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Abstract: Goal recognition is a sub-field of plan recognition that focuses on the goals of an agent.
Current approaches in goal recognition have not yet tried to apply concept learning to a propositional
logic formalism. In this paper, we extend our method for inferring an agent’s possible goal by
observing this agent in a series of successful attempts to reach its goal and using concept learning on
these observations. We propose an algorithm, LFST (Learning From Successful Traces), to produce
concise hypotheses about the agent’s goal. We show that if such a goal exists, our algorithm always
provides a possible goal for the agent, and we evaluate the performance of our algorithm in different
settings. We compare it to another concept-learning algorithm that uses a formalism close to ours,
and we obtain better results at producing the hypotheses with our algorithm. We introduce a way to
use assumptions about the agent’s behavior and the dynamics of the environment, thus improving
the agent’s goal deduction by optimizing the potential goals’ search space.

Keywords: intention recognition; goal recognition; machine learning; multi-agents system; concept learning

1. Introduction

New technologies are increasingly present, and soon artificial intelligence will be every-
where. Home automation, robotics, intelligent personal assistants will soon be interacting
with humans daily. Nevertheless, for this, we need artificial intelligence able to understand
and interpret human intentions. It is not trivial. Even currently, the knowledge about an
agent’s intentions is important, in the case of cooperation or competition in multi-agent
systems, for an intelligent assistant that tries to guide or help a human user, or just even
for marketing, when trying to target some specific customers. The ISS-CAD problem [1]
illustrates this problem; a free-flying robot observes an astronaut performing a task on the
International Space Station and tries to help him. In hazardous areas where humans require a
robot’s assistance, intention recognition can also be used to allow the robot to act as a scout for
the human by guessing in which direction the human will move [2]. This problem is called
“intention recognition” or “plan recognition”, it has many applications and has been studied
for some time in AI research. Schmidt et al. [3] introduced the problem of plan recognition as
the intersection of AI and psychology. Charniak and Goldman [4] used Bayesian models to
design a general method to solve the plan recognition problem, and Geib and Goldman [5]
also use a probabilistic algorithm that is based on plan tree grammars to address several
issues in the field such as partially ordered plans, the execution of multiple plans, and
failing to observe actions. Singla and Mooney [6] mix logic and probabilistic approaches to
handle structured representations and uncertainty. Another interesting application field
for this problem is game AI. In many video games, the AI has a hard time playing against
a human player and often has extra bonuses or even cheats to be able to win. However, the
AI rarely manages to adapt its strategy to the player’s strategy, and thus the game could be
dull. An AI able to adapt its behavior according to the player’s behavior could significantly
improve the entertainment and the challenge in the video game field. Refs. [7–9] support
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these statements and show that this field is also an excellent sandbox for experiments in
plan and intention recognition. Carberry [10] described the plan recognition problem and
surveyed different ways to tackle this problem. However, new approaches have since
emerged, and many can be found in [11]. Ramirez and Geffner [12] were among the first to
address plan recognition as a planning problem where they have a set of goals, they get
some of the actions performed by the agent as observations and try to figure out the optimal
plans to reach these goals knowing that they must be compatible with the observations.
The plans matching the observations are selected as potential plans assuming that the agent
follows a rational behavior. In this paper, we focus on a sub-field of plan recognition called
“Goal recognition”, which concerns the understanding of an agent’s goals. Recent related
works [13–17] show that goal recognition is growing of interest.

Much previous work has attempted solving the plan recognition problem using a set
of pre-determined goals for the agent and guessing which one is the most likely. It is the
case in the work of Lang for example [18]. Often, they assume that this pre-determined
set of goals is given, but it is usually not the case. Several approaches remove the use
plan libraries; instead, they use planning and POMDP like Ramirez and Geffner [19,20],
or deep learning like Min et al. [9] or even inverse planning like Baker et al. [21–23]. It
allows them to be more general and adaptive by not relying on some plan library that will
need to be changed for each problem, but most of them still assume that they know the
set of possible goals of the agent and need it to work. This assumption, made in previous
work and which we do not take for granted, motivated our work. What if we do not
have information about the agent and its preferences? If the agent evolves in a complex
environment, it could potentially have many goals. We wanted to see to what extent it
was possible to generate this set of potential goals for the agent. Furthermore, this, using
simple but effective tools, which are propositional logic and concept learning. Moreover,
there are only a few approaches using propositional logic for goal recognition. This lack
of literature has reinforced our interest in this formalism. Hong [24] uses propositional
logic, but he combines this to a graph representation, and as with previous approaches, he
already knows the agent’s goals.

This paper is an extension of our previous work [25]. We developed a method for
inferring an agent’s possible goal using concept learning. We review our method, provide
additional evaluations, and describe new extensions of this method. First, Section 2 will
explain how we formalize the concept-learning task of inferring an agent’s goals from
observations of successful scenarios. We will show our algorithm LFST and explain it in
Section 3 and present, in Section 4 an experimental study of the proposed algorithm where
we compare it to two other algorithms, [26,27] (an improved version of [28]) and show that
we often get better results with our algorithm. We will explain how to use assumptions
about the environment and the agent decision process to improve the results of LFST in
Section 5. We will detail two ways to extract this information from the data and a way to
consider the agents’ preferences regarding their goals in Section 6. Finally, we will conclude
this paper with Section 7.

2. Problem Formalization

We want to infer an agent’s possible goals by observing a series of successful attempts
by the agent to achieve them. We, therefore, assume a training process in different scenarios
during which we observe the agent performing actions until it achieves one of its goals.
We will model these observed scenarios as a set of traces describing the succession of states
of the environment as well as the actions of the agent. We consider environments without
exogenous events and with discrete-time: an action performed by the agent always leads to
a state change. The state of the environment is modeled as a series of attributes with discrete
values: N variables vari for i ∈ {1, . . . , N} taking values in domains Dj = {vali

1, . . . , vali
Ni
}.

