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Abstract: COVID-19-related quarantine measures resulted in a significant increase of interest in
online collaboration tools. This includes virtual reality (VR) or, in more general term, extended reality
(XR) solutions. Shared XR allows for activities such as presentations, training of personnel or therapy
to take place in a virtual space instead of a real one. To make online XR as accessible as possible, a
significant effort has been put into the development of solutions that can run directly in web browsers.
One of the most recognized solutions is the A-Frame software framework, created by Mozilla VR
team and supporting most of the contemporary XR hardware. In addition, an extension called
Networked-Aframe allows multiple users to share virtual environments, created using A-Frame, in
real time. In this article, we introduce and experimentally evaluate three components that extend the
functionality of A-Frame and Networked-Aframe. The first one extends Networked-Aframe with
the ability to monitor and control users in a shared virtual scene. The second one implements six
degrees of freedom motion tracking for smartphone-based VR headsets. The third one brings hand
gesture support to the Microsoft HoloLens holographic computer. The evaluation was performed
in a dedicated local network environment with 5, 10, 15 and 20 client computers. Each computer
represented one user in a shared virtual scene. Since the experiments were carried out with and
without the introduced components, the results presented here can also be regarded as a performance
evaluation of A-Frame and Networked-Aframe themselves.

Keywords: extended reality; WebXR; performance evaluation; A-Frame; virtual collaboration

1. Introduction

While online collaboration tools are available for years, their utilization has been rising
significantly because of the COVID-19-related quarantine measures. This is probably most
evident in education, where, according to Burgess and Sievertsen [1], teaching is moving
online on an untested and unprecedented scale. When training activities are needed, the
educators opt for virtual reality (VR) solutions more often than ever. For example, VR
simulators are used for surgical training in ophthalmology courses [2] and Mohan et al. [3]
envisioned a place for similar solutions in plastic surgeons training. Wijkmark et al. [4]
used virtual simulation for firefighter training and Luimula et al. [5] indicated an imme-
diate need for virtual hands-on training solutions in the construction industry. Similar
to other application areas, extended reality applications are migrating from the desktop
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environment to web browsers. Extended reality (XR) is an umbrella term, covering virtual,
augmented and mixed reality. Web-based extended reality simplifies users’ access through
a variety of devices under different operating systems [6]. The usage of web-based XR
has been increasing since 2017 when Augmented Reality (AR) and Mixed Reality (MR)
were united in the same development process with VR. This resulted in WebXR Device
API (https://www.w3.org/TR/webxr/, accessed on 22 April 2021) [7], a W3C specifica-
tion defining access to both VR and AR devices.

One of the most recognized software frameworks for developing XR web applica-
tions is A-Frame (https://aframe.io/, accessed on 22 April 2021). It is an open-source
platform, which supports most of the contemporary XR hardware. Initially created by
the Mozilla VR team in 2015, its development is now led by experts from Superme-
dium and Google. A valuable extension of the framework is Networked-Aframe (NAF)
(https://github.com/networked-aframe, accessed on 22 April 2021), which allows multiple
users to share virtual environments, created using A-Frame, in real time. To extend the
functionality of A-Frame and NAF and address some of their limitations, new components
were proposed and evaluated by the authors. The components, together with a selection of
virtual environments (scenes), constitute a platform called LIRKIS Global—Collaborative
Virtual Environments (G-CVE) [8–10]. An instance of LIRKIS G-CVE, with all the com-
ponents described and evaluated here, is available at https://lirkisgcve.herokuapp.com/
(accessed on 22 April 2021).

The original contribution of this paper dwells in a performance evaluation of three
of the proposed components under different loads. The first proposed component, called
Enhanced Client Access (ECA) [10], extends NAF with the ability to monitor and control
client apps sharing a virtual scene. The second one is 6-DoF SMC (Smartphone Motion
Capture) [9], which addresses the lack of Six Degrees of Freedom (6-DoF) motion tracking
for smartphones. The 6-DoF motion capture is supported “out of the box” for VR headsets,
such as Oculus Touch, Oculus Quest, HTC Focus HTC Vive or Windows MR-compatible
devices [11]. However, it is not supported for the stereoscopic mode in smartphones,
which is a significant disadvantage as interaction with less than six DoF rules out all-
natural movement in XR. Smartphones offer 3-DoF capture with the rotational motion
tracking but not the translational one. Thus, the users may turn but not move from place
to place in a virtual scene. They need additional devices to move, such as gamepads or
joysticks, which are less natural for such interaction. The third proposed component, named
HoloGOM [9], deals with Microsoft (MS) HoloLens, where available web frameworks do
not include access to gesture processing. Therefore, the users are limited to interact only by
the clicker device and object manipulation by hand tracking is not available. HoloGOM
solves the issue by supporting free-hand manipulation and tap gestures. While developed
for A-Frame, the second and third component can be used for virtually any application,
implementing WebXR.

