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Abstract: Currently, optimization models for the safe and reliable operation of power systems deal
with two major challenges: the first one is the reduction of the computational load when considering
N − 1 contingencies; the second one is the adequate modeling of the uncertainty of intermittent
generation and demand. This paper proposes a new affinely adjustable robust model to solve the
security constrained unit commitment problem considering these sources of uncertainty. Linear
decision rules, which take into account the forecasts and forecast errors of the different sources of
uncertainty, are used for the affine formulation of the dispatch variables, thus allowing the tractability
of the model. Another major novelty is that the evaluation of the N − 1 security constraints is
performed by incorporating a novel method, proposed in the literature, based on the user-cuts concept.
This method efficiently and dynamically adds only the binding N − 1 security constraints, increasing
the computational efficiency of the model when transmission line contingencies are considered.
Finally, Monte Carlo simulations on the post-optimization results were run to demonstrate the
effectiveness, feasibility and robustness of the solutions provided by the proposed model.

Keywords: power system; security-constraint unit commitment; robust optimization; uncertainty;
renewable energy sources

1. Introduction

Nowadays, the planning and operation of power generation systems worldwide relies
on optimization models. Particularly, unit commitment (UC) aims at meeting forecasted
energy demand at minimum cost in an hour-by-hour daily horizon while meeting different
physical and operational constraints. Moreover, market regulation and system reliability
requirements lead to additional constraints. An updated overview of the UC is given at [1],
whereas Knueven et al. [2] provide a comprehensive review of mixed integer programming
models of the UC.

Today, a key aspect in the expansion of power systems is the high penetration of non-
conventional renewable energy sources, such as wind and solar generation. Nonetheless,
the intermittent nature of these energy sources increases the uncertainty in the operation
and planning of the system. The authors in [3] define three categories of uncertainty within
power systems: (1) uncertainty of generation resources (fuel prices, generator outages,
intermittent generation output power, etc.); (2) uncertainty on the demand side; and (3)
uncertainty in the transmission of energy (contingencies in lines). Meanwhile, other authors
such as [4] have developed a computational framework to integrate the uncertainties of
wind, demand, and the operating outputs of generators and transmission lines. These
uncertainties may arise at any time and produce disturbances in the normal operation
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and balance of the system. In order to mitigate the negative effects of uncertainty, new
mathematical optimization models focus on incorporating the dynamic and unexpected
variability of power systems. Conventional procedures and methods for the UC solution,
under different conditions of uncertainty, have been widely applied by researchers [5,6].

Dealing with the uncertainties of the UC problem through deterministic optimization
(as in [7,8]), where load and intermittent generation sources are based solely on forecasts,
may not be adequate to correctly address the reliable balance between this type of sources
and demand. Although this approach may be easy to implement and computationally
more efficient, its greatest drawback lies in the overestimation of generation reserves,
a circumstance that turns out to be economically inefficient for the system.

On the other hand, stochastic optimization models for the UC (SOUC) address the
behavior of the corresponding random variables through probability distributions that
are modeled by a finite set of scenarios, each one with a given probability. This approach
overcomes some of the drawbacks of deterministic formulations. However, considering
a large number of scenarios in the SOUC hinders the computational tractability of the
underlying mathematical models. Dyer and Stougie [9] discuss in detail the computational
complexity of the SOUC. As an alternative, different techniques have been used to solve the
SOUC efficiently (i.e., shortening the required solution times). These techniques include:
Lagrangian relaxation—LR [5,10–13], Benders decomposition—BD [12,14–17], strong valid
inequalities embedded in cutting plane approaches [18,19], column generation [20,21],
and progressive hedging algorithms [22–30]. Likewise, the parallel implementation of the
above techniques is also an alternative, e.g., LR [10] and BD [31].

The other major drawback of SOUC approaches is the difficulty that arises when trying
to estimate the probability distribution of the stochastic variables. Alternatively, robust
optimization of the UC (ROUC) does not require the definition of scenarios or the estimation
of their realization probabilities. Instead, it defines an uncertainty set to optimize the
response of the system over all possible realizations of the random variables, particularly
the worst one [1]. Several authors have tackled the UC from the robust optimization
perspective [32–36]. However, one major drawback appears, as a direct consequence of
protecting the system against an improbable worst-case scenario: the obtained solution can
be over-conservative [37]. Several strategies have been proposed to reduce the conservatism
of the ROUC approach. For instance, min-max regret optimization [38], a unifying approach
combining the elements and advantages of the SOUC and the ROUC [39], and a so-called
non-conservative robust (security constrained) UC [38].

Remarkably, adaptive robust optimization of the UC (AROUC) produces a less conser-
vative and more stable solution than ROUC approaches [40–43]. This result is obtained due
to adjustable decision variables (also known as wait-and-see variables) that are calculated
when some of the uncertain data are known at a given period (by considering information
of past realizations of the random variables) [44,45]. However, a known drawback of
adaptive robust optimization (ARO) is the intractability that may occur for large scale
problems given the NP-hardness of the problems [45]. The solution of this drawback results
in the use of affinely adjustable robust optimization (AARO) approaches where adjustable
variables are constrained to affine policies (AP), also known as affine arithmetic (AA) [45].
Xiong and Jirutitijaroen [46] pioneered the combination of AA and ARO for the solution of
the energy and reserve dispatch problem. The effectiveness of AA stimulates the use of
this approach to tackle the uncertainty in optimal power flow problems [47–53], and UCs
in power systems [54] and isolated micro-grids [55].

In recent years, some researchers have proposed including the affinely adjustable
robust optimization within the UC (AAROUC), considering different sources of uncertainty.
It was found that the AAROUC provides better results compared to conventional optimiza-
tion methods when dealing with uncertainty in power systems. Shahidehpour et al. [56]
presented a distributionally robust optimization (DRO) model for UC in coordinated elec-
tricity and district heating networks. Simplified affine policies were used to improve the
computational tractability of the model. Zugno et al. [57] introduced a model based on
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AARO to solve the UC problem and dispatch of generation units participating in electricity
and heat markets.

Xiong et al. [58] propose a DRO model to solve the UC (DROUC) considering only
the volatility of wind power generation. DROUC produces less conservative solutions
than ROUC. They applied formulations based on linear decision rules for the dispatch
variables to improve computation time. Finally, Lorca et al. [42] presented a multistage
adaptive robust optimization model for the UC only considering the uncertainty of the
load. Simplified affine policies based on linear decision rules were explored to deal with
large-scale power systems. The interested reader may refer to [45,59] for the theoretic
background regarding AARO. Researchers have concluded that AAROUC models (that
incorporate the realization of the uncertain parameters in previous periods) significantly
reduce the operational cost of the system when compared with UC models based on
conventional deterministic, stochastic, and robust optimization models [42,56].