An atomic representation is construct by converting all the couples vari = vali
j into atoms

var
vali

j
i , we denote by L this set of atoms. We define a state S as a set of atoms var

vali
j

i from L
with each vari only appearing once, and we define a trace as a sequence of couples (Si, ai)
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with Si ⊂ L being a state and ai an action (taken from A, a finite set of actions). Traces can
be of different lengths as they rely on the number of actions performed by the agent to
reach its goal. We will not go into the details of the environment’s dynamics, but they can
be abstracted away using a function next from 2L ×A to 22L which will, given a state S
and an action a provides the set of potentially reachable states from S by performing a. If
the environment is deterministic, next(S, a) will correspond to a single state. Since they
come from observations, the traces are assumed to follow this dynamic, meaning that if the
index i is not the last one of the trace, we have: Si+1 ∈ next(Si, ai). We define successful
traces using a special action success that has no effects (∀S, next(S, success) = {S}),
performed by the agent whenever it reaches its goal. Thus, a successful trace is a trace
T = (S0, a0), . . . , (Sk, ak) with ak =success and ai 6=success for i < k. A successful trace
is therefore a trace ending in the first state where the agent achieves its goal. Given a
trace T = (S0, a0), . . . , (Sk, ak), we denote the last state Sk of this trace by endS(T) and the
set of intermediate states {S0, . . . , Sk−1} by intS(T). Our problem takes as input a set of
successful traces: Σ = {T0, . . . , Tl} and we seek to infer from it a hypothesis about the
agent’s goals expressed as a propositional formula over L, this hypothesis must be satisfied
by specific states (when interpreting states as a conjunction of atoms) if and only if a goal is
achieved in these states. It is assumed here that the goal does not depend on the way it is
reached, only the final state matters. The agent only needs to reach a state satisfying its
goal. To cover several goals, we want the hypothesis written as a DNF (Disjunctive Normal
Form). More exactly, we want a hypothesis of the form H = C0 ∨ C1 ∨ ...∨ Cm with each
Ci = x0 ∧ ...∧ xn being a conjunction of atoms from L. Then, given H = C0 ∨ C1 ∨ ...∨ Cm
, a state S = {y0, . . . , yN} satisfies H if and only if

∧
yi∈S yi |= H, i.e., if and only if there

exists i ∈ {0, . . . , m} such that Ci ⊆ S (an assignment A is a model of a formula F if F
is true under this assignment, A |= F). Even without knowledge about the dynamics of
the system or the agent’s behavior, these observations provide a series of states where it
is known whether or not the agent’s goals are being reached. In fact, we can build the
set of successful states Spositive by including in it all the end-states of successful traces
from Σ, such that Spositive = {endS(T)|T ∈ Σ}. In the same way, we can build the set
of unsuccessful states Snegative taking the union of all the intermediate states, such that
Snegative =

⋃
T∈Σ intS(T). The problem of inferring an agent’s goals is then equivalent to a

concept-learning problem with the states belonging to Spositive as positive examples and
the states belonging to Snegative as negative ones. We said that a hypothesis H is consistent
with our data if all the elements of Spositive satisfy it and none of the elements of Snegative
satisfy it. We are looking for such a hypothesis as the output of our problem. We designed
an algorithm, LFST, to address this problem and produce the hypothesis sought. LFST can
be found in Section 3.

Our assumptions are strong, and we are aware of this, though we do not think they
are absurd. Of course, usually, an agent will not stop acting after reaching its goal, but a
significant change in its behavior could be observed. This significant change could hint
about when the goal was reached, and then we could find the successful state. For instance,
in the field of game AI, especially for Real-Time Strategy game such as StarCraft (StarCraft:
Brood War are trade-marks of Blizzard Entertainment™) the player will usually follow
a specific pattern called “Build Order”, it is a specific series of actions that will lead the
player to a specific state in the game (several units and buildings at disposal) which allow
the player to use different strategies. There are many strategies in this game and as many
Build Orders. Players will tend to wait to finish their Build Order before launching an
offensive. If we want to learn the different Build Orders used by a player by analyzing
different games that this player played, we must find the moment when the offensives
started to determine when the Build Order was completed and then use our method to
learn it. There are quite a few works about inferring the Build Order of a player in StarCraft
[29,30], but they mainly use the hand, hardcoded Build Orders. Now, we will introduce
some definitions adapted from [26] to make the rest of the paper easier to understand.
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Definitions

• A prototype is a conjunction of atoms from L (for example pi = x0 ∧ x1 ∧ x2), the states
of the world S being also conjunctions of atoms from L they are prototypes, there are
prototypes of different sizes.

• We say that a prototype p1 is more general than a prototype p2 if and only if the set of
atoms describing p1 is a subset of the set of atoms describing p2. A prototype p1 is
more specific than a prototype p2 if and only if the set of atoms describing p2 is a subset
of the set of atoms describing p1.

• A prototype p1 covers a prototype p2 if and only if p1 is more general than p2, written
cover(p1, p2). On the other hand, a prototype p1 rejects a prototype p2 if and only if
p2 is not more general than p2.

3. Learning from Successful Traces

As shown in the previous section, we can model the problem of inferring an agent’s
goal from the observation of a set of successful scenarios as a concept-learning problem
by converting the set of successful traces Σ that we observed into the sets of states Spositive
and Snegative. In fact, the goal of the agent will be the concept that will be learned. To solve
this problem, we will produce a hypothesis H in the form of a DNF and such that H is
consistent with our data (i.e., satisfied by all the states in Spositive and none of the states
in Snegative), as described in Section 2. In other words, for any state Si ∈ Spositive, ∃pj ∈
H a prototype such as cover(pj, Si) and for every state Sk ∈ Snegative,@pj ∈ H such as
cover(pj, Sk). Given this, using an existing symbolic concept-learning algorithm such as
MGI, Ripper, or ID3 [26,28,31] would be possible. With an output close to the form we
are looking for, MGI might be a good candidate. However, being a bottom-up algorithm,
the least general generalization of some positive examples will provide the different
conjunctive statements of the disjunctive hypothesis. Knowing that we will probably have
many more negative examples than positive examples in our specific case, we adapted this
algorithm using different biases that will favor the generation of general terms. We named
this concept-learning process LFST (Learning From Successful Traces) and described it in
Algorithm 1.