All three components are incorporated into the client–server architecture of A-Frame
and NAF (Figure 1) to offer a more natural user experience in shared virtual environments
(scenes). A-Frame and NAF provide the virtual scene and means to share it between
multiple users: a server machine (SRV in Figure 1) runs a web server application (app) that
hosts all the resources for client apps and runs the server-side modules of NAF. Each user
device (PC, PH or HL in Figure 1) runs an instance of a web browser with a client app that
renders the shared virtual scene using A-Frame modules and client-side modules of NAF.
NAF keeps track on networked entities, which represent users and shared objects in the
scene. Thanks to this, a user can see avatars of other users and shared objects in the scene.
ECA runs inside both the server and the client apps and allows to rise mutual awareness of
users sharing the scene by providing access to their positions and other properties. 6-DoF
SMC and HoloGOM run inside the client apps on the corresponding devices to translate
the user movement in a real environment to the virtual one.

https://www.w3.org/TR/webxr/
https://aframe.io/
https://github.com/networked-aframe
https://lirkisgcve.herokuapp.com/
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Figure 1. A-Frame, NAF and the proposed components in a typical configuration.

The aim of the performance evaluation of the proposed components was to find
answers to the following research questions:

• RQ.1: How does the added functionality, implemented in the proposed components,
affect the A-Frame and NAF performance under different loads?

• RQ.2: How do A-Frame and NAF perform under different loads on mid-range hard-
ware and MS HoloLens?

The evaluation was carried out in the form of three sets of experiments, each focusing
on one component. To eliminate the interference from internet traffic, the experiments took
place in a dedicated local network environment, but with Internet connectivity available
for all devices. In principle, the network environment resembled the one shown in Figure 1.
Personal computers (PC), representing users in a shared virtual scene, were connected,
via a switch and to a server (SRV) running the web server app. MS HoloLens (HL) and a
smartphone (PH) were accessed through a WiFi router, connected to the same switch. By
the different loads we mean different number of active users, sharing the scene. Each set,
except of the one for the MS HoloLens component, consisted of experiments with 1, 5, 10,
15 and 20 users. Only 1, 5 and 10 users were used for MS HoloLens as the performance
dropped to unacceptable levels with a higher number of users. Two performance measures
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were recorded. The first one was the frame rate of the client application. The second one
was the network response time between the client app and a server, hosting the virtual
environment and running NAF. The mid-range hardware used were computers with Intel
Core i5 CPU, 4GB RAM and integrated graphics and a Xiaomi Redmi Note 7 smartphone
with Android 10. The experiments used A-Frame version 1.0.4 on personal computers and
MS HoloLens and 0.9.2 on the smartphone. The NAF version was 0.6.1 on all devices.

The rest of the article is organized as follows. Section 2 lists other works related to
the evaluated components and the performance evaluation. It also links LIRKIS G-CVE to
the cognitive infocommunications research area. Section 3 overviews the proposed com-
ponents and explains their connection to A-Frame and NAF in more detail. Experimental
evaluation setup and procedures are described in Section 4. Section 5 presents results of the
experiments and discussion. Findings regarding reliability of the proposed components,
revealed during the experiments, are presented in Section 6. Section 6 also overviews
additional experiments, dealing with the usability of the proposed components and utiliz-
ing the standardized System Usability Scale (SUS) questionnaires. The article concludes
with a summary of the achieved results and plans for future research and development in
Section 7.

2. Related Work

The topicality of the proposed components is evident from recent works that deal with
similar functionality, described in Sections 2.1–2.3. What distinguishes our components
from other solutions is the implementation of features that aim at different goals or the
utilization of web technologies, which allow easy access to shared virtual environments.

Regarding the performance evaluation of shared XR solutions, the work presented
here is, to our knowledge, unique in its scope and complexity. Thus far, this work seems
to be the only study focusing on the impact of an increasing number of homogeneous
clients in a shared virtual scene, implemented using WebXR. There also seem to be no
other studies measuring the A-Frame performance on MS HoloLens or an impact of the
ARCore-based motion tracking on the performance. The most related works with respect
to the performance evaluation are listed in Section 2.4.

2.1. User Management in Web-Based Shared Virtual Environments

Considering the user management in shared virtual scenes, both A-Frame and NAF
were used by Scavarelli et al. [12] for their virtual learning environment platform, called
Circles. Circles provides a prototypical user interface for managing virtual rooms and
invitations for other users. In Circles, a user can take a role of learner, instructor or
developer. However, it is not clear whether Circles extends NAF in any way, as our ECA
component, or uses its default features for the desired functionality.

Another solution based on A-Frame is the work of Gunkel et al. [13,14], which focuses
on enhancing the possibilities of collaboration in virtual space. Our collaboration-related
functionality utilizes NAF and the ECA component, where ECA extends NAF by providing
more information about connected users and by allowing to remove the users from a
shared scene. On the other hand, the authors of [13,14] focused on videoconferencing. They
provided photo-realistic representations of the users by means of 2D video streams [13] or
3D scans [14].