Although AARO models have been proposed for the UC problem in the past [42,46,56,58].
Previous works examined only one uncertainty source at a time when non-conventional
renewable sources are considered. For instance, Ref. [42] only contemplates demand
uncertainty, whereas Ref. [58] only includes wind generation uncertainty. In Ref. [56],
the authors include wind and solar generation uncertainty but not demand uncertainty.
Moreover, to the best of our knowledge, N − 1 security constraints are seldom studied
in this context. Therefore, the contributions of this paper are threefold. First, we intro-
duce a new AAROUC model where uncertainties in load, wind, and solar generation
are simultaneously considered. This model relies on forecasts and forecast errors of the
different sources of uncertainty to restrict the wait-and-see or adjustable variables of the
model. Second, the model includes N− 1 security constraints, resulting in an AARO-SCUC
model that, (to the best of our knowledge), has not been studied before in the literature.
Third, the evaluation of the N − 1 security constraints is based on the concept of user cuts
(as proposed in [60,61]). This method efficiently and dynamically adds only the binding
N − 1 security constraints, increasing the computational efficiency of the model when
transmission line contingencies are contemplated.

The rest of this paper is organized as follows: Section 2 presents the theoretical
background of AARO and security constrained UC. Section 3 describes the deterministic
formulation of the security constrained UC. Section 4 introduces the AARO reformulation
of the security constrained UC. Section 5 discusses the results of computational experiments
conducted on benchmark power systems from the literature. Finally, Section 6 summarizes
the main conclusions and future research possibilities that arise with the use of AARO for
the solution of the security constrained UC.

2. Theorical Background

To set the theoretical background needed for the AARO formulation of the security
constrained UC, this section discusses the basics of affine arithmetic, and affinely adjustable
robust optimization.

2.1. Affine Arithmetic

Affine arithmetic is a numerical computation model for interval methods that over-
comes one of the main obstacles of traditional interval arithmetic (the dependency problem).
That is, standard interval arithmetic procedures tend to overestimate the range of a func-
tion ( f ) defined over intervals, and with an increase of the magnitude of the problem
as f becomes more complex. AA is a self-validated numerical computation model that
relies on first order correlations between computed and input quantities. This allows the
computation of the numerical error of a given quantity, something that is very useful when
lower and upper bounds of a given function are analyzed. de Figueiredo and Stolfi [62]
present the main concepts of AA. We follow their notation and definitions in this paper.

In AA, a quantity (or ideal variable) x is represented by a first order polynomial (i.e.,
an affine form) x̂ given in Equation (1). In this equation, x0 represents the central value.
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Noise symbols εn represent independent components of the total uncertainty of variable
x, whose values are unknown but restricted to the interval [−1, +1]. Finally, xn are the
partial deviations associated with each εn term. These terms represent the magnitude of the
uncertainty of the corresponding εn component:

x̂ = x0 + x1ε1 + x2ε2 · · · xnεn = x0 +
n

∑
1

xnεn (1)

For instance, Equation (2) corresponds to the AA representation (P̂g) of the output of a
generation unit Pg while considering both the uncertainty of wind generation and demand.
In this equation, Pg0 is the central value of the generation variable P̂g, whereas Pg,n are the
deviations of the variable due to demand forecasting errors (εn), and Pg,w are the deviations
of the variable caused by forecasting errors of wind generation (εw):

P̂g = Pg0 +
N

∑
n=1

Pg,n · εn +
W

∑
w=1

Pg,w · εw. (2)

It is worth noting that affine forms enable the computation of interval bounds. There-
fore, a quantity or variable x represented in the affine form of Equation (1) is bounded in
the interval x ∈ [x0 − rx, x0 + rx], where the total deviation rx is defined as rx = ∑n

i=1 |xi|.

2.2. Affinely Adjustable Robust Optimization (AARO)

There are two types of variables within AARO: adjustable and non-adjustable. In this
case, the non-adjustable variables are those sided with the UC constraints, while the
adjustable ones are those that belong to the dispatch constraints. One of the most important
features when using AARO is that the adjustable variables can be tuned by themselves
(considering the deviation produced in past periods), based on the known uncertainty data
which is fundamental in multi-period problems [45].

The first step in developing a formulation using AARO is to establish a linear decision
rule (LDR) through affine rules. For example, allowing πt be a linear function of the
demand dτ where τ = 1, 2, · · · , t− 1

πt = π0
t +

t−1

∑
τ=1

πτ
t · dτ (3)

where π0
t and πτ

t , ∀t, τ, are new decision variables introduced to define the LDR. In AARO,
the optimal values of π0

t and πτ
t are computed instead of computing πt [45].

The second step consists of defining an uncertainty set for the objective function,
and for each constraint of the problem, which could be a polyhedral or ellipsoidal set.
It is important to select a set of uncertainties that allows the AARO model to be solved
efficiently. For example, it is not possible to know the future value of the demand variable
dt, but it is possible to know that:

dt ∈ [d∗t (1− θt), d∗t (1 + θt)] (4)

where d∗t is the nominal value of the demand for each period t, and θ is the uncertainty
level. Thus, probability distributions are not necessary to define the uncertain parameters
within the model.

Without loss of generality, the following equivalences are used to reformulate the LDR
(3), considering the uncertainty set (4):
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T

∑
t=1

πt · dt ≤ b, ∀dt ∈ [d∗t (1− θt), d∗t (1 + θt)]

m

∑
t:πt≤0

πt · d∗t (1− θt) + ∑
t:πt≥0

πt · d∗t (1 + θt) ≤ b

m
T

∑
t=1

πt · d∗t + θt ·
T

∑
t=1
|πt| · d∗t ≤ b (5)

where b is a real number.
Therefore, considering the equivalence (5), the decision rule (3) is redefined as follows:

πt = π0
t +

t−1

∑
τ=1

πτ · d∗τ ± θt ·
t−1

∑
τ=1
|πτ | · d∗τ (6)

Finally, in order to eliminate the absolute value in (6), it is necessary to introduce
a linear decision variable ητ , to guarantee the linearity of the decision rule. In this way,
the AARO formulation is obtained for an adjustable variable limited by an uncertainty set:

πt = π0
t +

t−1

∑
τ=1

πτ · d∗τ ±
t−1

∑
τ=1

ητ · θτ · d∗τ

− ητ ≤ πτ ≤ ητ , τ = 1, · · · , t− 1 (7)

In this expression, signs of term ητ · θτ depend on the side of the inequality where the
adjustable variable is.