Algorithm 1 Learning From Successful Traces.
Input: Snegative, Spositive
Parameter: listO f PotentialGoals = list(), i = integer, hypothesis = list()
Output: hypothesis

1: for state in Spositive do
2: if ∃p ∈ hypothesis such as cover(p, state) then
3: skip to next state
4: else
5: listO f PotentialGoals = [list of all the prototypes covering state]
6: pcurrent = the most general prototype p ∈ listO f PotentialGoals[i] such as p covers

as many states from Spositive as possible)
7: while ∃S ∈ Snegative such as cover(pcurrent, S) do
8: listO f PotentialGoals[i].remove(pcurrent)
9: pcurrent = the most general prototype p ∈ listO f PotentialGoals[i] such as p

covers as many states from Spositive as possible)
10: end while
11: hypothesis.append(pcurrent)
12: end if
13: end for

Two sets are given as input of the algorithm, the set of positive examples Spositive and
the set of negative examples Snegative, they are used for concept learning. We first use one of
the positive examples to generate a potential goal that corresponds to a prototype covering
this positive example. We start from the most general prototypes by selecting those that
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cover as many positive examples as possible. We then check if the potential goal is valid
or not by using the set of negative examples and checking that none of this set’s elements
are covered by the prototype representing the potential goal. If it is the case, then the
potential goal is valid. We keep repeating this process until, for every positive example,
there is at least one potential goal that covers it. In the end, our algorithm will return a
DNF corresponding to the one that we described in Section 2. Our algorithm will always
finish, and in the worst-case generate a new potential goal for each of the positive examples
and go through the whole set of negative examples for each potential goal. Therefore, the
complexity of LFST in terms of time is O(|Spositive| ∗ |Snegative|) according to the number of
positives and negatives examples, which is a bit less than being quadratic in terms of the
size of the whole trace, which means that using more data too learn the hypothesis does
not increase the computing time of LFST too much. However, complexity is 2N according
to the number of variables that describe the environment because of the potential goals
generation phase. Then the final complexity is in O(|Spositive| ∗ |Snegative| ∗ 2N).

Works based on PAC-learning [32] of DNF should also be mentioned, especially
Jackson and his Harmonic Sieve algorithm [33,34], they rely on learning with membership
queries and Fourier analysis. They use an oracle to get information about the DNF value
they want to learn for specific assignments of atoms and compute a Boolean function close
to the DNF thanks to this information. Our case’s main problem is that we do not have an
oracle that could be questioned on the value of the DNF sought for a specific assignment of
atoms. We do have positive examples, but they are much more specific than the prototypes
constituting the DNF. Without an oracle, these algorithms could not be used to learn the
agent’s set of goals, and we did not use them as possible candidates to compare to LFST.

4. Experiments

To show that the choice to use our algorithm was well-founded, we conducted experi-
ments. Since our approach is quite different from the current ones in goal recognition, it is
not fair to compare results of LFST with those of another goal recognition algorithm for the
same data set. What we are doing here could be seen as identification and classification, so
it is more natural to compare LFST with algorithms that could also generate a hypothesis
about the possible goals of the agent, or that could classify if states are goal states or not
according to what has been learned before. That is why we compare our method to other
concept-learning algorithms and not to traditional plan recognition algorithms since, as
mentioned before, we are not tackling the same problem. Where traditional plan recog-
nition approaches based on probabilistic models or deep learning like [9,20] need a set of
possible goals and will then, according to the observations that they get from the agent,
compute which goal and plan have the highest probability to be followed by the agent,
we do not compute such a thing. Instead, we will try to generate this set of possible goals
used by the other approaches. We do not put probabilities on the goals; we generate the
possible ones according to the data that we observed. In fact, our method could be seen as
a pre-process for traditional plan recognition approaches. We are trying to generate the
set of goals that the agent is aiming at, and this by using concept learning. Therefore, the
question of the legitimacy of our LFST algorithm compared to already existing algorithms
arises. These experiments are here to determine whether we made the right choice or
not. We compare LFST to MGI since, as we said before, the output of MGI is quite close
to the one of LFST, and our formalism can be applied to it. We do also use C4.5 [27] as
a comparison to see how well LFST performs compared to a well-known decision tree.
The comparison with C4.5 shows if the hypothesis generated by LFST is still consistent
with the rest of the data that have not been used for learning. The hypothesis can act as a
classifier as it should theoretically cover the remaining positive examples and reject the
negative ones.

For MGI, we use precisely the same process as LFST as the two algorithms are pretty
similar. We use as input the sets of negative and positive examples MGI will use the positive
examples to learn the concept to be learned from them and refine this concept using the
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negative examples. In the end, MGI will return a hypothesis of the very same style as LFST.
C4.5 being a decision tree used for classification, does not produce any formula. Instead,
it returns a “positive” or “negative” answer when we ask if the input corresponds to the
learned concept or not. As for the two previous algorithms, the set of positive examples is
used to learn the concept (goals of the agent) and the set of negative examples to learn what
is not the concept, basically, all the positive examples belong to the class “positive” and
the negative ones to the class “negative”. The decision tree is built thanks to this, and then
using holdout method, the remaining part of the positive and negative examples that were
not used to build the tree is given as input to C4.5 to see how it classifies them (“positive”
or “negative”). Figure 1 is an example of how we train C4.5 for one of our environments
(421World described below), each state of the environment correspond to one input with
each variable being a feature for C4.5, and the last feature indicates if the state of the world
is negative or positive since we want to learn to classify them. The input is almost the
same as for LFST and MGI. Cross-validation is used for the three algorithms; in the case of
LFST and MGI, we will check if the hypothesis generated thanks to the learning data is still
consistent with the remaining data. We use one agent and three different environments;
two are deterministic, and the last one is non-deterministic. For each environment, the
agent’s goals and its decision model are different. The first environment is a grid of size
16 × 16 that we have named “GridWorld”, the second environment is a game in which the
agent has to move some blocks, we named it “CubeWorld”, and the last environment is a
dice game named “421World”.

