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Abstract: The use of unmanned aerial robots has increased exponentially in recent years, and the
relevance of industrial applications in environments with degraded satellite signals is rising. This
article presents a solution for the 3D localization of aerial robots in such environments. In order to
truly use these versatile platforms for added-value cases in these scenarios, a high level of reliability
is required. Hence, the proposed solution is based on a probabilistic approach that makes use of a
3D laser scanner, radio sensors, a previously built map of the environment and input odometry, to
obtain pose estimations that are computed onboard the aerial platform. Experimental results show
the feasibility of the approach in terms of accuracy, robustness and computational efficiency.

Keywords: Monte Carlo localization; particle filter; UAV; 3D LIDAR; ultra-wide band

1. Introduction

Localization of autonomous robots has been a very active research field for many
years, and it is becoming more relevant due to the great increase in their industrial use [1].
More recently, aerial robotic technologies have proliferated in numerous sectors, and their
market is expected to keep growing [2]. Several market studies [3] have already identified
that inspection is one of the major business cases for aerial robots in the near future.

For a long time, aerial robots have made use of Global Navigation Satellite System
(GNSS) technologies for outdoor applications, thanks to the existence of numerous robust
and low-cost autopilots that allow their autonomous navigation while satellite signals are
available. With the advances in the technology and maturity of these solutions, there are
other applications that involve the operation of aerial robots in indoor environments such
as warehouses [4], or in the Gas&Oil or civil infrastructure sectors, where multiple obstacles
and occlusions degrade GNSS signals (see Figure 1). This requires additional technologies
to be developed at a similar maturity level as their current outdoor counterparts.

There are numerous algorithms used for localizing ground robots in an efficient and
robust manner [5,6]. However, in the case of aerial robots, which move and operate in 3D
environments, these methods imply greater computational complexity. Apart from the
spatial dimensionality, drones are exposed to additional challenges as their onboard capa-
bilities are limited in terms of payload, computational resources, and power constraints.

One approach for localizing aerial robots indoors, which is widely adopted in research
activities, is the use of motion capture systems. They allow very accurate tracking for a
broad variety of developments [7,8]. These systems are composed of a network of cameras
that are strategically positioned to provide a working volume where the aerial platform
can operate. However, these systems require a direct line of sight between the tracked
platform and a minimum number of cameras to guarantee good performance; hence, they
are not suitable for cluttered environments or dynamic scenarios. Moreover, they are not
cost-effective when scaling to bigger environments.
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Figure 1. Aerial robots are becoming more relevant for industrial applications in GNSS-denied or
GNSS-degraded environments.

Vision-based approaches for robot localization are very popular because of the afford-
ability, availability, and low weight of cameras. It is very common to find algorithms that
use monocular cameras fused with inertial sensors to perform Simultaneous Localization
And Mapping (SLAM) [9–12]. Drawbacks of this type of technique when applied to aerial
robots are tightly related to the high-speed movements of these platforms, or when they
navigate in big empty spaces such as industrial scenarios. Some authors proposed the use
of stereovision or RGB-D sensors [13–16] for improving monocular approaches by adding
depth measurements in the form of point clouds from the environment, but the practical
range when integrating them into aerial robots is usually limited to a few meters, which
could be insufficient in most industrial settings. The main problem with vision-based
approaches is that they do not provide a robust solution for aerial robots, due to their low
reliability in the long term, not only due to the accumulated drift but also to other factors
affecting cameras, such as lighting.

LiDAR (Light Detection and Ranging) is another sensing alternative to generate
localization solutions based on point clouds. This research line has attracted a lot of
attention recently, especially in the automotive sector [17]. There are existing algorithms
that can be used for computing odometry and mapping from LiDAR data [18,19]. Their
limitations arise when integrating such approaches into aerial robots, due to the presence
of vibrations and/or fast motions, which could generate drift that prevents the system
from being robust in the long term.