3. Deterministic Model for Security Constrained Unit Commitment

The deterministic Security Constrained Unit Commitment is formulated as a mixed-
integer linear programming (MILP) problem, minimizing the operating cost of the power
system subject to system network constraints, under both normal and contingency (N − 1)
operation conditions, given by Equations (8) to (19) as shown below. The notation of the
model is given in Appendix A:

min
x,y,z,g

T

∑
t=1

I

∑
i=1

[FCi · xi,t + Csui · yi,t + Csdi · zi,t] +
T

∑
t=1

I

∑
i=1

Ci · gi,t (8)

Subject to:
Binary variable logic:

yi,t − zi,t = xi,t − xi,t−1 ∀t ∈ T, i ∈ I (9)

yi,t + zi,t ≤ 1 ∀t ∈ T, i ∈ I (10)

Initial on-off status of generator i at t = 0 (11), minimum up (12) and down time
constraints (13):

xi,t = gon−o f f
i ∀i ∈ I, t ∈ Lup,min

i + Ldown,min
i (11)

t

∑
tt=t−gup

i +1

yi,tt ≤ xi,t ∀i ∈ I, ∀t ≥ Lup,min
i (12)

t

∑
tt=t−gdown

i +1

zi,tt ≤ 1− xi,t ∀i ∈ I, ∀t ≥ Ldown,min
i (13)
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where:
Lup,min

i = min[T, (gup
i − gup,init

i ) · gon−o f f
i ]

Ldown,min
i = min[T, (gdown

i − gdown,init
i ) · (1− gon−o f f

i )]

Minimum and maximum generator output constraint:

gmin
i · xi,t ≤ gi,t ≤ gmax

i · xi,t ∀i ∈ I, t ∈ T (14)

Ramping constraints:

− rampdown
i ≤ gi,t − gi,t−1 ≤ rampup

i ∀i ∈ I, t ∈ T (15)

Net power balance constraints:

Pnets,t = ∑
i

As
i · gi,t + ∑

w∈W
As

w · ĝw,t + ∑
p∈P

As
p · ĝp,t − d̂s,t (16)

∀s ∈ S, t ∈ T

∑
s

Pnets,t = 0 ∀ t ∈ T (17)

Power flow constraint under normal condition (18):

− Fmax
l ≤∑

s
PTDFl,s · Pnets,t ≤ Fmax

l ∀l ∈ L, t ∈ T (18)

Power flow constraint under contingency (N − 1) conditions (19):

− Fmax
l · TCF ≤∑

s
OTDFk

l,s · Pnets,t ≤ Fmax
l · TCF ∀l ∈ L, k ∈ K, t ∈ T (19)

OTDFk
l,s parameter is the sensitivity factor between line l and generator bus s when line k

was opened. It is computed as follows:

OTDFk
l,s = PTDFl,s + LODFl,k · PTDFk,s ∀l ∈ L, k ∈ K, s ∈ S (20)

In this equation, PTDFl,s is the power transfer distribution factor of the line l given a
power injection in bus s. Likewise, PTDFk,s is a power transfer distribution factor of the
opened line k given a power injection in bus s. Finally, LODFk,s is line outage distribution
factor of the line l when line k is opened.

4. AARO Model for Security Constrained Unit Commitment (SCUC)

Section 3 presented a deterministic formulation of the SCUC. This formulation works
under the assumption that all parameters supporting the decision-making in each period
are known. Nonetheless, this assumption is not adequate to deal with uncertainty as
previously stated in Section 1. In order to consider the effect of uncertainty on the safe,
economical and reliable operation of power systems, this section presents a new AARO
formulation for SCUC.

4.1. AARO Formulation to Solve the SCUC Problem

In this formulation, the non-adjustable variables are those binary variables belonging
to Equations (9)–(13) (fist stage decisions), while the adjustable variables belong to the
dispatch Equations (14)–(19).

Dispatch decisions, which are being taken every hour, depend on the knowledge of
the uncertainty parameters up to the current operating time. Therefore, dispatch decisions
are non-anticipative variables. The AAROUC perfectly models this condition, since it
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allows considering Automatic Generation Control (AGC) actions where hydro-thermal
generators can correct errors only at the current time.

In Equation (21), ga f ine
i,t represents the affine form of the power dispatch variable for

each generator gi,t, g0
i,t being its central value, and τ ≤ t determines the non-anticipativity

condition. γi,t,w,τ , γi,t,p,τ , γi,t,τ , ẽw,τ , ẽp,τ , ẽss,τ , represent the deviation variables and forecast
errors related to the uncertainty of wind generation, solar generation, and demand, re-
spectively. Forecast errors ẽw,τ , ẽp,τ , ẽs,τ belong to the uncertainty set bounded by the a
maximum level of uncertainty as shown in Section 4.2:

ga f f ine
i,t = g0

i,t + ∑
w∈W

∑
τ≤t

γi,t,w,τ · ẽw,τ + ∑
p∈P

∑
τ≤t

γi,t,p,τ · ẽp,τ + ∑
s∈S

∑
τ≤t

γi,t,τ · ẽs,τ ∀i ∈ I, t ∈ T (21)

Finally, in consideration of the theoretical background provided in Section 2, the de-
terministic model presented in Section 3, the uncertainty of demand and that of renewable
energy sources (i.e., wind and solar generation), a new AARO model to solve the SCUC is
presented below:

min
x,y,z,λ

T

∑
t=1

I

∑
i=1

[FCi · xi,t + Csui · yi,t + Csdi · zi,t] + λ (22)

Suject to:
Binary constraints of the UC. On–off status and minimum up and down time con-

straints given in Equations (9)–(13).
Dispatching cost. The constraint given by (23) represents the cost of dispatch. The addi-

tional variable λ sets an upper bond by denoting the highest cost for the dispatch problem.
Constraints (24)–(26) are the absolute values of the deviations (related to the objective
function) generated by the uncertainties of wind and photovoltaic generation, as well as
the load, respectively:

T

∑
t=1

I

∑
i=1

Ci · g0
i,t + ∑

w∈W
∑
τ≤t

η1
w,τ · ẽmax

w,τ + ∑
p∈P

∑
τ≤t

η1
p,τ · ẽmax

p,τ + ∑
s∈S

∑
τ≤t

η1
τ · ẽmax

s,τ ≤ λ (23)

− η1
w,τ ≤

T

∑
t=1

I

∑
i=1

Ci · γi,t,w,τ ≤ η1
w,τ ∀w ∈W, τ ≤ t (24)

− η1
p,τ ≤

T

∑
t=1

I

∑
i=1

Ci · γi,t,p,τ ≤ η1
p,τ ∀p ∈ P, τ ≤ t (25)

− η1
τ ≤

T

∑
t=1

I

∑
i=1

Ci · γi,t,τ ≤ η1
τ ∀τ ≤ t (26)

Variables γi,t,w,τ , γi,t,p,τ , γi,t,τ represent the adjustment of the hydro-thermal generator
(i) at time t and past period τ, given the deviation of forecast errors of the wind generator
(w), solar generator (p) and total demand, respectively. Likewise, auxiliary linear variables
η1

w,t, η1
p,t, η1

t ensure the linearity of the decision rule for affine policies of the objective
function, given the deviation of forecast errors of the wind generator (w), solar generator
(p) and total demand, correspondingly, at time t and past period τ.