GridWorld is then, a grid of size 16 × 16 with some randomly placed walls between
its cells. In this environment, the goal of the agent is reaching a dead-end, a dead-end
being a cell surrounded by exactly three walls. We assume that for each generated grid
there exists a dead-end and that this dead-end is reachable by the agent from its different
starting positions in the grid. In GridWorld the agent can perform five different actions, it
can move one cell top, down, left, right, or stay at its current position. Walls are impassable
obstacles for the agent, a wall between two cells will prevent the agent to move from a cell
to the other, the agent cannot get out of the grid either, even if there are no walls along the
edge of the grid.

GridWorld is a deterministic environment since the agent’s actions cannot fail, mean-
ing that for each move that is not prohibited in its current position, the agent will necessarily
arrive at the corresponding position. The successful traces are generated by implementing
the agent as follows. First, the agent uses the A∗ algorithm to compute a path that reaches
a dead-end from its starting position. Then the agent begins its journey. Each state and
action is recorded in the trace, knowing that only one action is performed by the agent at
each time step. Using the formalization described earlier to design the trace of the agent’s
journey, we will use the following variables to build our atomic set L: a variable pos related
to the agent’s position in the environment, the variables upW, rightW, downW, and le f tW
respectively related to the presence of walls at the top, right, down, and left of the agent.
For the experiments in GridWorld, we generated eight different grids. Given that, depend-
ing on the inlet position, there are four possible configurations for dead ends, we assume
that each of these configurations appears at least once among all the grids. We generated
multiple traces for each instance of a grid, depending on the agent’s starting position.
Figure 2 is an illustration of GridWorld, the yellow ball being the agent and the green cell a
goal position (a dead-end).
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Figure 1. Illustration of C4.5 learning setup with our model.

Figure 2. GridWorld example.

The second environment, CubeWorld, is a game with six blocks numbered from 1 to
6 and three columns. The agent must place block 1 between block 2 and 3 with block 2,
which must be at the column’s base, and block 3 above block 1. The agent wins the game as
soon as this configuration is reached on one of the columns. Knowing that a block cannot
be moved if another block is above this one. The agent can stack as many blocks as wanted
on a column. We implemented a naive algorithm to allow the agent to solve this problem
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and thus obtain many solutions. Figure 3 is an illustration of CubeWorld. Each block
movement caused by the agent corresponds to a time step. To design the agent’s trace in
this environment, we use a set of variables describing the result of each action performed
by the agent. For each of the six blocks, we have a variable corresponding to the column
on which the block is situated blockPos, and another variable indicates the height on which
it is located blockH, which corresponds to coordinates on a plan.

The third and last environment, 421World, is a game of chance with four dices (six-
sided dices), and the goal of the agent is to get a combination with at least one “4”, one “2”,
and one “1”. The agent can choose to keep the value of some dices; for example, if it gets a
“4”, it can keep it and roll only the three remaining dices. The game ends when the agent
obtains the winning combination “421”, the dices can be rolled without limitation. This
environment is non-deterministic since the agent cannot know the result of the roll of the
dices. Figure 4 is an example of a winning combination. Each dices rolling corresponds to
a time step. Designing the trace of the agent for this environment is done in the same way
as before; a set of variables describes the result of each action of the agent. For each of the
dice, there is a variable diceValue, which corresponds to the number that the agent obtains
after rolling it.

Figure 3. CubeWorld winning example.

Figure 4. 421World winning example.

Experimental Protocol:

For our experiments, we have an initial set of data with negative and positive examples
collected from the generated traces. They are used as input for LFST, MGI, and C4.5. Then
from this set of data, the holdout method is used for the validation; we use 70% as a training
set and the 30% remaining as a test set to measure the performance of the algorithms. We
also vary the size of the initial set of data to simulate some noise (missing states in the
traces). In the beginning, 100% of the data is used, then we will decrease by two percent
the percentage of data used at each simulation, gradually moving from 0% of missing
data to 90%. For each data range, we run two hundred times the three algorithms, taking
randomly the amount of data needed in our dataset and computing the average of the
results. However, the same percentage of data is used for positive and negative examples.
For instance, if we use 80% of the data, we will randomly pick 80% of the positive examples
and 80% of the negative ones. For GridWorld environment, we have done the experiments
with a set of 128 positive examples and a set of 1791 negative ones, which have been
extracted from a set of 128 successful traces. For CubeWorld environment, we have done
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the experiments with a set of 100 positive examples and a set of 559 negative ones, which
have been extracted from a set of 100 successful traces. In 421World, we have done the
experiments with a set of 200 positive examples and 882 negative examples; this results from
200 successful traces. The python code to generate data from these three environments is
available here (https://github.com/glorthioir/LFST_data.git (accessed on 29 April 2021)).

Measures:

Different types of measures are used to evaluate our results. The first measure is
a syntactic distance between the actual agent’s goals and the hypotheses returned by the
algorithms. It shows the similarities between the hypotheses and the target goals. However,
this measure is only used to compare LFST and MGI as C4.5 does not produce a hypothesis.

The syntactic distance is defined as follows: the symmetrical distance is computed
from each goal in the hypothesis to each of the agent’s actual goals. Then, for each of the
goals of the hypothesis, the minimum of this symmetrical distance is taken and will define
the distance between this goal and the agent’s goal set. Afterward, the distance between
the agent’s set of goals and the hypothesis is computed by summing the distance of each
of the goals of the hypothesis to the agent’s goal set that has been computed previously.
For example, if our hypothesis is H = (a ∧ c ∧ d) ∨ (b ∧ d) and the real set of goals is
G = (a ∧ d) ∨ (b ∧ c ∧ d), we have:

d(H, G) = d((a ∧ c ∧ d), G) + d((b ∧ d), G) (1)

d(H, G) = min(Card({c}), Card({a, b})) + min(Card({a, b}), Card({c})) (2)

d(H, G) = min(1, 2) + min(2, 1) = 1 + 1 = 2 (3)

The second measure is the accuracy of the three algorithms, it is the fraction of
successfully classified examples and it is calculated as follows:

accuracy = (Tp + Tn)/(Tp + Tn + Fn + Fp) (4)

And the last one is the recall (also called sensitivity), which is the fraction of positive
examples that are successfully classified as such by the algorithms, we calculated as follows:

recall = Tp/(Tp + Fn) (5)

Where Tp, Tn, Fp, and Fn are respectively, True Positive, True Negative, False Positive,
and False Negative. Card(X) is the function cardinal which is equal to the number of
elements in X.