Huh et al. [15] proposed an architecture for online collaboration in XR, based on
decentralized web. The communication between users is provided by WebRTC through
WebSockets. As in our case, they utilized A-Frame for virtual scenes, but they did not use
NAF. For scene sharing, they implemented a solution that utilizes peer-to-peer connection.
Each user has a local database of objects that is shared with others. As our solution is based
on NAF, it uses a client–server architecture without local databases.
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2.2. 6-DoF Motion Tracking for Smartphones

The proposed 6-DoF SMC component, addressing the lack of 6-DoF motion tracking
in smartphones, is related to the work [16] in visual-inertial fusion mechanism. The experi-
mental platform, introduced in [16], contains a smartphone utilizing external monocular
camera and IMU (Inertial Measurement Unit). The motion detection is based on two con-
current data streams: visual frames captured from camera and IMU linear acceleration data
with angular velocity. In comparison to Fang et al. [16], the 6-DoF SMC component relies
on a built-in smartphone camera. While the contribution of Fang et al. [16] is presented as
a standard for smartphone AR/VR applications, our solution offers a component that can
be deployed on any platform implementing WebXR.

Smartphone-based headsets have the potential to be closer to the standard VR, with
6-DoF motion tracking and environmental understanding [17]. This idea was implemented
by Mendez [18], in a smartphone VR application to track the user’s motion and transform it
into a movement inside VR. The application can process data obtained from a camera and
IMU sensors, while the user interacts through a smartphone-based headset. The motion
tracking is based on the Google ARCore (https://developers.google.com/ar/, accessed on
22 April 2021) services and inside-out tracking. The 6-DoF SMC component also utilizes
the same ARCore technology as Mendez [18]. Our solution is implemented in HTML
and JavaScript under the WebXR Device API. Our interface is fully accessible through
a web-browser on a variety of platforms while the application of Mendez (2018) [18] is
limited by the underlying platform.

2.3. Gesture Recognition on MS HoloLens

Regarding the gesture recognition, ExplorViz [19,20] offers a similar approach to
obtain gesture events as our HoloGOM component. ExplorViz represents a web-based
tool [19] intended for a real-time exploration of so-called virtual cities and landscapes.
From the technological point of view, it uses JavaScript access to the experimental WebVR
API, a predecessor of WebXR. WebVR is used to obtain data from the MS Kinect device.
The HoloGOM component works with MS HoloLens, however the sensors of HoloLens
and Kinect are similar.

The contribution of Mohr et al. [21] introduces TrackCap, which allows using smart-
phones as intelligent 6-DoF controllers with a variety of VR headsets. The positional
tracking in TrackCap is provided by a smartphone, held in the user’s hand. The smart-
phone senses a marker placed on the front side of the headset. In relation to the marker, the
smartphone calculates its relative position and rotation around the headset. The TrackCap
is also suitable for MS HoloLens, where smartphones can be used as virtual hands. The
communication with the headset is provided via Wifi or Bluetooth. Unlike the HoloGOM
component, the work of Mohr et al. [21] does not support free-hand gesture inputs. Holo-
GOM utilizes the JavaScript Gamepad API (https://developer.mozilla.org/en-US/docs/
Web/API/Gamepad_API, accessed on 22 April 2021) that obtains sensed gestures directly
from MS HoloLens sensors in real-time. Therefore, the user can interact more intuitively
and without external equipment.

2.4. Performance Evaluation of Shared and Web XR

A performance evaluation, related to the one presented in this article, was carried out
by Toasa et al. [22]. They developed a custom web application and used it to evaluate web-
based VR performance on various devices. The devices were a gaming PC, a smartphone
and three types of VR headsets. Because of the nature of our evaluation, we use a PC, a
smartphone and MS HoloLens but no VR headsets. Toasa et al. [22] focused on WebGL
and WebVR performance and their application is a single-user one, developed in the Unity
game engine. Our evaluation deals with original components for A-Frame and NAF, which
utilize WebXR.

In [23], Parthasarathy et al. presented an evaluation focused on the quality of service-
related network parameters. They prepared a multi-user VR application in the Unity

 https://developers.google.com/ar/
https://developer.mozilla.org/en-US/docs/Web/API/Gamepad_API
https://developer.mozilla.org/en-US/docs/Web/API/Gamepad_API
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engine and measured network parameters such as throughput and round-trip time to
understand how many users can be simultaneously connected while maintaining high
image quality. Three experiments were conducted by Parthasarathy et al. [23], with 2, 5
and 10 users. A design element, similar to our study, is that they used one human user
and the other users were simulated by a computer. The human user used the Oculus Rift
headset in [23], while in our work it was the smartphone or MS HoloLens. In our study,
each simulated user ran on a dedicated machine, while, in[23], it was one PC for all of
them. The work of Parthasarathy et al. [23] also differs in the implementation platform and
the set of evaluated parameters.