Generation limits. Constraints (27) and (28) correspond to the AARO formulation
for constraint (14) establishing minimum and maximum generation limits, respectively.
Constraints (29)–(31) are the absolute values of the deviations produced by the uncertainties
of wind and solar generation as well as demand, correspondingly, related to the variable
of power dispatched by each hydro-thermal generator:

gmin
i · xi,t ≤ g0

i,t − ∑
w∈W

∑
τ≤t

η2
i,t,w,τ · ẽmax

w,τ − ∑
p∈P

∑
τ≤t

η2
i,t,p,τ · ẽmax

p,τ −∑
s∈S

∑
τ≤t

η2
i,t,s,τ · ẽmax

s,τ (27)
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∀i ∈ I, t ∈ T

g0
i,t + ∑

w∈W
∑
τ≤t

η2
i,t,w,τ · ẽmax

w,τ + ∑
p∈P

∑
τ≤t

η2
i,t,p,τ · ẽmax

p,τ + ∑
s∈S

∑
τ≤t

η2
i,t,τ · ẽmax

s,τ ≤ gmax
i · xi,t (28)

∀i ∈ I, t ∈ T

− η2
i,t,w,τ ≤ γi,t,w,τ ≤ η2

i,t,w,τ ∀i ∈ I, t ∈ T, w ∈W, τ ≤ t (29)

− η2
i,t,p,τ ≤ γi,t,p,τ ≤ η2

i,t,p,τ ∀i ∈ I, t ∈ T, p ∈ P, τ ≤ t (30)

− η2
i,t,τ ≤ γi,t,τ ≤ η2

i,t,τ ∀i ∈ I, t ∈ T, τ ≤ t (31)

Auxiliary linear variables η2
i,t,w,τ , η2

i,t,p,τ , η2
i,t,τ ensure the linearity of the decision rule for

affine policies of the operational limits of hydro-thermal generator (i), given the deviation of
forecast errors of the wind generator (w), solar generator (p) and total demand, respectively,
at time t and past period τ.

Ramp limits. Equations (32) and (33) correspond to the AARO formulation for con-
straint (15). These indicate up and down ramp limits. Constraints (34)–(36) are the absolute
values of the deviations produced by the uncertainties of wind and solar generation as well
as demand, respectively. These are linked with the ramping conditions for each generator.

− rampdown
i ≤ g0

i,t − g0
i,t−1 − ∑

w∈W
∑
τ≤t

η3
i,t,w,τ · ẽ

max
w,τ − ∑

p∈P
∑
τ≤t

η3
i,t,p,τ · ẽ

max
p,τ −∑

s∈S
∑
τ≤t

η3
i,t,τ · ẽ

max
s,τ (32)

∀i ∈ I, t ∈ T

g0
i,t − g0

i,t−1 + ∑
w∈W

∑
τ≤t

η3
i,t,w,τ · ẽ

max
w,τ + ∑

p∈P
∑
τ≤t

η3
i,t,p,τ · ẽ

max
p,τ + ∑

s∈S
∑
τ≤t

η3
i,t,τ · ẽ

max
s,τ ≤ rampup

i (33)

∀i ∈ I, t ∈ T

− η3
i,t,w,τ ≤ γi,t,w,τ − γi,t−1,w,τ · 1τ≤t−1 ≤ η3

i,t,w,τ ∀i ∈ I, t ∈ T, w ∈W, τ ≤ t (34)

− η3
i,t,p,τ ≤ γi,t,p,τ − γi,t−1,p,τ · 1τ≤t−1 ≤ η3

i,t,p,τ ∀i ∈ I, t ∈ T, p ∈ P, τ ≤ t (35)

− η3
i,t,τ ≤ γi,t,τ − γi,t−1,τ · 1τ≤t−1 ≤ η3

i,t,τ ∀i ∈ I, t ∈ T, τ ≤ t (36)

Auxiliary linear variables η3
i,t,w,τ , η3

i,t,p,τ , η3
i,t,τ ensure the linearity of the decision rule

for affine policies of the ramp limits of hydro-thermal generator (i), given the deviation of
forecast errors of the wind generator (w), solar generator (p), and total demand, respectively,
at time t and past period τ.

Power balance. Bearing in mind that both the equality constraints with non-uncertain
variables do not generate inconveniences for AARO formulations [59] and the affine
formulation of constratints (16), it is possible to express the power balance constraints
within the AARO formulation as indicated by Equations (37)–(41):

Pnet0
s,t = ∑

i
As

i · g0
i,t + ∑

w∈W
As

w · ĝw,t + ∑
p∈P

As
p · ĝp,t − d̂s,t ∀, s ≤ S, t ≤ T (37)

∑
i

Pnet0
s,t = 0 (38)

∑
i

γi,t,w,τ = −1τ=t ∀t, w ∈W, τ ≤ t (39)

∑
i

γi,t,p,τ = −1τ=t ∀t, p ∈ P, τ ≤ t (40)

∑
i

γi,t,τ = 1τ=t ∀t ∈ T, τ ≤ t (41)
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Line operation limits (normal operation). Constraints (42) and (43) correspond to the
AARO formulation and constraint (18) is the maximum operative limit of lines under
normal operation. Constraints (44)–(46) are the absolute values of the deviations, produced
by the uncertainties of wind, solar and demand generation, respectively, related to the
power flow variable under normal operating conditions.

− Fmax
l ≤∑

s
PTDFl,s · Pnet0

s,t − ∑
w∈W

∑
τ≤t

η4
l,t,w,τ · ẽ

max
w,τ − ∑

p∈P
∑
τ≤t

η4
l,t,p,τ · ẽ

max
p,τ −∑

s∈S
∑
τ≤t

η4
l,t,s,τ · ẽ

max
s,τ (42)

∀l ∈ L, t ∈ T

∑
s

PTDFl,s · Pnet0
s,t + ∑

w∈W
∑
τ≤t

η4
l,t,w,τ · ẽ

max
w,τ + ∑

p∈P
∑
τ≤t

η4
l,t,p,τ · ẽ

max
p,τ + ∑

s∈S
∑
τ≤t

η4
l,t,s,τ · ẽ

max
s,τ ≤ Fmax

l (43)

∀l ∈ L, t ∈ T

− η4
l,t,w,τ ≤∑

s
PTDFl,s · (∑

i
γi,t,w,τ · As

i + As
w · 1τ=t) ≤ η4

l,t,w,τ ∀l ∈ L, t ∈ T, w ∈W, τ ≤ t (44)

− η4
l,t,p,τ ≤∑

s
PTDFl,s · (∑

i
γi,t,p,τ · As

i + As
p · 1τ=t) ≤ η4

l,t,p,τ ∀l ∈ L, t ∈ T, p ∈ P, τ ≤ t (45)

− η4
l,t,s,τ ≤∑

ss
PTDFl,ss · (∑

i
γi,t,τ · Ass

i − 1τ=t∧ ss=s) ≤ η4
l,t,s,τ ∀l ∈ L, t ∈ T, s ∈ S, τ ≤ t (46)

Auxiliary linear variables η4
l,t,w,τ , η4

l,t,p,τ , η4
l,t,s,τ ensure the linearity of the decision rule

for affine policies of the limits of transmission line (l) under normal operating conditions,
given the deviation of forecast errors of the wind generator (w), solar generator (p), and
demand at bus (s), respectively, at time t and past period τ.

Line operation limits (contingency operations). Equations (47) and (48) correspond to
the AARO formulation of constraint (19) establishing the maximum operating limit of
lines under network contingencies. Constraints (49)–(51) establish the absolute values of
the deviations, produced by the uncertainties of wind and solar generation and demand,
correspondingly, linked with the power flow variable under N − 1 contingency conditions.