Results:

As shown by the experiment, the average syntactic distance between the agent’s
actual goals and the results provided by LFST is pretty good because this average is a little
less than 9 in the worst-case for GridWorld, as we can see in Figure 5. Knowing that for
GridWorld, the agent has four goals composed of three atoms each, which means that on
average, in the worst-case, LFST still finds almost one third of the atoms composing each
real goal. Moreover, even when using as few as 20% of the initial data set, the results are
still correct. Indeed, the average syntactic distance being around 5. It means that almost
two thirds of the atoms composing each real goal of the agent are still deducted even in this
case. MGI is more constant and thus stays to an average distance of 4 from the actual set of
goals, being less precise than LFST until 60% of missing data where LFST gets worse. This
difference can be explained by the fact that MGI will generate more specific prototypes
than LFST. Thus, even if the actual goal is a conjunction of three atoms, MGI will generate
a prototype of four or five atoms that cover the goal, and since they do not cover any
negative examples, it will stop there. LFST will generate more general prototypes that the
negative examples will invalidate, so the prototypes will start to be more and more specific
and eventually as specific as the actual goals. Nevertheless, when there is not enough data,

https://github.com/glorthioir/LFST_data.git
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the prototypes which are too general will not be invalidated anymore due to the lack of
negative examples, so the average syntactic distance from the actual goals will increase.
However, as we can see in Figure 6, the accuracy of LFST is always better than the one of
MGI and remains on average around 99.7%. As expected, the accuracy of both algorithms
is decreasing with the quantity of data used. The difference between the two algorithms is
that LFST will rarely fail to classify a positive example. Thus, it will produce very few False
Negatives when MGI fails more often to classify a positive example. C4.5 has excellent
accuracy in this environment, being even slightly better than LFST and reaching 100% of
accuracy, though it is only a small gain compare to LFST. However, the most significant
difference in efficiency for the algorithms is the recall; Figure 7 shows that the value for
the recall of LFST and C4.5 is much better than the one of MGI, which is just around the
average (50%). The reason for this result is the same as before since the recall is highly
dependent on the number of False Negatives.

Figure 5. Comparison of the average distance from the actual goals in GridWorld.

Figure 6. Comparison of the average accuracy in GridWorld.

As for CubeWorld, in this environment, the agent has three goals of six atoms, so the
syntactic distance cannot exceed 18, and we can see in Figure 8 that LFST obtains a bit less
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than 10 in the worst-case, so we infer more than one third of the goals in this case. The value
of the distance for MGI is, on average, around 9, which is almost the worst value for LFST,
so here also LFST is more accurate. The accuracy and the recall, Figures 9 and 10 are also
better here with LFST than with MGI, and here LFST also has better accuracy than C4.5,
but it is a difference on the same scale as in the previous environment, relatively slight. The
difference is more pronounced for the recall value, where LFST is also better than C4.5.

In 421World, since the agent’s goal is to obtain a dice combination of 421, the dice’s
order and the fourth one’s value do not matter, which implies that there are many winning
combinations, 24 to be exact. So, the agent has 24 goals that correspond to all the winning
combinations. This environment is then the one that could potentially give the worst
results. Though, as we can see in Figure 11 the syntactic distance from the actual goals
is relatively low for both algorithms. The accuracy and recall Figures 12 and 13 are less
good than for the other environment, especially the recall for MGI is very low in this
environment. We can observe a difference this time between LFST and C4.5, LFST being on
average 10% more accurate than C4.5.

In these three environments, the performances of LFST are better than that of MGI.
We also observe that LFST and C4.5 seem to have the same performances here, with a
slight advantage for LFST, being better in two among three environments. Our guess was
that C4.5 performs better in environments without a big difference between the number of
positive and negative examples, though the results between CubeWorld and 421World do
not necessarily validate this hypothesis. Nevertheless, that might be related to 421World
itself that seems to be rather challenging for all the algorithms. However, if we must
compare the algorithms’ running time when the number of variables to describe the
environment increases. In that case, we can see a difference between LFST and MGI,
as shown by Figures 14 and 15, for GridWorld, there are five variables to describe the
environment, and the two algorithms seems to be on the same order of computation time
as the curves in Figure 14 are almost indistinguishable from each other. For CubeWorld,
though, where we have 12 variables to describe the environment, MGI is faster than LFST;
this can be seen in Figure 15, MGI is on average seven times faster than LFST. The difference
between the execution time of both algorithms is because MGI uses a heuristic search to
find the prototypes that will constitute the result when LFST does not. We chose CubeWorld
and GridWorld to show these comparisons because one of the environments has the highest
number of examples used as learning data, and the other the highest number of variables.
We can see that for LFST, increasing the number of variables to describe the environment
has a much more substantial impact on the computation time than increasing the number
of examples, as it was expected according to the O(|Spositive| ∗ |Snegative| ∗ 2N) complexity
of the algorithm. Still, the algorithm is pretty fast for these environments, and we could
always play with the representation of the environment to avoid having a too high number
of variables describing it. The experiments being done on an old CPU i7 two cores at 3.3GHz
and using Python as the programming language. We cannot see C4.5 in Figures 14 and 15,
this is because C4.5 take much time compared to the two other algorithms to learn the
concept (build the decision tree) 1.9 to 0.6 s on average for GridWorld and 1.5 to 0.5 s for
CubeWorld, which makes it difficult to see the difference between MGI and LFST. One
might argue that the learning time is not essential to learn concepts since it is just learned
one time, though we believe that if it must be part of some real-time system, it is better to
have a fast algorithm. We do think we made the right choice using our algorithm LFST
for this problem since it performs as well if not better than traditional concept-learning
algorithms, and compared to C4.5, LFST does produce the learning concept, thing that C4.5
is unable to do. Tables 1–3 are here to help the reader to visualize the accuracy and recall of
the different algorithms on the three environments (only half of the data points have been
included to reduce their size).
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Table 1. Average accuracy and recall for the three algorithms in GridWorld.