Letić et al. [24] presented an implementation of a real-time web-based solution that
projects pre-rendered map tiles onto a VR plane. As in our case, the implementation was
carried out in A-Frame and its performance was measured. The performance measures
in [24] were frame rate and JavaScript heap size. Similarly to us, Letić et al. [24] considered
30 fps as a frame rate acceptable for human eyes. Due to the nature of their solution, the
measurements in [24] were performed with one client application only.

2.5. Relation to Cognitive Infocommunications Area

Human–computer interaction within XR is a recognized area in emerging trends
of cross-domain cognitive infocommunications, where the cognitive capabilities of the
modern information and communication technologies and human users are considered
and evaluated [25]. Probably the most related development is the MaxWhere (https:
//www.maxwhere.com/, accessed on 22 April 2021) platform, which evolved from the
VirCA [26] collaborative VR platform. MaxWhere has also been used for several interesting
tasks, such as an evaluation of a 2D advertising in 3D virtual space [27], an assessment
of the role of VR in communication and memory management [28], a virtual laboratory
system [29] or to increase digital workflow effectiveness [30]. The experiments performed
by Lampert et al. [31] and Horváth and Sudár [32] demonstrated that MaxWhere is an
effective platform for collaborative information and workflow sharing. The key difference
between MaxWhere and LIRKIS G-CVE is in the way they see the role of VR and web
technologies: In MaxWhere, users share resources via 3D virtual scenes and it requires
dedicated software to be installed. The collaboration in MaxWhere is possible thanks
to multiple web browser panels, included in the scene. The panels allow accessing the
resources directly or by running corresponding web applications. In LIRKIS G-CVE, the
virtual scenes run within a browser, therefore no installation is needed. The users see
avatars of other users in the scene and interaction with other users or the scene can be
supported. As LIRKIS G-CVE scenes are written using the standard HTML5 Stack, it
should be possible to include existing web applications for sharing and collaborating on a
desired content. However, such functionality is not yet available in the underlying A-Frame
framework. It should also be noted that MaxWhere is a solution already used in practice,
while LIRKIS G-CVE is primarily an experimental platform.

3. Enhanced User Interaction Components

The proposed components, described and evaluated in this paper, can be divided
into two groups. The sole member of the first one is the Enhanced Client Access (ECA)
component for NAF. ECA provides remote client administration and full access to clients’
entity information. The second group includes 6-DoF Smartphone Motion Capture (6-DoF
SMC) and MS HoloLens Gesture-based Object Manipulation (HoloGOM). They add new
features to A-Frame but can do the same for any application supporting WebXR. The 6-DoF
SMC component brings 6-DoF motion tracking to smartphone-based VR headsets and
HoloGOM provides gesture recognition for XR web applications on MS HoloLens.

https://www.maxwhere.com/
https://www.maxwhere.com/


Appl. Sci. 2021, 11, 3811 7 of 24

3.1. ECA: Enhanced Client Access

While A-Frame with NAF allows multiple users to simultaneously access a shared
virtual scene just by typing the same URL to a browser, it is not so easy for the client app to
get information about other users that share the scene.

To achieve the scene sharing, NAF uses both server and client-side modules (Figure 1),
which communicate via web sockets and RTC data channels, utilizing the UDP protocol.
When a new client app connects to the shared scene, NAF creates a separate data channel
for it. The client app uses the channel to send data about its user avatar to the server and to
receive data about avatars of other users connected to the scene. The server modules are
responsible for the replication of avatar data to all connected client apps. The frequency
of the avatar data update is 15 times per second. This is the default value, set by NAF to
prevent server lags when a high number of clients is connected. The avatar data contain
the position and rotation of the avatar in the scene and allow client apps to render avatars
of all users sharing the scene. The problem with NAF is that the data are encapsulated and
the application programming interface (API) of NAF only allows accessing user identifiers
and events caused by the users.

This problem is the primary one addressed by the ECA component. ECA implements
an API, which allows accessing the data channels with each avatar data update. To achieve
this, ECA utilizes and modifies corresponding NAF modules, namely Utils, NetworkCon-
nection and NetworkedEntities. ECA also extents the avatar data by new items, for the
purpose of avatar customization. In total, five data items can be extracted from the data
channel of each user avatar by the ECA API:

1. avatar position in the scene (x,y,z coordinates);
2. avatar rotation in the scene (yaw, pitch, roll);
3. user name;
4. avatar head color; and
5. position of avatar hands in the scene (x,y,z coordinates).

The first two items are the ones originating from NAF, while Items 3–5 have been
added by ECA. The functionality ECA provides for a NAF client can be divided into five
client-side modules:

User identification allows a user to enter his or her name when connecting to a shared
virtual scene (VS).

Avatar data API gives access to the five data items described above.

User history provides a list of users that have visited the shared VS, together with the
time when they entered and left it.