− Fmax
l · TCF ≤∑

s
OTDFk

l,s · Pnet0
s,t − ∑

w∈W
∑
τ≤t

η5
l,k,t,w,τ · ẽ

max
w,τ − ∑

p∈P
∑
τ≤t

η5
l,k,t,p,τ · ẽ

max
p,τ −∑

s∈S
∑
τ≤t

η5
l,k,t,s,τ · ẽ

max
s,τ (47)

∀l ∈ L, t ∈ T

∑
s

OTDFk
l,s · Pnet0

s,t + ∑
w∈W

∑
τ≤t

η5
l,k,t,w,τ · ẽ

max
w,τ + ∑

p∈P
∑
τ≤t

η5
l,k,t,p,τ · ẽ

max
p,τ + ∑

s∈S
∑
τ≤t

η5
l,k,t,s,τ · ẽ

max
s,τ ≤ Fmax

l · TCF (48)

∀l ∈ L, k ∈ K, t ∈ T

− η5
l,k,t,w,τ ≤∑

s
OTDFk

l,s · (∑
i

γi,t,w,τ · As
i + As

w · 1τ=t) ≤ η5
l,k,t,w,τ (49)

∀l ∈ L, k ∈ K, t ∈ T, w ∈W, τ ≤ t

− η5
l,k,t,p,τ ≤∑

s
OTDFk

l,s · (∑
i

γi,t,p,τ · As
i + As

p · 1τ=t) ≤ η5
l,k,t,p,τ (50)

∀l ∈ L, k ∈ K, t ∈ T, p ∈ P, τ ≤ t

− η5
l,k,t,s,τ ≤∑

ss
OTDFk

l,ss · (∑
i

γi,t,τ · Ass
i − 1τ=t∧ ss=s) ≤ η5

l,k,t,s,τ (51)

∀l ∈ L, k ∈ K, t ∈ T, s ∈ S, τ ≤ t

Auxiliary linear variables η5
l,k,t,w,τ , η5

l,k,t,p,τ , η5
l,k,t,s,τ ensure the linearity of the decision

rule for affine policies of the limits of transmission line (l) under contingency of the line
(k), given the deviation of forecast errors of the wind generator (w), solar generator (p) and
demand at bus (s), respectively, at time t and past period τ.
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In these equations, the OTDF allows for efficiently modeling and computing the N− 1
contingencies of the transmission system for the SCUC problem. However, SCUC carries
great computational times when dealing with large-scale systems, given the nature of the
variables involved. Many works have approached this challenge from different proce-
dures [61,63–66]. It is not computationally necessary to consider all possible contingencies
of the network, since some of them do not generate violations of the maximum operating
limits in the rest of the lines of the system. Therefore, to solve this challenge, a strategy,
based on the work presented in [60,61], was implemented in our model. Algorithm 1,
presents the strategy that works with user cuts, which could be seen as cutting planes or
linear constraints, which are strategically added within the model through user-defined
rules [67].

Algorithm 1: Method for Adding N − 1 Security Constraints as user cuts

1 repeat
2 Solve Model
3 for l ∈ l, k ∈ K, t ∈ T do
4 Estimate:

5 η̂5
l,k,t,w,τ =

∣∣∣∑s OTDFk
l,s · (∑i γ∗i,t,w,τ · As

i + As
w · 1τ=t)

∣∣∣ ∀w ∈W, τ ≤ t

6 η̂5
l,k,t,p,τ =

∣∣∣∑s OTDFk
l,s · (∑i γ∗i,t,p,τ · As

i + As
p · 1τ=t)

∣∣∣ ∀p ∈ P, τ ≤ t

7 η̂5
l,k,t,s,τ =

∣∣∣∑ss OTDFk
l,ss · (∑i γ∗i,t,τ · Ass

i − 1τ=t∧ ss=s)
∣∣∣ ∀s ∈ S, τ ≤ t

8 δl,k,t = ∑w∈W ∑τ≤t η̂5
l,k,t,w,τ · ẽ

max
w,τ + ∑p∈P ∑τ≤t η̂5

l,k,t,p,τ · ẽ
max
p,τ +

∑s∈S ∑τ≤t η̂5
l,k,t,s,τ · ẽ

max
s,τ

9 Estimate: F̂l,k,t =
∣∣∣∑s OTDFk

l,s · Pnet∗0s,t

∣∣∣+ δl,k,t

10 Adjust: OPl,k,t = 0
11 if F̂l,k,t ≥ Fmax

l then
12 Compute: OPl,k,t = F̂l,k,t − Fmax

l
13 Add: Constraints (47)–(51)
14 else
15 OPl,k,t = 0
16 end
17 end
18 Compute: TO = ∑l,k,t OPl,k,t
19 until TO ≤ tol;

Algorithm 1 iteratively defines the feasible region of the SCUC, by adding only
the binding N − 1 security constraints. In this way, it is possible to compact the model
and considerably reduce its computation times. Step 1 is where the iterative process is
started. Step 2 solves AAROUC model defined by Equations (22)–(46) (contingencies
N − 1 are not considered) only at the first iteration; after the first iteration, it also solves
the AARO-SCUC model defined by Equations (22)–(51), considering only the binding
security constraints added in step 13. Post-optimization values of the wind (γ∗i,t,w,τ),
solar (γ∗i,t,p,τ) and demand (γ∗i,t,τ) deviations related to the power dispatched by each
generator are obtained in every iteration. Steps 4–8 estimate the absolute values of the
wind (η̂5

l,k,t,w,τ), solar (η̂5
l,k,t,p,τ) and demand (η̂5

l,k,t,τ) deviations of the power flow under

contingency conditions F̂l,k,t estimated in step 9. Steps 11–16 establish the rules for selecting
and adding (step 13) those N − 1 security constraints (47)–(51) that define the feasible
region of the model. Finally, the iterative process ends when the total system overload
factor TO is less than the tolerance tol (in this case, tol = 1× 10−6). This procedure could
be seen as a computational novelty of our approach.
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4.2. Uncertainty Sets

A brief description of the uncertainty sets used in our model is introduced in this
section. The interested reader may consult [45,59] for an in-depth explanation on this topic.
As previously stated, in Section 4.1, an uncertainty set can be polyhedral or ellipsoidal.
For instance, Tian et al. [68] adopted an ellipsoidal uncertainty set within the AAROUC
model to fit the spatial–temporal correlated wind power. Additionally, they proposed and
tested a new criterion to select the value of the level of uncertainty. Conversely, we use
uncertainty boxes (i.e., a polyhedral uncertainty set) Ubox for each one of the sources of
uncertainty considered in our AAROUC model;

Ubox
w,t = |ẽw,t| ≤ ẽmax

w,t ↔ −ẽmax
w,t ≤ ẽw,t ≤ ẽmax

w,t ∀w ∈W, t ∈ T (52)