Another family of approaches that cope with long-term localization solutions relies
on previously built maps of the environment, taking advantage of the fact that industrial
applications usually take place in a specific setting. In addition, map-based approaches for
localization are usually better in terms of reliability and computational requirements. The
map can be computed offline using cameras and/or depth sensors, making use of existing
algorithms. Monte Carlo localization (MCL) is an approach that makes use of a known map
of the environment, commonly used for robot navigation in indoor environments [20]. It is
a probabilistic localization algorithm that makes use of a particle filter to estimate the pose
of the robot within the map, based on sensor measurements. Important benefits include the
possibility of accommodating arbitrary sensor characteristics, motion dynamics, and noise
distributions. There is an adaptive version of MCL, AMCL, which evaluates and adapts
the number of particles for improving the computational load. An open-source version
of AMCL is available in the Robot Operating System (ROS) (http://wiki.ros.org/amcl

http://wiki.ros.org/amcl
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(accessed on 26 April 2021)); however, it is meant for wheeled robots moving in a 2D
environment, requiring a 2D laser scanner for map building and localization. Other
authors have proposed the use of 3D LiDAR data in MCL, but simplifying the 3D scans as
2D slices for autonomous ground vehicles [21]. To the best of our knowledge, there is no
AMCL solution specifically designed for aerial robots.

Localization based on radio beacons has also been deeply studied in the last few
years [22]. Radiofrequency sensors provide point-to-point distance measurements and
offer a low-cost solution that can be applied in almost any scenario, with the advantage
that a direct line of sight is not required between each pair of sensors. Ultra-wide band
(UWB) is a wireless communication technology that has attracted the interest of the research
community as a promising solution for accurate localization and tracking of targets. It is
particularly suitable for applications in GNSS-denied environments, using several fixed
sensors placed at known positions in the environment, plus a sensor onboard the aerial
robot [23,24]. Nevertheless, these sensors are not suitable for constituting a complete
localization system, due to the lack of orientation information, which leads to multiple
localization hypotheses.

The aforementioned approaches are promising in the sense that they can all provide
solutions to the localization problem, but there are major drawbacks if they are used
separately. The presented work builds on previous research from the authors [25], a
multi-modal sensor fusion approach which is based on an enhanced MCL algorithm
that integrates an odometry source for short-term estimations with other sources of 3D
measurements, namely 3D point clouds of the environment, a previously built 3D map,
and radio-based sensors installed in the environment and localized within such a 3D
map. The main contribution of the presented work focuses on a similar combination of
technologies, but with a stronger focus on achieving higher accuracy and robustness for
the safe introduction of aerial robots in industrial applications, thanks to the use of a 3D
LiDAR sensor. To understand the improvement related to the change of sensor, Table 1
can be observed. It must be taken into account that the environment where the algorithm
is intended to be applied will make it more meaningful to use one sensor or another. In
our case, an industrial environment involves very wide spaces, so the range is decisive.
The sensor change also makes sense in the field of precision, since it is evident that the
algorithm will provide better results when the inputs on which it acts are more precise.

Table 1. Sensor comparison.

Sensor Weight Size Range Range

LiDAR 447 g

https://ouster.com
(accessed on 26 April 2021)

Diameter: 85 mm
Height: 73.5 mm

105 m @ >90% prob
120 m @ >50% prob
40 m @ >90% prob
60 m @ >50% prob

0–0.25 m blockage detection

Lambertian targets ±5 cm
Retroreflectors ±10 cm

Orbbec ASTRA Pro 300 g 165 × 30 × 40 mm 0.6–8.0 m (Optimal 0.6–5.0 m) ±1–3 mm (@1 m)
±12.7 mm (@2–3 m)

The code and associated documentation have been published as an ROS package,
publicly available at http://wiki.ros.org/amcl3d (accessed on 26 April 2021). Apart from
releasing the code, a dataset including several flights with associated ground truth has
been also published, so that the scientific community can benefit from our research.

Section 2 explains the details of the algorithm, as well as the aerial robotic platform
that we have designed. In Section 3, the experiments performed to validate the algorithm
are explained. Section 4 discusses the use of the algorithm and proposes interesting avenues
for future work that could be worth exploring.

https://ouster.com
http://wiki.ros.org/amcl3d
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2. Materials and Methods

This section introduces the details of the algorithm developed and adapted to intro-
duce aerial robots into industrial applications. Firstly, the designed hardware architecture
is presented; later, the software is explained in detail.

2.1. Platform Description

The hardware architecture of our research platform is presented in Figure 2. The
aerial robot is based on the standard DJI Matrice 600 platform, in which all sensors and
the processing computer are embedded. The autopilot is DJI A3, for which a specific
connection with the onboard computer was devised. We used a Ubiquiti Bullet radio
device for communications between the aerial robot and the ground station. For data
processing, an Intel NUC with an i7 processor was used.