User administration allows control over users in the same shared VS. In the current
version, its functionality is limited to removing users from the VS. After a user is
removed, his or her client app still renders the scene, but without the avatars of other
users.

Dashboard provides an administrative GUI (Figure 2) for the previous modules, where
their functionality can be accessed in a user-friendly way. The data from the shared
users dataset and user history are displayed in tables and the possibility of removing
the clients is also available. The module is password-protected.

The server-side of ECA (Figure 1) stores administrator credentials for accessing the
dashboard module and a list of user connections for the history module. It also includes
three endpoints: the first one authenticates dashboard users against the stored credentials;
the second one sends commands from the client administration to other client apps, repre-
senting users in the same VS; and the third one is used for the user history list maintenance.

ECA is built on top of the version 0.6.1 of Networked-Aframe and requires A-Frame of
the version 0.8.1 or later. Earlier versions of A-Frame cannot be used as they do not support
so-called dynamic scene graphs: Dynamic scene graphs allow adding or removing scene
entities without the need of the corresponding web page refresh. Avatars of connected
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users belong to the scene entities, too. It is true that more recent versions of NAF (0.7.0 and
0.7.1) have been issued in 2020. However, because of some unfixed issues, it was decided
to finish the development of ECA and perform the experiments (in mid to late 2020) with
the stable version 0.6.1. Meanwhile, the compatibility of ECA with NAF 0.7.1 was tested,
with success (A LIRKIS G-CVE instance, demonstrating ECA utilization with NAF 0.7.1, is
available at https://lgcve-cbot.herokuapp.com/, accessed on 22 April 2021).

Figure 2. Part of the ECA dashboard during the performance evaluation.

3.2. 6-DoF SMC: 6 Degrees of Freedom Smartphone Motion Capture

A-Frame did not include components to translate smartphone motion into movement
in virtual environments. A similar limitation was also present in the whole web-based
VR. The situation changed in 2017, when Google introduced its ARCore library, which
brings 6-DoF motion tracking to smartphones. In web browsers, ARCore is available
via the WebXR Device API, which has certain safety restrictions and is still considered
experimental in some browsers (A web page using it should be provided via the HTTPS
protocol. For browser support and special settings required, one can search for “WebXR
Device API” at https://caniuse.com/, accessed on 22 April 2021). A-Frame integrated the
ARCore 6-DoF motion tracking functionality to its version 1.0.3, released in December 2019.
While it is possible to turn on the 6-DoF motion tracking in A-Frame 1.0.3 or later, it is not
available in the stereoscopic rendering mode, which is essential for the smartphone-based
VR headsets, such as Google Cardboard (https://arvr.google.com/cardboard/, accessed
on 22 April 2021). This issue was solved by the 6-DoF SMC component.

The 6-DoF SMC component (Figure 3) has been designed for mobile devices with the
operating system Android 8.0 or later. We intended to utilize the Google ARCore library
only, but for web-based purposes it was necessary to employ WebXR, too. In general, the
ARCore obtains IMU and camera data from the mobile device to detect its position and
rotation, relatively to the surrounding space. The motion tracking is based on features
detection from the image stream, captured by a camera. This mechanism detects significant

https://lgcve-cbot.herokuapp.com/
https://caniuse.com/
https://arvr.google.com/cardboard/
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points that contrast in the image stream. The ARCore is able to track how those points
are moving over time, and, through this, it can process the device motion. After that, the
ARCore data are directed to the WebXR module, which controls the whole web-based
backend. To achieve cross-compatibility between ARCore and WebXR, the web browser
Chrome Canary version 70 was used. In our solution, the WebXR controls A-Frame camera
position and rotation, relatively to the virtual scene. When the user moves in the real
world, the motion is detected and translated into the virtual environment. 6-DoF SMC has
been tested with A-Frame version 1.0.4; however, significant performance issues have been
detected. This is most probably caused by the 6-DoF SMC component running in parallel
with the 6-DoF motion capture functionality of A-Frame 1.0.4, which, unfortunately, lacks
the stereoscopy support. Therefore, A-Frame version 0.9.2 was used on a smartphone
during the experiments presented in this article.

Web Browser   
Visual Output 

6DOF SMC component 

Smartphone 
IMU

ARCore

WebXR

Smartphone 
Camera

Figure 3. 6-DoF SMC component position tracking mechanism.

3.3. HoloGOM: MS HoloLens Gesture-Based Object Manipulation

One of the characteristic features of MS HoloLens is the support of interaction by hand
gestures. The HoloGOM component (Figure 4) can detect gesture inputs from MS HoloLens
and transform them into the virtual environment. During the HoloGOM implementation,
we found that the current version of Gamepad API provides new events for reading
gesture inputs as controller buttons. By using a set of standard HoloLens gestures (tap,
hold and drag), we tested the API outputs. Then, the gesture commands were implemented.
The HoloGOM component supports two types of object manipulation.