Accuracy Recall

Percentage of
Missing Data

LFST C4.5 MGI LFST C4.5 MGI

0 99.85 99.99 98.51 100.0 100.0 44.1

4 99.83 99.99 98.39 100.0 100.0 41.04

8 99.82 99.99 98.36 100.0 100.0 41.3

12 99.84 99.99 98.38 100.0 100.0 43.52

16 99.83 99.98 98.29 100.0 100.0 41.82

20 99.81 99.98 98.19 100.0 100.0 40.43

24 99.78 99.96 98.24 100.0 100.0 43.68

28 99.78 99.97 98.13 100.0 100.0 42.22

32 99.79 99.98 98.11 100.0 100.0 43.0

36 99.78 99.98 98.0 100.0 100.0 42.18

40 99.75 99.98 97.88 100.0 100.0 40.63

44 99.74 99.96 97.88 99.93 100.0 42.41

48 99.7 99.96 97.78 99.94 100.0 41.57

52 99.69 99.96 97.64 100.0 100.0 40.41

56 99.73 99.93 97.58 99.94 100.0 40.87

60 99.6 99.92 97.5 99.79 100.0 41.88

64 99.54 99.93 97.45 99.42 99.79 42.73

68 99.53 99.87 97.25 98.51 99.67 41.88

72 99.47 99.88 97.17 97.38 99.56 42.16

76 99.36 99.8 96.95 95.95 99.25 42.68

80 98.91 99.63 97.0 92.23 98.26 44.2

84 98.48 99.31 96.69 85.36 96.36 48.11

88 97.73 98.87 96.36 77.58 93.37 47.67

Table 2. Average accuracy and recall for the three algorithms in CubeWorld.

Accuracy Recall

Percentage of
Missing Data

LFST C4.5 MGI LFST C4.5 MGI

0 100.0 98.5 89.7 100.0 98.51 21.99

4 100.0 98.35 89.69 100.0 98.19 21.94

8 100.0 98.38 89.49 100.0 98.48 21.51

12 100.0 98.09 89.3 100.0 97.62 21.79

16 99.98 98.07 89.1 100.0 97.13 22.98

20 99.98 97.9 89.21 99.86 96.53 23.83

24 100.0 97.9 89.34 100.0 96.16 22.82
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Table 2. Cont.

Accuracy Recall

Percentage of
Missing Data

LFST C4.5 MGI LFST C4.5 MGI

28 99.98 97.69 89.07 100.0 96.1 23.18

32 99.96 97.76 89.03 99.89 96.44 26.25

36 99.98 97.72 89.17 100.0 95.37 27.09

40 99.95 97.62 89.18 99.8 95.78 25.19

44 99.95 97.43 89.22 100.0 94.39 28.0

48 99.85 97.38 89.04 99.49 94.47 26.4

52 99.85 97.21 88.83 99.22 93.26 27.1

56 99.72 97.04 89.22 99.03 93.71 29.26

60 99.46 96.49 89.17 97.19 92.56 30.87

64 99.27 96.53 89.27 96.55 91.89 31.99

68 99.03 96.43 88.68 94.9 91.25 34.17

72 98.6 96.21 88.5 92.55 91.44 31.85

76 98.22 96.09 89.85 88.59 91.31 37.58

80 96.89 95.57 89.75 81.5 88.41 43.17

84 95.72 94.27 89.75 73.29 85.21 46.87

88 93.78 93.63 89.89 62.33 84.17 50.08

Table 3. Average accuracy and recall for the three algorithms in 421World.

Accuracy Recall

Percentage of
Missing Data

LFST C4.5 MGI LFST C4.5 MGI

0 99.51 90.9 81.58 97.67 83.43 11.31

4 99.45 90.12 81.62 97.32 81.94 11.17

8 99.4 89.51 81.6 97.09 80.24 11.65

12 99.38 88.92 81.3 97.03 78.9 10.99

16 99.26 88.59 81.44 96.48 78.86 11.57

20 99.2 87.58 81.23 96.27 76.26 11.43

24 99.13 87.46 81.45 95.9 76.04 12.33

28 98.96 86.28 81.14 95.15 73.88 11.82

32 98.84 85.98 80.84 94.61 72.47 11.22

36 98.58 85.04 80.81 93.69 70.34 11.18

40 98.55 84.33 80.95 93.34 69.59 10.68

44 98.22 83.18 80.72 92.23 66.81 11.63

48 97.83 82.63 81.02 91.17 64.95 13.44

52 97.56 82.2 80.56 90.07 64.69 13.12
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Table 3. Cont.

Accuracy Recall

Percentage of
Missing Data

LFST C4.5 MGI LFST C4.5 MGI

56 96.94 80.91 80.54 88.42 61.97 14.41

60 96.37 80.36 80.58 86.78 61.17 17.31

64 95.51 79.83 80.87 83.96 59.46 17.49

68 94.17 78.78 81.0 81.43 56.64 20.6

72 92.61 78.55 80.45 78.18 55.8 21.52

76 89.76 77.13 80.57 72.28 53.67 23.51

80 87.0 76.91 81.0 67.19 51.78 28.46

84 83.59 76.8 80.81 61.8 50.59 30.85

88 80.85 76.52 81.97 56.13 51.24 36.53

Figure 7. Comparison of the average recall in GridWorld.

Figure 8. Comparison of the average distance from the actual goals in CubeWorld.
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Figure 9. Comparison of the average accuracy in CubeWorld.

Figure 10. Comparison of the average recall in CubeWorld.

Figure 11. Comparison of the average distance from the actual goals in 421World.



Appl. Sci. 2021, 11, 4116 16 of 22

Figure 12. Comparison of the average accuracy in 421World.

Figure 13. Comparison of the average recall in 421World.

Figure 14. Comparison of the average runtime in GridWorld (in seconds).
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Figure 15. Comparison of the average runtime in CubeWorld (in seconds).