Figure 2. Hardware architecture.

A 3D LiDAR sensor was used to obtain point clouds of the aerial robot environment.
The 64-channel Ouster OS1 sensor was chosen, which counts with a vertical field of view
of 45 degrees, and a range of around 100 m. However, due to the high computational
load of point cloud processing, it was decided to decrease the number of scans and use
only 16 channels, thus enabling greater computational efficiency. This LiDAR sensor was
used for building the 3D map of the environment and for point cloud matching during
the flights.

Finally, the radio sensors that were used to obtain distance measurements to and
from the aerial robot were the standard model of the swarm bee ER family from Nanotron.
One of them was integrated onboard the aerial robot, while the rest of the sensors were
rigidly attached to different locations in the environment to serve as beacons. The accuracy
of the distance measurements was 10 cm between 0 and 50 m, which was well suited to
our application.

2.2. MCL Algorithm

As previously stated, our algorithm is based on a Monte Carlo localization algorithm
that was previously developed by the authors [25], which was based on an RGB-D camera
as the main sensor for obtaining 3D point clouds of the environment. Taking into account
the redesign of the aerial robot and the new tentative applications for industrial scenarios,
there are several differences. The odometry input for the particle filter is no longer based
on vision but on LiDAR. The 3D point clouds that the robot acquires are very different
from the ones acquired by an RGB-D camera since now they have less density and a higher
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range. In essence, the filter behavior is similar: it compares the map point cloud with the
robot point clouds, taking also into account the radio-based measurements, to compute the
weights of particles. In such an environment, the particles have different weights according
to each computed probability, so the weighted average of all particles would give the
estimated current robot pose (position and orientation).

Each particle i has its pose pi and an associated weight wi as follows:

pi =


x
y
z
ψ

,
N

∑
i=1

wi = 1 (1)

where x, y, and z represent the particle position, and ψ the yaw orientation.
The main algorithm is shown in Figure 3, and the three main parts of the particle filter

loop of our implementation are explained below.

Figure 3. Complete scheme of the algorithm.

Prediction is responsible for moving the particles according to the increment of odom-
etry in the time interval. Thus, it generates the new particles at time t + 1 according to the
pose (position and yaw angle) indicated by the current aerial robot pose at time t:

∆pi =


∆x
∆y
∆z
∆ψ

 (2)

xt+1
i = xt

i + ∆x ∗ cos(ψt
i )− ∆y ∗ sin(ψt

i ) (3)

yt+1
i = yt

i + ∆x ∗ sin(ψt
i ) + ∆y ∗ cos(ψt

i ) (4)

zt+1
i = zt

i + ∆z (5)

ψt+1
i = ψt

i + ∆ψ (6)

The update is responsible for computing the weights of each particle wi. It verifies
the correctness of the pose of each particle by using the 3D point cloud from the LiDAR
and the radio-based measurements of the UWB sensors. The weight wLiDAR is calculated
by using the LiDAR sensor and the map of the environment provided as an input to the
algorithm. The goal is to see how well the point cloud provided by the sensor aligns to the
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map from each particle pose. It should be noted that an initial grid of the input 3D map is
created at the beginning, as an efficient measure to reduce the run time of the algorithm.
On the other hand, there is the weight wUWB that involves the radio sensors installed
in the environment, whose positions are known. This weight represents how well each
particle pose accommodates the received radio-based distance measurements from the
UWB sensor onboard the aerial robot to the fixed sensors (dik). This weight represents
how well each particle pose fits the radio-based distance measurements received from the
UWB sensor on board the aerial robot to the fixed sensors using a Gaussian distribution
(mean rk and standard deviation σ where k is the corresponding beacon). Additionally,
there is a parameter α that is used to assign higher or lower relative importance to each of
the two sensing modalities, according to the particularities of the scenario; for example,
in environments with a high density of metallic structures, it is likely that radio sensors
provide a higher number of incorrect distance measurements.

wLiDAR
i =

1
M

M

∑
i=1

grid(pi(pmap)) (7)

wUWB
i =

L

∏
k=1

1√
2πσ2

e−
(rk−dik)

2

2σ2 (8)

wi = α ∗ wLiDAR
i + (1− α) ∗ wUWB (9)

Lastly, the resample step is responsible for suppressing the particles that have lower
values of weight and generate more particles from the ones with higher weights. Thanks to
this step, the algorithm is able to converge to the correct aerial robot pose.