Web Browser   
Visual Output 

HoloGOM component

MS HoloLens Sensors

GamePad API - gesture detection

Gesture input

Gesture Command

Figure 4. HoloGOM component for obtaining MS HoloLens gestures.

The first one, called click-and-push, offers a static manipulation, where a virtual object
is “teleported” from one position to another without rendering its movement between the
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positions. The user can select an object and then choose the destination point, where the ob-
ject will be moved. This manipulation is event-driven and proceeds as follows (Figure 5a):
First, the user selects the virtual object to move using the tap gesture. Next, the user moves
his or her hand to the destination point, while showing the ready gesture. When on the
destination point, the user shows the tap gesture again and the object disappears from
its original position and appears at the destination point. The manipulation can be used
even when the user moves (walks) in the real environment. This is especially useful when
moving virtual objects over greater distances. The user has to keep the hand performing the
gestures in the field of view of the MS HoloLens sensors during the whole manipulation.

Tap
Gesture

Click
Event

Push
Event

Object translation

Hand movement

Tap
Gesture

Visible VisibleInvisible

Ready
Gesture

(a)

Ready
Gesture

Click
Event

Push
Event

Object translation

Hand movement

Tap
Gesture

Visible VisibleVisible

Drag

(b)

Figure 5. Object manipulation with HoloGOM: (a) static gesture interaction; and (b) dynamic
gesture interaction.

The second manipulation, called tap-and-drag, provides dynamic object manipulation
(Figure 5b). It consists of an activity in which the user taps on the object and moves it
continuously to its destination, i.e., the classical drag-and-drop. This is more immersive as
the click-and-push, but the user cannot walk when performing it. As shown in Figure 5b,
the user first selects a virtual object using the tap gesture. Then, he or she maintains the
tap gesture during the movement. At the destination point, the user releases the object by
showing the ready gesture.

Both types of manipulation can be performed by one hand only. The HoloGOM
component, as well as the whole A-Frame, work on MS HoloLens via its version of the
Microsoft Edge browser. For the full functionality of the component, it is necessary to
enable experimental JavaScript features and WebVR in the browser.

4. Experimental Setup and Procedures

The performance evaluation of the proposed components consisted of three sets of experi-
ments, E.ECA, E.6DF and E.HL. The E.ECA experiments measured the performance of the ECA
component, E.6DF of the 6-DoF SMC component and E.HL of the HoloGOM component.
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4.1. Experimental Setup

To eliminate the influence of the Internet traffic and ensure replicability, all experiments
took place in a dedicated local network environment at the home institution of the authors.

The topology of the network is shown in Figure 6 and details about the used devices
can be found in Table 1. The shortcuts used for the devices include those introduced in
Section 1 and Figure 1 (SRV, PC, PH and HL).

SRV

PH WiFi HL

PC PC

...

SWCH

Figure 6. Local network topology used in the performance evaluation experiments.

Table 1. Devices used in the performance evaluation experiments.

Label Type Model or Configuration

WiFi Wireless router Mercusys MW 325R

SWCH Ethernet switch Cisco Catalyst 2960-X series

SRV Server computer Intel® Core™ i7-9700F 3GHz CPU;
16GB RAM; Crucial BX500 HDD;
NVIDIA GeForce GTX 1650 GPU; Full HD display;
Windows Server 2019 Standard OS;
Node.js ver.14.10.1; Express.js ver.4.17.1;
Socket.IO 2.3.0;

PC Personal computer Intel® Core™ i5-4590 3.3GHz CPU;
Intel HD Graphics 4600 GPU; Full HD display;
4GB RAM; Seagate Barracuda 7200.12 HDD;
Windows 10 education OS

PH Smartphone Xiaomi Redmi Note 7;
4GB RAM; 64GB internal storage;
Android 10 OS

HL MS HoloLens Microsoft HoloLens 1

All experiments used up to 20 PC, one SRV server and one SWCH switch. The
experiments from the E.6DF set also used one PH and the ones from the E.HL set one
HL. Of course, the wireless router (WiFi) was needed for E.6DF and E.HL experiments,
too. Each client device, that is PC, PH and HL, ran one instance of a web browser with
one instance of a virtual scene (VS), used for the experiments. This means that each client
device represented one user in the shared VS. There were no other software processes
running on the client devices, except for the ones belonging to the operating system. The
PC devices used Google Chrome browser version 85 and the smartphone (PH) used Google
Chrome Canary version 70. The MS HoloLens device HL used its built-in version of the
MS Edge browser. The server computer SRV ran one instance of a web server, providing
the shared VS and NAF, and one instance of the Google Chrome browser version 86, with
the ECA dashboard page. On each PC, the virtual scene was rendered in the windowed
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mode with 1920 × 970 pixels (px) resolution. Full-screen stereoscopic modes were used on
PH and HL. The resolution was 1170 × 1080 px per eye on PH and 1280 × 720 px per eye
on HL.