5. Inferring the Agent’s Model and Environment Rules from Data

In the previous sections, the input Σ, the set of successful traces, is simply reduced to
two different sets of states Snegative and Spositive. By doing so, we are not taking advantage
of the information included in Σ about the order in which the states are explored and
the actions that the agent performs at each step. By ignoring these aspects, we have the
advantage of being able to infer possible goals without more assumptions about the agent
than the ones induced by successful traces how successful traces are defined, i.e., as soon
as its goal is reached, the agent stops (with a success action) and this goal depends only
on the current state of the environment. However, if the dynamics of the environment are
known, it seems relevant to derive some information from what the agent has chosen to
do, compared to what the agent could have done. It is only possible if we are given some
insight into how the agent chooses its actions and takes decisions.

For instance, if we consider a rational omniscient agent’s case, we know that the
observed agent has complete knowledge about its environment and its rules and uses
a planner to compute the shortest plans to reach its goal. In such a case, by knowing
the environment dynamics, we can use it to generate more negative examples, for each
successful trace T ∈ Σ of size K, all the negative examples that are reachable from the
state i in K − i steps can be generated and added to the set Snegative. We can compute
this using Ki times the function next with every possible action to get all the reachable
states. Using the same process with weaker assumptions, we consider now the case of a
deterministic environment for which it is assumed that the agent is smart enough to reach
its goal with only one move when its goal is reachable in one move (it cannot fail since
the environment is deterministic). This amounts to considering that the agent can plan
at least one step ahead, i.e., to understand its actions’ direct consequences and choose its
actions accordingly. In such a case, when also knowing the environment and its dynamics,
many negative examples can be generated. Indeed, if the action model ruling the effect of
the agent’s actions is known, we can deduce from each state of the world the states that
can be reached by the agent at the next time step. Next, if we know that at the time step
t the agent did not reach its goal, it means that all the states that were reachable by the
agent at the time step t− 1 are not final ones. Furthermore, all these intermediate states
can thus be regarded as negative examples, allowing us to refine the results of LFST by
using more learning examples. In such a case, we modify LFST by this pre-processing that
is applied to each T ∈ Σ to compute additional negative examples. This process improves
learning by expanding the initial input. It allows us to learn precise goals when using
fewer original examples.
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Figure 16 shows us the advantage of having these kinds of assumptions about the
agent and environment. For this graph, the same experimental protocol as GridWorld
is used but this time with a grid of size 4 × 4, which means that we have 192 positive
examples and 776 negative ones that are used as input to LFST when no assumptions about
the agent and environment are made. Then, we make two assumptions about the agent:
the agent action model is known, and the agent can plan at least one step ahead so if its
goal is reachable at step t− 1, at step t it will reach it. These are not strong assumptions,
and they allow us to generate more data from the 192 itineraries that have been followed
by the agent throughout the simulation. In total, we get 2074 negative examples thanks to
this data generation, which is almost three times more than what we have without making
assumptions about the agent. We can see in Figure 16 that, as we expected, it allows LFST
to generate more precise hypotheses about the agent’s goals since the result is much closer
to the actual goals than when we do not make assumptions. As we can see in Figure 16, it
allows us to be closer to the actual goals than when we use no assumptions. With enough
knowledge about the agent’s action model, we can use the method of [12]. This method
matches our method quite well since it needs a set of goals to find which ones are the
more likely to be sought by the agent by using planning. So, we can first generate this
set of goals by using LFST and then refine our set of possible goals with [12]. That allows
us to correct some goals that could have been wrongly inferred by LFST. However, the
combination of these two methods is not trivial. Indeed, the definition of a “goal” is not
exactly the same between LFST and [12] since they define a goal as a final state where we
define it as a conjunction of atoms which is included in this final state. It means that to
check the validity of a goal generated by LFST, we need to go through all the traces where
this specific conjunction appears in the description of a state of the world assume that in
these traces, this state is a final state and then apply [12].

Figure 16. Comparison of the average syntactic distance from the actual goals in function of the
percentage of missing data with and without assumptions on the agent.

6. Discussion and Future Work

We have two interesting methods that we wish to exploit to deduce the agent’s action
model and the environment rules. The first one is to use LFIT [35] which is a framework
for learning normal logic programs from transitions of interpretations, which means that
since we use a logical representation of the world, we will be able to infer the possible
action model of the agent and the rules of the environment. In fact, to use LFIT, we just
need a trace of the evolution of the states of the world in chronological order, which are the
same data that we use to infer the agent’s goals. It means that we do not need an important
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modification of the data collection process to incorporate LFIT into our method, which
is a good point. After processing these data with LFIT, we will obtain a set of rules that
correspond to the possible transition from a state of the world to another. We will then
have for each state of the world (observed previously in the collected data) the different
actions that the agent did when it was in this state and the states of the world that it reached
after these actions. So, we can infer a potential action model of the agent and the dynamic
of the environment based on the observed transitions. Unfortunately, LFIT is not very
robust against the lack of data, and the noise, especially the data need to cover as many
transitions as possible between all the different possible states of the world. It is not very
convenient because usually, the agent we observe is not acting randomly, and so, many
possible transitions will never be observed. We also plan to use SMILE [36] another method
that we can use to learn the action model of the agent. This method uses the same kind
of data as LFIT, so here also the modification of the data collection process to use SMILE,
and our method is not too cumbersome. Even if SMILE is usually used for a multi-agent
system because it is, in fact, the different agents who will learn information about the other
agents of the system, we can just create an agent “Observer” who will learn the action
model of the observed agent. SMILE is more robust to the lack of data than LFIT but not as
effective in some cases. So, we will choose which method to use based on the quantity of
data obtained during the observation phase. We already tried SMILE and LFIT with our
data to extract the agent’s action model and the rules of the environment. We obtained
promising results, and so, we want to continue in this way. Nevertheless, we do not have
combined our method and these two algorithms yet.

