
visual features and body parts probability maps for a single frame. For a sequence of T
frames, the appearance features are stacked vertically producing a tensor where each line
corresponds to one input frame.
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Figure 7. Visual feature and probability map extraction algorithm through Inception V4. Human
pose regression approach from a video frame. The input video is fed through a CNN composed by
one entry flow and K prediction blocks. Predictions are refined at each prediction block.

Figure 8. Appearance based activity recognition. Appearance features extraction from low level
visual features and body parts probability maps for a single frame. For a sequence of T frames,
the appearance features are stacked vertically producing a tensor where each line corresponds to one
input frame.

4. Experiments

In this paper, the experiment was conducted after learning visual attention, activity
recognition, and pose estimation with each data. UCF-11 [45], HMDB-51 [46], and Holly-
wood2 [47] datasets were used as a dataset for activity recognition using visual attention,
NW-UCLA [48] as a dataset for pose estimation, and Penn Action [49], NTU RGB+D [50]
as a dataset for activity recognition through appearance. The experiment was carried
out using.

4.1. Datasets

UCF-11 is a Youtube Action dataset consisting of 11 activities such as basketball
shooting, cycling, diving, golf swing, horseback riding, soccer, juggling, tennis, trampoline,
volleyball and walking. The clip has a frame rate of 29.97 FPS (Frames Per Second), and each
video has only one linked activity. We use 975 videos for training and 625 videos for testing.
The HMDB-51 Human Motion Database data set provides 3 training data consisting of
5100 videos each. There are 51 kinds of human activities in this clip, such as clapping,
drinking, hugging, jumping, and throwing. There are 3570 videos in the training set and
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1530 videos in the test set. The frame rate of the clip is 30 FPS. The Hollywood2 Human
Actions data set consists of 1707 video clips collected from movies. There are 12 types of
human behavior in this clip: driving, eating, fighting, shaking hands, hugging, kissing,
running, standing up, sitting, and answering the phone. There are 823 videos in the training
set and 884 videos in the test set. All videos in the dataset were scaled to resolution and
provided to a GoogLeNet model trained on the ImageNet dataset. The last convolutional
layer of 7× 7× 1024 was used as input to the model. The NW-UCLA data set is one of the
RGB-D based data sets. It consists of 1494 videos in 10 activity classes: pick up with one
hand, pick up with two hands, throw away trash, walk, sit down, stand up, put on, take
off, throw, and move. Each activity was performed 1–6 times per learning. The data set
is provided with RGB and depth corresponding expected 3D skeleton sequences. For the
experiment, the segmentation protocol proposed by Wang et al. [51] is followed. The Penn
Action data set consists of 2326 videos containing 15 activities including baseball pitching,
bench press, and guitar striking. The disadvantage of this data set was that several body
parts were missing from many tasks and the image scale was different from sample to
sample. The NTU RGB+D data set is a data set for 3D activity recognition. It consists of a
Full HD 56 K video of 60 activities performed by 40 actors, and is recorded with 3 cameras
at 17 different position settings, providing over 4 M video frames.

4.2. Experimental Environment and Parameter Setting

In experiments for visual attention, the model architecture and various other hyper-
parameters were set using cross validation. Specifically, we trained with a 3-layer LSTM
model with dimensions of the LSTM hidden state, cell state, and hidden layer set to 512
for UCF-11 and Hollywood2 and 1024 for HMDB-51 for all data sets. We also tested a
model with 5 LSTM layers in 1 LSTM layer, but the model performance did not improve
significantly. The attention penalty coefficients were tested with 0, 1, and 10 values. Drop
out was used as 0.5. All models are based on the method proposed by Bastien et al. [52]
for the entire data set and also handle slope calculation. For both training and testing,
the model in this paper uses 30 frames sampled at a fixed FPS rate. Each video is divided
into groups of 30 frames starting from the first frame, selecting 30 frames according to
the FPS rate, and then proceeding to stride 1. Thus, each video is divided into several
30 length samples. At test time, class predictions for each time step are computed and
these predictions are averaged over 30 frames. The predictions are averaged over all 30
frame blocks of the video to get a prediction for the entire video clip. In Figure 9, changes
of attention penalty are shown with varying λ.