3. Results
3.1. Test Scenario

The environment used for validating our algorithm is in the CATEC (Advanced Center
for Aerospace Technologies) facilities, which contain an indoor multi-vehicle aerial testbed
(see Figure 4). This space enables the development and testing of different algorithms
applied to multiple aerial platforms. The testbed dimensions are 15 m × 15 m × 5 m. It
has a motion capture system based on 20 Vicon cameras, which allow the control of the full
volume through the use of passive markers that are placed on the aerial robot. This system
can provide, in real time, the position and attitude of the aerial vehicle with millimeter
precision. The sample rate of data acquisition for our experiments was 100 Hz, enough for
acquiring a high-quality ground truth for evaluating localization algorithms.

Figure 4. Vicon camera (left) and CATEC indoor testbed (right).
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3.2. 3D Map

Our enhanced MCL algorithm relies on a previously built multi-modal map that
includes 3D occupancy data and the location of the UWB beacons. In this case, we built the
map using Octomap [26]. A manual flight was carried out, and the aerial robot’s pose from
the testbed’s motion capture system was used to project each of the 3D LiDAR point clouds
onto an Octomap server, to generate the full 3D occupancy grid of the robot environment,
as shown in Figure 5.

Figure 5. Three-dimensional map of the indoor testbed at CATEC.

3.3. Public Dataset

Given the relevance of the application of aerial robots in industrial applications and
the development of GNSS-free localization algorithms suitable for aerial robots, we find
it necessary to provide a benchmark to test and improve them. Obtaining data from 3D
LiDAR sensors mounted on aerial robots is not straightforward, and associating these data
with an accurate ground truth is very relevant for the research community. This is due to
the fact that this type of sensor is expensive, in addition to the need to have a multirotor
capable of supporting its weight. If, in addition, the consideration of adding a ground truth
is taken into account, the cost would increase even more due to the need to have a motion
capture system, but it is very useful to obtain real comparisons of the resulting algorithms.
For this reason, the flights used for this work have been released, thus contributing to
the scientific community (see Figure 6 for a sample flight trajectory). All the published
datasets can be found at: https://github.com/fada-catec/amcl3d/releases (accessed on
26 April 2021).

3.4. Flight Test

Out of the intensive validation campaign that was carried out at the indoor testbed,
in this section, we present the results from one of the most relevant flights, to show the
performance of the localization algorithm. Since the robot odometry was beyond the scope
of our work, we decided to use the ground truth localization but degraded it by adding a
drift in position (see Figure 7-up), in order to highlight the benefits of our algorithm. In this
way, it is possible to verify that the algorithm compensates for this drift and can estimate
the correct pose of the robot thanks to the robust multi-sensor fusion.

To check the possible variants of our multi-sensor fusion approach, several possibilities
have been considered by modifying the α parameter defined in Section 2. If this parameter
is zero, only UWB measurements are taken into account, while if the value is one, only 3D

https://github.com/fada-catec/amcl3d/releases
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point clouds are considered for weight computations. We have run the algorithm while
varying this parameter with a step of 0.2, as shown in Figure 7 below.

Figure 6. Sample trajectory from one of the published flights.

Another variation that was tested in the algorithm was the effect of different numbers
of total particles to be used. Figures 8 and 9 show the errors in each state vector component
(x, y, z, and ψ) when 100 particles and 500 particles are used, respectively. In addition,
Tables 2 and 3 provide the RMS values.

Table 2. RMS errors with different values of α using 100 particles.

100 Particles

α X—Axis (m) Y—Axis (m) Z—Axis (m) Yaw (Degree)

0 0.103 0.079 0.208 0.109
0.2 0.107 0.091 0.202 0.119
0.4 0.106 0.078 0.125 0.112
0.6 0.112 0.074 0.185 0.110
0.8 0.137 0.087 0.062 0.114
1 0.207 0.181 0.034 0.108

Table 3. RMS errors with different values of α using 500 particles.