Ubox
p,t = |ẽp,t| ≤ ẽmax

p,t ↔ −ẽmax
p,t ≤ ẽp,t ≤ ẽmax

p,t ∀p ∈ P, t ∈ T (53)

Ubox
s,t = |ẽs,t| ≤ ẽmax

s,t ↔ −ẽmax
s,t ≤ ẽs,t ≤ ẽmax

s,t ∀s ∈ S, t ∈ T (54)

Equations (52)–(54) represent the intervals for each uncertainty variable: realized wind
forecast error ẽw,t ∈ [−ẽmax

w,t , ẽmax
w,t ], materialized solar forecast error ẽp,t ∈ [−ẽmax

p,t , ẽmax
p,t ] and

materialized demand forecast error ẽs,t ∈ [−ẽmax
s,t , ẽmax

s,t ]. These intervals are symmetric and
zero-centered, that is, realizations of uncertainty variables could be zero (i.e., ẽw,t = ẽp,t =
ẽs,t = 0). Likewise, ẽmax

w,t , ẽmax
p,t , and ẽmax

s,t are the maximum uncertainty level forecasts that
limit each interval. These quantities, also known as the budget value of the uncertainty set,
are generally input data.

5. Tests and Results

The proposed model was written in the General Algebraic Modeling System (GAMS,
version 24.8.5), using CPLEX (version 12.6.1) as an optimization engine. To illustrate the
applicability and effectiveness of the proposed model, two power systems were used,
namely: a didactic 6-bus power system [69] and the IEEE RTS 24-bus power system. A time
horizon of 24 h was used for both systems. Experiments on the 6-bus power system were
run in a desktop computer with an Intel core i5-5200 processor running at 2.20 GHz, 16 GB
RAM, whereas experiments for the 24-bus power system were performed on a computing
server with an Intel Xeon Platinum 8160 with 96 processors running at 2.10 Ghz.

Two numerical experiments were performed. The first one captures the behavior
of the objective function (OF) and running time based on known uncertainties of past
time periods, considered in our AARO-SCUC model. The main idea of this numerical
experiment is to determine the impact of known uncertain parameters of past time periods
on the cost of the system. In this way, it is possible to perform a trade-off analysis between
the quality and robustness of the solution and the model computing time. This would
allow for determining computationally effective and reliable solutions when dealing with
large-scale systems.

The second experiment is a post-hoc analysis of the robustness of the solutions ob-
tained with our AARO-SCUC formulation. In this case, Monte Carlo Simulations (MCS)
were carried out considering 100 replications and 300 random scenarios, which were gen-
erated using uniform distribution for each random variable. In the second experiment,
the level of uncertainty of the random variables was increased up to 200% of its original
value, using steps of 2%. Figure 1 illustrates the increase in the level of uncertainty associ-
ated with the random variables (blue dots) with respect to the defined uncertainty set (red
box, representing the maximum uncertainty level of the variable). In the first rightmost
box, the uncertainty level goes up to 50% of the maximum uncertainty level. Later, in the
second box, this level reaches up to 100% of the maximum level. From 0% to 100% of the
maximum uncertainty level, our AARO-SCUC model must always yield feasible solutions.
That is, the number of violated constraints must be zero. Finally, in the third rightmost set,
there are values of the uncertainty outside the maximum level, resulting in a number of
violated constraints produced by these values. As a robustness measure of the solution,
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in this experiment, when a given scenario produces an infeasible solution, the number of
violated constraints per replication is registered.

Figure 1. Numerical experiments for the uncertainty sets.

5.1. 6-Bus System

The system shown in Figure 2 has six buses, seven lines and three generation units
(two thermal units and one hydro unit). Renewable Energies Sources (RES) are located
at buses 1 (PV, 20 MW) and 3 (wind, 200 MW), respectively. Meanwhile, the total load is
distributed at buses 3, 4, and 5. The maximum uncertainty levels of load and RES error
forecasting are set at ±5% and ±10%, respectively. The input data and the model can be
found on GitHub [70].

Figure 2. 6 bus test system.

Figure 3 shows the value of the operating cost of the power system on the left axis
(blue bars), run time using Algorithm 1 to solve the AARO-SCUC (dashed orange line),
and run time of the AARO-SCUC solution without using Algorithm 1 (dashed magenta
line) on the right axis. This figure shows the behavior of the OF and running time when
different numbers of past time periods are considered in the AARO model for the known
uncertainty parameters. This analysis was performed by adding the logical condition
t− n ≤ τ into the model, with n being the number of past time periods containing known
uncertainty data (with 1 ≤ n ≤ 24).

Figure 3 reveals that using Algorithm 1 brings computational advantages to the
proposed AARO-SCUC model, when more known uncertain information from past periods
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is desired. That is, the execution times of the model using such algorithm (dashed orange
line) are much shorter compared to the times it takes for the model without using it (dashed
magenta line). For example, if it is desirable to take into account the uncertain information
disclosed from 23 past periods including the current period (t − 24 ≤ τ), the solution
of the AARO-SCUC model takes 30 s when Algorithm 1 is used, whereas it takes 105 s
without using it. That is, Algorithm 1 provides a 2.5 speed-up factor when solving the
proposed AARO-SCUC model. These results are in line with [60], which have proven the
effectiveness of this computational approach for reducing the solution times of SCUC as
the complexity and size of the power system increases.

Furthermore, Figure 3 shows that, when considering the revealed uncertainty of only
a past period (t− 1 ≤ τ), the operating cost of the system is 0.12654 MUSD, while the cost
of the system for t− 24 ≤ τ decreases to 0.12646 MUSD. This value represents a negligible
decrease of 0.0567% in the OF that comes at the price of multiplying the run time by a
factor of six. Furthermore, from t− 2 ≤ τ to t− 24 ≤ τ, the cost does not change, but the
run time has an increasing behavior. This results shows that it is possible to obtain good
quality solution in short running times by considering only the information from a few
past periods. It is noteworthy that, in this case, the optimality gap was zero for all runs.
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Figure 3. OF value and solution time vs. number of past time information, 6-bus system.

Once the computational effectiveness of the proposed approach is illustrated, it is also
important to verify the robustness and stability of the solutions provided by the AARO-
SCUC model. For this purpose, a post-hoc analysis using MCS was executed. Figure 4
shows the feasibility behavior of the solutions of the AARO-SCUC model for different
values of n in expression t− n ≤ τ (i.e., more (n = 24) or less (n = 1) information about
past realizations of the uncertain variables are considered) after evaluating a large number
of realizations (scenarios) of the uncertain variables inside and outside the uncertainty
sets generated through MCS (represented in the horizontal axis of this figure). This
figure shows that the number of violated constraints is zero for those realizations of the
uncertain variables that are within the range 0% to 100% of the maximum uncertainty
level. As expected, the solutions of the model are robust, generating feasible solutions
(valid operating points) for all realizations of uncertain variables within the box. For values
outside the box, (i.e., greater than 100%), the behavior of the obtained solution may vary
depending on the value of n. That is, if less revealed uncertainty from past periods
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is considered (smaller values of n), there is a greater number of violated constraints.
A detailed analysis of this behavior follows.