To improve our method and provide some more interesting hypotheses about the
agents’ goals, we thought about incorporating a preferences function about these ones’
goals. It means that our hypothesis will provide us with a set of possible goals for an
agent and ordered these goals according to the agent’s preferences. We want to start first
with a simple preference model; by simple, we mean that if the agent prefers to reach
the goal A rather than the goal B, its preferences will not consider the difficulty to reach
these two goals. The process of inferring agents’ preferences will take place after the goals
inference in our method. Because, of course, we need to know the agents’ goals to be
able to order them. So, once we have the agent’s goals, we also need to know the agent’s
action model, then, for each intermediate state of the trace of the agent, we can see if
there are other reachable goals that the one reached in the final state of the trace and if so,
compare the number of time that a goal was preferred to another one. If between two goals,
one has always been preferred, and if it happened several times, we can assume a strict
preference between them A > B. Otherwise, the preference will be more moderate A � B.
Given an order of priority >p about an agent’s goals, we can translate the fact A >p B
in a logic formula by assuming that if the agent finally reaches the goal B, it is because
the goal A was not reachable. Then we can translate this in the logic formula A ∨ ¬A ∧ B
(where A and B are atoms conjunctions) by using our language L described in section
2. Likewise, if we have the preference A >p B >p C on the agent’s goals we can write
this A ∨ ¬A ∧ B ∨ ¬A ∧ ¬B ∧ C. With such a translation, we could write all the possible
strict orders of preference on the agent’s goals, and since the writing still represents a
DNF, we can modify a bit our algorithm and return a disjunction of such DNF as a result
and thus obtain the possible goals of the agent and its preferences for these goals. If the
agent is assumed rational, then such a simple linear model should work as transitivity (if
A >p B and B >p C then A >p C), antisymmetry ( if A >p B and B >p A then A = B)
and connexity (∀A, B we have A >p B or B >p A) should be supported by the agent’s
preference model. Also, it could be hard to observe connexity, so we could have several
partial orders instead. However, suppose the agent’s preferences are not rational (like a
human, for example). In that case, this linear model will not work anymore, especially in
human case the transitivity of preference is not always true, as shown by the “Condorcet
paradox” or “voting paradox”, which is that when voting, majorities prefer, for example,
candidate A over B, B over C, and yet C over A. If no cycles about the preference have
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been observed in the data, we can still assume that we have several partial orders; each of
them could be represented as a DNF as described before. We still get a disjunction of DNF
where goals will be ordered in their respective partial order (DNF), and the different partial
orders could not be compared. Please note that if the goals A and B are not in relation but
we have A >p C and B >p C, we could write it A∨ B∨¬A∧¬B∧ C. We can start to work
on this extension before completing the one in the previous section. Even if we need the
agent’s action model, we can still assume that we know it and start the experiments such
as this.

With our formalization, we do not take into account the cost of the actions for the
agent and thus the fact that some goals could be achieved more often than others. If all the
goals are achieved at least once, then our method should be able to infer them or build a
hypothesis covering the state of the world corresponding to these goals. However, if one
particular goal is never reached by the agent (because of its cost, for instance) during the
observation process, it will be impossible to infer it with our current method as it is pretty
challenging to learn from what has not been observed, especially if there is an important
number of possible states of the world. We could potentially deal with this problem using
a higher-level representation of the goals that we inferred once our first hypothesis was
generated by LFST. A representation that could allow us to create a global concept for
similar goals, and then we can look for states of the world covered by this concept and
are not find in the set of negative examples used for learning. For instance, taking the
case of GridWorld experiments, we saw that there are four possible dead ends. Let say
that one of them was never reached by the agent, but LFST infer the three other kinds of
dead ends as possible goals. When looking at the hypothesis returned by LFST, we could
create the concept “dead-end”, which is that the agent is surrounded by three walls. We
then check that there are no negative examples that reject this concept and keep it if it is
not rejected. The concept “dead-end” will then cover even the fourth kind of dead-end
that the agent did not reach when we were observing it. It could help us dealing with
unobserved goals, but it needs human assistance or a way to generate concepts from a
low-level representation of the environment.

Finally, the experiments’ results have shown that the main weakness of LFST is
the execution time. We plan to improve the search for new potential goals since our
method is currently quite exhaustive. A heuristic research method, as used for MGI, could
significantly improve the execution time. However, the difficulty is then to find a good
heuristic function. The clues that we have about the agent’s goals at the beginning are
mainly in the positive examples set Spositive, then it will not be irrelevant to focus our
attention on it. We want to use our syntactic distance to cluster these positives examples
and group together those with a minimum distance from each other. Then we need to find
the best way to construct a prototype that will cover all the positive examples within its
cluster. It is not trivial, and we are currently working on it.

7. Conclusions

Goal Recognition has a broad variety of applications. Unfortunately, there are still
several serious problems that slow down the use of goal recognition in large-scale real-
world situations (computation time, action space, etc...). Moreover, a problem related
to uncertainty, which is that in reality, it can be hard to know when an agent reaches its
goal, but we will come back on this problem later. We reminded our method and showed
how different it is from previous approaches in the field of goal recognition. Because few
approaches are focused on learning the agent’s set of goals, they often consider it given
in the problem. Moreover, our formalization of the problem also allows us to use concept
learning. We use our algorithm, LFST, to control some generalization bias, and we have
shown that it was a legitimate choice in Section 4 since our algorithm performs better than
MGI and even C4.5. We could also make a version with a heuristic search of the prototype
to improve the execution of LFST since it is the only point where MGI is better than LFST.
We also showed that we could drastically improve the goals deduction process’s efficiency
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by making assumptions about the agent and its environment. Therefore, we plan to use
LFIT or SMILE to infer the agents’ models and the environment’s rules to exploit such
assumptions. This and the integration of the agents’ goals preferences in our model will
allow us to infer more refined hypotheses about the agent’s goals. Also, as we said in
Section 5 if we have good knowledge about the agent and its environment, we can combine
our method to this one [12], and we might obtain rather promising results. We discussed
the fact that in reality, it is hard to know when an agent reaches its goal. It is actually the
main weakness of our method, and we need to overcome this weakness. For this, dynamic
learning throughout the agent’s actions could be efficient and would be more realistic. It
could also be effective in the case of an agent that changes its goal along the way or in a
case where the agent repeats the same cycle of actions, cases that we cannot solve yet with
our method.
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