500 Particles

α X—Axis (m) Y—Axis (m) Z—Axis (m) Yaw (Degree)

0 0.138 0.092 0.088 0.133
0.2 0.131 0.101 0.041 0.152
0.4 0.158 0.095 0.033 0.133
0.6 0.177 0.121 0.058 0.142
0.8 0.197 0.126 0.042 0.136
1 0.249 0.157 0.054 0.119
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(a)

(b)

Figure 7. (a) Input odometry with artificial drift. (b) Results provided by the algorithm in XY.

Table 4 shows the computation load of the onboard i7 processor at different times
during the test flight. As expected, there is an increase when using 500 particles, but this is
not proportional to the additional amount of particles. To visually observe the progress of
the computational load along the evolution of the algorithm, Figure 10 is provided.

The results show that our proposed algorithm can accurately locate an aerial robot
in a GNSS-denied environment, even by introducing drift in the input odometry. The
expected results were that the higher the number of particles, the better the results in terms
of accuracy. According to Tables 2 and 3, this would not be entirely true. Such tables
take into account the whole flight, and at the beginning of the flight, the particle cloud is
scattered; hence, errors are higher. The algorithm converges faster to the true pose when
more particles are used, as can be seen in Figures 8 and 9. It can be noted that the errors are
smaller by the end of the flight, especially in the Z axis.
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Table 4. Computational load with α = 0.5 during the test execution

Computational Load

Time (s) 100 Particles (%) 500 Particles (%) Increase (%)

5 16.1875 18.9625 2.775
10 15.6125 18.1625 2.55
15 16.8625 18.1 1.2375
20 17.325 18.175 0.85
25 18.1625 19.1125 0.95

(a) (b)

(c) (d)

Figure 8. Error plots using 100 particles: (a) errors in X, (b) errors in Y, (c) errors in Z, (d) errors in yaw.
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(a) (b)

(c) (d)

Figure 9. Error plots using 500 particles: (a) errors in X, (b) errors in Y, (c) errors in Z, (d) errors in yaw.

Figure 10. Computational load graph.

Therefore, it is worth comparing it with the algorithm proposed in [25]. For this
reason, both Table 5 with the RMS values and the corresponding Figure 11 with the flight
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performed are attached. As can be observed, there is an improvement in the location in all
axes and in the yaw.

Table 5. RMS errors with MCL [25].

X—Axis (m) Y—Axis (m) Z—Axis (m) Yaw (Degree)

0.36 0.39 0.17 10.313

Figure 11. Flight of [25].

4. Conclusions

Based on the results, it can be concluded that the algorithm fulfills its goals in terms
of accuracy and computational efficiency. The proposed multi-sensor fusion approach
provides a good trade-off, allowing variation of the proportional weight between the use
of the different available sensor modalities. As for the UWB sensors, it is necessary to
emphasize that the more sensors there are in the environment, the better the accuracy of
the pose estimation; however, this would involve infrastructure maintenance issues for a
permanent localization solution in any given scenario.

It may be of interest to the scientific community to try to locate the UAV without
indicating an initial starting point. However, aerial robots perform rapidly changing
movements thanks to their 6 degrees of freedom. This means that when the algorithm
tries to locate the robot in a certain position, it is already in a different one. There are
“jumps” in the estimation of the robot’s position that cause the algorithm to not converge
correctly. Therefore, this type of algorithm is not prepared for the first initialization
step to be performed automatically; that is, it is necessary to enter an initial position
so that the convergence is adequate in real time and the pose of the aerial robot can be
correctly estimated.

Even though technological equipment has greatly advanced in recent years and allows
the processing of units with higher computational capabilities, aerial robots’ payload is still a
limiting factor that needs to be addressed when it comes to onboard real-time computations.

Further research directions involve the use of additional sensors in the particle filter,
such as a laser altimeter to keep the height estimation errors bounded, which are critical for
the safe operation of aerial robots. Furthermore, additional improvements can be addressed
within the algorithm, such as a more efficient resampling method. Nevertheless, the
proposed method has been validated in a realistic indoor scenario as a suitable localization
algorithm for the localization of aerial robots in GNSS-denied environments.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-dimensional
3D Three-dimensional
AMCL Adaptive Monte Carlo localization
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
LIDAR Light Detection and Ranging
MCL Monte Carlo localization
RGB Red, Green, Blue
RGB-D Red, Green, Blue-Depth
ROS Robot Operating System
UWB Ultra-wide band
UAV Unmanned aerial vehicle
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