Figure 4. Number of violated constraints vs. materialization of forecast errors, 6-bus system.

Figure 5 zooms in Figure 4. This figure shows that, for realizations that are 104%
of the size of the uncertainty box, the number of violated constraints is approximately
20 when n = 1 (i.e., if only the information on current uncertain parameters and those
revealed a period ago is considered). On the other hand, this number drops to 0 if n = 24
for the same realization value (104%). Similarly, for realizations of 120% of the size of
the uncertainty set, the number of violated constraints is close to 90 for n = 5, whereas it
decreases to 30 if n increases to 24. In summary, when more information on the uncertainty
values revealed from past times are taken into account in the AARO-SCUC model (i.e.,
larger values of n in expression t − n ≤ τ), more stable solutions may be obtained for
realizations of the uncertain variables that slightly surpass the maximum uncertainty level.
However, increasing the value of n increases the run time. This result exhibits a clear
trade-off between solution robustness and running time.

Figure 5. Zoom of Figure 4.

5.2. IEEE RTS 24-Bus Power System

To further explore the performance of the proposed AARO-SCUC model, several ex-
periments were performed with the IEEE RTS 24-bus power system. This system comprises
24 buses of which 17 are demand buses, 26 conventional generators, nine wind generators
and five solar generators that are connected to 31 transmission lines. The data for this test
system are also available in GitHub [70]. The maximum levels of uncertainty considered
for the model were set at ±5% for demand, and ±10% for wind and solar generation.

Figure 6 shows the behavior of the optimality gap (blue bars) and the computation
time of Algorithm 1 (dashed orange line) based on the amount of uncertain information
disclosed from different periods in the past (n). For the sake of conciseness and based on
the results presented in Section 5.1, this figure only includes the results from t− 1 ≤ τ to
t− 6 ≤ τ. In this case, both the computation times and the optimality gap tend to increase
as more uncertain information revealed from past periods (n) increases.
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For all the experiments, the dual solution (i.e., the lower bound of the cost) was
0.49430 MUSD. Initially, the differences in the optimality gap and computation times when
comparing the results for t− 1 ≤ τ and t− 2 ≤ τ are very small. By contrast, in t− 1 ≤ τ,
the optimality gap is 0.0149%, obtained with an MILP solution of 0.494373 MUSD of cost;
meanwhile, for t− 6 ≤ τ, the gap is 0.5200%, obtained with a solution of 0.496880 MUSD
of cost. The solution with t− 6 ≤ τ produces a solution with a 0.508% cost increase when
compared to the cost of the system for t− 1 ≤ τ. Furthermore, the computation times
of Algorithm 1 vary considerably as n increases. It takes 1417 s for t− 1 ≤ τ, whereas it
takes 81,000 s for t− 6 ≤ τ, the computation time at n = 6 being 57 times the computation
time it takes to solve the model for n = 1. This confirms the results of Section 5.1, that is,
high quality solutions can be obtained in short running times with uncertain information
revealed from very few past periods.

Long computing times are obtained in this system for t− 6 ≤ τ because we assume
that all buses have uncertain loads, something that considerably increases the computa-
tional complexity of the AARO-SCUC model. For instance, this feature renders the solution
of the AARO-SCUC model impossible for this system without the dynamic generation of
N − 1 security constraints of Algorithm 1.

Note, however, that the solution of the AARO-SCUC model using Algorithm 1 may
work well in large-scale systems by exploiting one of the advantages of affine policies.
In that case, linear decision rules precisely allow the tractability of these kind of systems by
taking into account some practical considerations. For instance, one should define, within
the affine policies, a subset of only those hydrothermal generators that have sufficient
technical capacities to respond to uncertainty deviations. Likewise, one can define in the
affine policies, only the subset of buses with uncertain loads. These considerations decrease
the computational burden of the model and allow for obtaining proper solutions.
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Figure 6. OF value and solution time vs. amount of past time information, 24-bus system.

The next step is to verify that such solutions are robust using again the post-hoc
analysis with MCS described in Section 5.1. Figure 7, as well as the results presented in
Section 5.1, show that realizations of the uncertain variables within the uncertainty box do
not generate violated constraints (infeasible unfeasible solutions). On the contrary, for real-
izations of the uncertain variables greater than 100% (values outside the uncertain box), the
number of violated constraints is greater than zero. This means that at least one constraint
is violated when evaluating the solution of the AARO-SCUC model. Moreover, this number
is higher as the size of realizations outside the uncertainty set increases when compared
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against the one that was used in the optimization model. Nonetheless, Figure 8 shows that
the number of violated constraints are lower as more uncertain information revealed from
past periods is considered, a behavior similar to the one observed in Section 5.1.

Figure 7. Number of violated constraints vs. materialization of forecast errors, 24-bus system.

Figure 8. Zoom of Figure 7.

6. Conclusions

This paper presented a new affinely adjustable robust model to solve the security
constrained unit commitment problem considering uncertainty of intermittent generation
sources and demand. The affine policies were only applied for the variables of the dispatch
as adjustable variables in the event of the realization of uncertain variables. This approach
keeps the non-anticipativity condition (τ ≤ t), i.e., only uncertain information known from
past periods and the current period is considered. In addition, a user-cut based algorithm
was implemented to generate N − 1 security constraints in the solution of the model. This
algorithm merges the linear sensitivity factors (PTDF, LODF, and OTDF) and some logical
and functional rules that allow for defining the feasible region of the problem only with
the N − 1 binding constraints—a feature that improves the computational efficiency for
the proposed model.

Computational experiments showed that (1) the algorithm proposed in this paper,
based on user cuts, is computationally efficient for evaluating N − 1 security constraints
within the proposed AARO-SCUC model; (2) high quality solutions can be obtained in
short run times by considering only information revealed from the current period and
few periods in the past (t− 2 ≤ τ or t− 3 ≤ τ ). That is, it is not necessary to consider,
for example, uncertain information disclosed for 23 past periods and the current one
(t− 24 ≤ τ) to obtain good solutions. This behavior could be determined mainly by the
non-anticipativity condition τ ≤ t of the dispatch variables. Furthermore, through the
AGC, power systems have the particularity of correcting the inconveniences produced by
the deviations of the forecast errors just at the instant t. (3) A post-hoc analysis using Monte
Carlo simulations shows that all the solutions of the model are robust for any condition
where the realizations of the uncertainty variables are less than or equal to the maximum
level of uncertainty used within the optimization process. In addition, there seems to be an
inverse relationship between the level of uncertainty revealed of past periods considered
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and the number of violated constraints for variable realizations outside the maximum level
of uncertainty.

The proposed model was optimized under uncertainty boxes bounded by maximum
uncertainty levels. An important topic for future work is to consider unbounded uncer-
tainty sets in order to always obtain a good performance of the model solution (feasible
solutions) for realizations of the uncertain variable outside the uncertainty set. To reach
this goal, a potential procedure based on global robust optimization may be implemented.