Figure 9. Attention penalty value changes in visual attention according to the λ value. The white
regions are where the model is looking and the brightness indicates the strength of focus. Setting
λ = 0 corresponds to the model that tends to select a few locations and stay fixed on them. Setting
λ = 10 forces the model to gaze everywhere, which resembles average pooling over slices.

The Softmax regression model uses 7× 7× 1024 feature cubes as inputs to predict
labels at each time step, while all other models only use 1024 dimensional feature slices
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as inputs. In Figure 10, you can see the change in visual attention according to the visual
attention penalty λ value. If λ values are 1 or 10, it is difficult to say that a proper weight
value is calculated because it gives a visual attention effect to too many parts. However,
when the value is set to 0, the hyperparameter value is set to 0 because the person attends
on the part where they play golf and attends their visuals.

Figure 10. Activity recognition results using visual attention. Soccer and Golf are paying attention
correctly (Top). But Jump and Hug are wrong (Bottom).

In Figure 10, playing soccer and playing golf were accurately recognized. However,
the figure below shows that he is playing golf but is jumping, or he is doing squat but
is playing hugs. You can see that the part marked in white is inaccurately attending on
the visual. In this way, when only the visual attention algorithm is used, it may not be
accurately found. To solve this problem, pose estimation, activity recognition, and visual
attention are all necessary. For pose estimation, we used a pre-trained VNect model that
provides a 3D joint estimate with 20 joints per frame to estimate a 3D joint sequence from
an RGB video provided by NW-UCLA. In addition, the joint sequences were temporally
aligned using zero padding in an automated manner. In the experiment, the batch size was
set to 2 considering the small size of the NW-UCLA dataset. Also, using cross-validation,
the optimal learning rate was set to 0.0002 and the number of epochs was selected as 100.
The architecture implementation is based on PyTorch, which uses 128 hidden units per
layer. For appearance-based activity recognition, Penn Action and NTU RGB+D datasets
are used. When training, we train the network using the cross entropy loss, and at training
we randomly select a fixed size clip with T frames from the video samples. Use the results
for a single clip or multiple clips in the test. In the first case, you cut a single clip in the
middle of the video. In the second case, we cut out several clips at T/2 frame intervals in
time. The final score for multiple clips is calculated as the average result for all clips in
a video. To estimate the bounding box in the test, the prediction is performed using the
entire image of the first, middle, and last frame of the clip.

4.3. Experiment Result

Table 2 shows the experimental results using the Penn Action dataset. Each experiment
was performed using different input data. Basically, appearance-based data was used as
input, and the accuracy of the final activity recognition was calculated when the pose
estimation result was added, the visual attention result was added, and the pose estimation
result and the visual attention result were added. When only the pose estimation result
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was added, it was 97.9%, when only the visual attention resultwas added, it was 97.7%,
and when both were added, it was 98.9%, which was 0.8% higher than theresult suggested
by Cao et al. [22].

Table 2. Experimental results with the Penn Action dataset.

Methods RGB Optical Flow Estimated Poses Visual Attention Accuracy

Nie et al. [21] X O X X 85.5%
Iqbal et al. [53] O O X X 79.0%
Iqbal et al. [53] X X X X 92.9%
Cao et al. [22] X O O X 98.1%
Cao et al. [22] X O X X 95.3%

Based on Visual attention O O X O 97.7%
Based on Estimated poses O O O X 97.9%

Proposed O O O O 98.9%

Table 3 shows the experimental results using the NTU dataset. Since NTU’s skeletal
data is often noisy, we trained with 10% of the NTU’s data and 90% of the pose estimation
data using video clips of 20 body joints and frames. As shown in Table 2, the method in
this paper improves accuracy by adding RGB frames, pose estimation, and visual attention
results. It is 87.7% when only RGB frame and pose estimation are added, 87.5% when only
visual attention is added, and 87.9% when both are added, which is 25% better than the
method proposed by Shahroudy et al. [54]. Many of the previous methods use the posture
provided by Kinect-v2. This pose estimation result is known to be noisy. As shown in
Table 3, the method of this paper improves accuracy by 12.3% compared to the method
proposed by Baradel et al. [27] using Kinect when pose estimation is added. This means
that the performance is better when visual attention is used than when visual attention is
not used. And the performance is better when the pose estimation is added than when it is
not added. In addition, there may be limitations with only one method of visual attention,
pose estimation, and appearance-based activity recognition, but it can be said that the
accuracy was improved by complementing the limitations.