The same virtual scene was used for all experiments. The scene had a form of a
sci-fi-esque hall interior (Figure 7a). The model of the hall had 8550 polygons and was
textured by a baked texture. The texture resolution was 2048 × 2048 px with 24 bit color
depth. The scene was illuminated by a white ambient light, without dynamic shadows.
Each user, connected to the scene, was represented by a 3D avatar (Figure 7b). The avatar
model had 1370 polygons and did not use textures.

(a) (b)

Figure 7. 3D models used in the experiments: virtual scene (a); and user avatar (b).

4.2. Experimental Procedure

In total, 13 experiments were carried out, each using the experimental setup in a
slightly different way.

The subject of each experiment, i.e., the evaluated component, and devices involved
are listed in Table 2. Each experiment was carried out with and without the corresponding
component. The experiments E.6DF.1 and E.HL.1 were the only ones that did not use NAF.
As the MS HoloLens performance was dropping rapidly with the rising number of users,
we decided not to perform the E.HL experiments with 15 and 20 client devices (users).
The procedure, used in every experiment, consisted of the following steps:

1. If not already turned on, turn on the server computer SRV.
2. If not already running, launch the web server on SRV, with or without the ECA

component. For E.6DF.1 and E.HL.1, do not launch NAF at all.
3. If ECA is used, launch one instance of the web browser on SRV and open the ECA

dashboard page in it.
4. If not already turned on, turn on the desired number of the personal computers PC.
5. On each PC used, launch one instance of the web browser and open the client app

with the shared virtual scene in it.
6. If the experiment belongs to the E.6DF set, turn on the smartphone PH (if not already

turned on), launch one instance of the web browser there and open the client app
with the shared virtual scene in it.

7. If the experiment belongs to the E.HL set, turn on MS HoloLens device HL (if not
already turned on), launch one instance of the web browser there and open the client
app with the shared virtual scene in it.

8. Let the client app with the virtual scene run on each client device for a desired period
of time. In the case of PH and HL, walk with the device to emulate user activity.

9. After the desired period, close the browsers on the client devices (PC, HL and PH).
10. If a re-configuration is needed, close the web server on SRV.

Two performance measures were recorded during the Step 8 of the experiments:
frame rate and response time. The measures were recorded on one of the client devices
with the constant sampling period of 10 s. For the E.ECA experiments, the recordings
took place on one of the personal computers, the E.HL ones on MS HoloLens and E.6DF
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on the smartphone. The frame rate was measured in the scene, using the A-Frame API.
The response time was measured in the following way:

1. At the time ts, the client app on the corresponding device (PC, HL or PH) sends a
ping packet to the node.js server, running on the SRV.

2. The node.js server responds with a pong packet (32 bytes).
3. The client app receives the pong packet at the time tr.
4. The response time is computed as tr − ts.

The ping.js library (https://github.com/alfg/ping.js/, accessed on 22 April 2021) was
used to implement the measurement. The node.js server is the one that hosts the client app
and runs the server side of NAF. In the case of experiments E.6DF.1 and E.HL.1, only the
frame rate was measured.

Table 2. Subjects of individual experiments and devices used.

Experiment Subject
(Component)

Number of Client Devices

PC PH HL

E.ECA.1 ECA 1 0 0
E.ECA.5 ECA 5 0 0
E.ECA.10 ECA 10 0 0
E.ECA.15 ECA 15 0 0
E.ECA.20 ECA 20 0 0
E.6DF.1 6-DoF SMC 0 1 0
E.6DF.5 6-DoF SMC 4 1 0
E.6DF.10 6-DoF SMC 9 1 0
E.6DF.15 6-DoF SMC 14 1 0
E.6DF.20 6-DoF SMC 19 1 0
E.HL.1 HoloGOM 0 0 1
E.HL.5 HoloGOM 4 0 1

E.HL.10 HoloGOM 9 0 1

In each experiment, the procedure was repeated twice, first with the evaluated com-
ponent turned on and second with the component turned off. The time period was set
to 60 min for the E.ECA experiments and to 15 min for the E.6DF and E.HL experiments.
The reason for the shorter period was that the E.6DF and E.HL experiments required hu-
man activity and the fact that the shortening had no significant influence on the measured
data, thanks to the stable performance of the devices used.

As we expect some activity from users in a shared virtual scene, it was necessary
to emulate such activity for each client device during the experiments. The activity was
represented by a user avatar movement through the scene. In the case of the client apps on
PC, the movement was carried out automatically, following the trajectory drawn in green
in Figure 8a. The avatars on PC moved in the direction of the green arrows, repeatedly
through the points P1, P2, P3, P4, P1, P5, P6 and P7. Random excursions were implemented
to have some variety in the trajectories. How the scene looked with 20 moving users,
represented by client apps on PC, can be seen in Figure 8b. For the smartphone and
MS HoloLens, the movement was performed by one of the experimentalists, holding or
wearing the device. The experimentalist followed a similar trajectory, but on a smaller area
as the avatars of the PC client apps. The area is depicted as the white rectangle in Figure 8a,
and the experimentalist walked repeatedly through the points P1, P2, P8, P4, P1, P5, P9
and P7 (the blue dashed line).