Another important research opportunity for the reduction of the conservatism of the
solution is to consider ellipsoidal uncertainty sets, using the criterion proposed by [68].
This also allows for the modeling of spatio-temporal dependencies of solar and wind
generators. This, however, will change the structure of the AAROUC model since it results
in nonlinear decision rules requiring the solution of mixed-integer second-order cone
programming models.
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Abbreviations

The following abbreviations are used in this manuscript:
AA Affine arithmetic
AARO Affinely adjustable robust optimization
AAROUC Affinely adjustable robust optimization unit commitment
AGC Automatic generation control
BD Benders decomposition
DRO Distributionally robust optimization
LODF Line outage distribution factor
LR Lagrangian relaxation
LSF Linear sensitivity factors
MCS Monte Carlo Simulations
MILP Mixed-integer linear programming
OF Objective function
OTDF Outage transfer distribution factors
PTDF Power transfer distribution factor
SCUC Security constrained unit commitment
ROUC Robust optimization of the UC
SOUC Stochastic optimization for the unit commitment
SSCUC Stochastic security constraint unit commitment
UC Unit commitment
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Appendix A. Nomenclature

The nomenclature used through the paper is provided here for quick reference:

Appendix A.1. Indexes and Notations

i Index of conventional generators, 1 to I
w Index of Wind generators, 1 to W
p Index of PV generators, 1 to P
l, k Index of lines and contingencies, respectively, 1 to L
s, ss Index of buses, 1 to S
t, tt, τ Index of time periods, 1 to T

Appendix A.2. Parameters

As
i Generation map for conventional generators

As
w Generation map for wind generators

As
p Generation map for PV generators

FCi Fixed production cost of thermal generator [USD]
Ci Operating variable cost of generator [USD]
Csui Startup cost of conventional generator [USD]
Csdi Shut down cost of thermal generator [USD]
ds,t Demand in bus s at time t [MW]
gdown

i Minimum down time of thermal generator i [h]
gup

i Minimum up time of thermal generator i [h]
gdown,init

i Time that thermal generator i has been down before t = 0 [h]
gup,init

i Time that thermal generator i has been up before t = 0 [h]
gmax

i Rated capacity of thermal generator i [MW]
gmin

i Minimum output of thermal generator i [MW]
gon−o f f

i On-Off status of generator i at t = 0 (equal to 1 if gup,init
i > 0

and 0 otherwise)
ĝw,t Power Forecast of wind generator w, at time t
ĝp,t Power Forecast of PV generator p, at time t
d̂s,t Load Forecast of demand at bus s, at time t
Fmax

l Maximum Capacity of the line l [MW]
TCF Transmission capacity factor of the line l
Ldown,min

i Length of time the thermal generator i has to be off at the start
time of the planning horizon [h]

Lup,min
i Length of time the thermal generator i has to be on at the start

time of the planning horizon [h]
rampdown

i Ramp-down limit of thermal generator i [MW/h]
rampup

i Ramp-up limit of thermal generator i [MW/h]
PTDFl,s Matrix of Power transfer distribution factors
LODFl,k Matrix of Line Outage distribution factors
OTDFl,k Matrix of Outage transfer distribution factors
êw,t Materialized forecast error of the wind generator w, at time t [MW]
êp,t Materialized forecast error of the PV generator p, at time t [MW]
ês,t Materialized forecast error of the the demand located at bus s,

at time t [MW]
êmax

w,t Maximum forecast error of the wind generator w, at time t [MW]
êmax

p,t Maximum forecast error of the PV generator p, at time t [MW]
êmax

s,t Maximum forecast error of the demand located at bus s, at time
t [MW]
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Appendix A.3. Variables

gi,t Conventional generator power output, of the generator i at time t [MW]
xi,t Binary variable equal to 1 if the thermal generator i is producing at time

t, and 0 otherwise
yi,t Binary variable equal to 1 if the thermal generator i is started at the

beginning of time t and 0 otherwise
zi,t Binary variable equal to 1 if the thermal generator i is shutdown at the

beginning of time t and 0 otherwise
Pnets,t Net power injection in bus s, at time t [MW]
fl,t Power flow of the line l, at time t, under normal operation [MW]
fl,k,t Power flow of line l under the contingency k, at time t [MW]
g0

i,t Central value of power output, of the generator i at time t [MW]
Pnet0

s,t Central value for net power injection in bus s, at time t [MW]
λ Upper bound of the highest cost for the dispatch problem [USD]
γi,t,w,τ Adjustment of the generator i at time t given by the deviation of forecast

error of the wind generator w in the past τ periods [p.u.]
γi,t,p,τ Adjustment of the generator i at time t given by the deviation of forecast

error of the PV generator p in the past τ periods [p.u.]
γi,t,τ Adjustment of the generator i at time t given by the deviation

of forecast error of total demand in the past τ periods [p.u.]
η1

w,t Adjust variable for the objective function given by the deviation of
forecast error of the wind generator w at time t [USD/MW]

η1
p,t Adjust variable for the objective function given by

the deviation of forecast error of the PV generator p at time t
[USD Adjust variable for the objective function given by
/MW]η1

t the deviation of forecast error of the total demand at time t [USD/MW].
η2

i,t,w,τ Adjust variable for power limits of the generator i at time t given by
the deviation of forecast error of the wind generator w in the past
τ periods [p.u.]

η2
i,t,p,τ Adjust variable for power limits of the generator i at time t given by

the deviation of forecast error of the PV generator p in the past τ
periods [p.u.]

η2
i,t,τ Adjust variable for power limits of the generator i at time t given by

the deviation of forecast error of total demand in the past τ periods [p.u.]
η3

i,t,w,τ Adjust variable for ramping limits of the generator i at time t given by
the deviation of forecast error of the wind generator w in the past τ
periods [p.u.]

η3
i,t,p,τ Adjust variable for ramping limits of the generator i at time t given by

the deviation of forecast error of PV generator p in the past τ
periods [p.u.]

η3
i,t,τ Adjust variable for ramping limits of the generator i at time t given by

the deviation of forecast error of the total demand in the past τ
periods [p.u.]

η4
l,t,w,τ Adjust variable for power flow limits of the line l at time t given by the

deviation of forecast error of the wind generator w in the past τ
periods [p.u.]

η4
l,t,p,τ Adjust variable for power flow limits of the line l at time t given by the

deviation of forecast error of the PV generator p in the past τ
periods [p.u.]
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η4
l,t,s,τ Adjust variable for power flow limits of the line l at time t given by

deviation of forecast the demand at bus s in the past τ periods [p.u.]
η5

l,k,t,w,τ Adjust variable for power flow limits of the line l under contingency of
the line k at time t given by the deviation of forecast error of the wind
generator w in the past τ periods [p.u.]

η5
l,k,t,p,τ Adjust variable for power flow limits of the line l under contingency of

line k at time t given by the deviation of forecast error of the PV generator
p in the past τ periods [p.u.]

η5
l,k,t,s,τ Adjust variable for power flow limits of the line l under contingency of

line k at time t given by the deviation of forecast error of the demand
at bus s in the past τ periods [p.u.]
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