Table 3. Experimental results with the NTU dataset.

Methods Kinect Poses RGB Estimated Poses Visual Attention Accuracy

Shahroudy et al. [54] X O O X 62.9%
Liu et al. [25] X O O X 69.2%

Song et al. [55] X O O X 73.4%
Liu et al. [26] X O O X 74.4%

Shahroudy et al. [56] X X O X 74.9%
Baradel et al. [27] X O O X 77.1%
Baradel et al. [27] O X O X 75.6%
Baradel et al. [27] X X O X 84.8%

Based on Visual attention X O X O 87.5%
Based on Estimated poses X O O X 87.7%

Proposed X O O O 87.9%

Table 4 shows the results of experiments on the NW-UCLA dataset. First, the accuracy
improved to 79.9% when only the extension and LSTM were used, and 83.4% when only
the extension and LSTM were used. In addition, when VNect is used, it is 87.2%, which
is improved by 3.8%, and when the method proposed in this paper is used, it shows
the highest performance at 88.6%. Figure 11 shows the results of loss function value
during training.
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Table 4. Experimental results with the NW-UCLA dataset.

Methods Accuracy

No expansion + LSTM 79.9
Expansion + LSTM 83.4

VNect + Expansion + LSTM 87.2
Proposed 88.6

Figure 11. Loss function value during training.

5. Conclusions

In this paper, we proposed activity recognition that considers visual attention, pose
estimation, and activity recognition. Through the visual attention algorithm, weights are
added to the necessary parts to enable attention calculation. The visual attention algorithm
uses a soft visual attention algorithm to enable calculation without increasing the amount
of calculation. And we use VNect to estimate the pose. If only appearance-based activity
recognition is used, it is not possible to accurately distinguish between similar activities.
However, if you have information about pose estimation, it is possible to accurately
recognize similar activities due to different joints. It performs appearance-based activity
recognition with information on visual attention and activity recognition. For this reason,
the information of all three is synthesized to estimate the final activity recognition label.
UFC-11, HMDB-51, and Hollywood2 datasets were used for visual attention, and NW-
UCLA was used as activity recognition dataset through pose estimation. And Penn Action,
NTU RGB+D was used as a data set for appearance-based activity recognition. Intelr

Core™ i3-8100 CPU @ 3.60 GHz was used as the experiment environment, and Geforce
2070 RTX was used as the GPU. In addition, 24 GB of RAM is used, and the experiment was
conducted on the operating system of Ubuntu 16.04. Existing appearance estimation-based
activity recognition algorithms show 98.9% accuracy for the Penn Action dataset, 87.9%
for the NTU dataset, and 88.6% for the NW-UCLA dataset. The advantage of such an
algorithm is that it is possible to accurately recognize activities with a lot of information
even for parts that cannot be accurately identified. However, despite the use of the soft
visual attention algorithm, an increase in the amount of computation is inevitable in order
to perform all three. Therefore, it is not suitable for use in real-time activity recognition
estimation. In order to improve these pinkshortcomings, it is necessary to devise a method
that does not increase the amount of calculation but can maintain or improve the accuracy.
If the accuracy is improved without increasing theamount of calculation, it can be applied
in fields requiring real-time processing. In addition, a detailed analysis of each class is
required. While there are classes with improved accuracy such as drinking water and
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answering calls, there are classes with no improved accuracy, such as walking and playing
basketball. Therefore, by analyzing the class with improved accuracy and the class with
no improved accuracy, we will devise a method to improve the accuracy even in the class
with no improved accuracy. In conclusion, we proposed an activity recognition method
that considers visual attention, pose estimation, and activity recognition, and we plan
to research a method to improve accuracy and reduce the amount of computation as a
future work.
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