To ensure that the recorded performance measures were not affected by the server
machine (SRV) using all of its resources, its performance was observed during the experi-
ments. The corresponding measurements included CPU and memory (RAM) usage and
were performed on the operating system level at SRV. In all experiments, both the CPU
and RAM usage was below 60%.

https://github.com/alfg/ping.js/
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(b)

Figure 8. User trajectories in the virtual scene (a); and the virtual scene populated by user avatars
(b) in the E.ECA.20 experiment .

As NAF and ECA use UDP for the client–server communication, an additional moni-
toring procedure was implemented to the node.js server. It monitored whether all NAF
messages from all clients were received correctly. It repeatedly counted all messages
received within 1 min and checked whether the count equals (1).

60 × 15 × n (1)

If not, an inconsistency was logged on the server. No inconsistencies were observed
during the experiments. In (1), n is the number of connected clients.

5. Experiment Results and Discussion

In this section, we first look on the experiment results related to the frame rate
(Section 5.1) and then on the ones related to the response time (Section 5.2). The re-
sults are provided as statistics and comparisons, in the form of min–max–average charts
(Figures 9 and 10) and tables (Tables 3–6). An interested reader can find detailed results,
presented in the form of scatter plots, online, using the links provided in the captions
of Figures 9 and 10. In Section 5.3, we formulate and discuss answers to the research
questions RQ.1 and RQ.2. When referring to individual experiments and devices, the
labels introduced in Section 4 (Tables 1 and 2) are used.

5.1. Frame Rate

How the components and increasing load influence the frame rate can be seen in
Figure 9. Here, the gray dots and lines represent data measured without the components
and the black ones are for data measured with the proposed components. Only the points
indicating maximum and minimum values are black in both cases. The reference frame
rate value of 30 frames per second (fps) is highlighted by a thicker gray line. Individual
frame rate values, recorded during the experiments, can be seen in a document, linked to
Figure 9, where each point represents one recorded value.
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Figure 9. Min–max–average charts comparing the frame rate in frames per second with and without
the ECA (top), 6-DoF SMC (middle) and HoloGOM (bottom) component under various loads.
The complete data can be seen in http://lirkis.kpi.fei.tuke.sk/wp-content/collVREvalScPlFps.png
(accessed on 22 April 2021).

The numerical values of the statistics in Figure 9 (minimum, average (mean) and
maximum) can be found in Tables 3 and 4. Tables 3 and 4 also provide the sample standard
deviation (std) for the collected data sets. Each set of statistics is given for the dataset
collected with the corresponding component first, and then for the set collected without
the component. By the corresponding component, we mean the component that was the
subject of the experiment. The last row (FR.drop) tells us how the frame rate decreased
after the corresponding component had been employed. It is computed as the percentage
of the average frame rate without the component, according to (2).

FR.drop (%) = 100% ∗ (avg f n − avg f y)/avg f n (2)

In (2), avg f n is the average frame rate without the proposed component and avg f y
is the average frame rate with the component. The most significant frame rate drop was

http://lirkis.kpi.fei.tuke.sk/wp-content/collVREvalScPlFps.png
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observed with the 6-DoF SMC component (36.07% on average), followed by HoloGOM
(29.1%). On the other hand, the ECA component had negligible influence (4.03%).

Table 3. Frame rate summary statistics of the data collected in the E.ECA experiments and frame rate
drop computed from the averages. The statistics are given in frames per second and the frame rate
drop as a percentage. All values are rounded to two decimal places. “FR.drop” means Frame rate
drop, “With” means with the proposed component and “Without” without the component.

E.ECA.1 E.ECA.5 E.ECA.10 E.ECA.15 E.ECA.20

W
it

h

max 65.00 52.00 43.00 34.00 27.00
avg 61.44 46.40 37.44 29.66 22.93
min 58.00 41.00 32.00 25.00 19.00
std 2.33 3.46 3.56 2.86 2.65

W
it

ho
ut

max 65.00 55.00 45.00 38.00 30.00
avg 61.42 48.82 39.12 31.85 23.88
min 58.00 43.00 33.00 25.00 18.00
std 2.24 3.81 3.72 4.00 3.52

FR.drop (%) −0.03 4.94 4.30 6.88 3.98

Table 4. Frame rate summary statistics of the frames per second collected in the E.6DF and E.HL
experiments and frame rate drop in percentage computed from the averages. The table is organized
in the same way as Table 3.

E.6DF.
1

E.6DF.
5

E.6DF.
10

E.6DF.
15

E.6DF.
20

E.HL.
1

E.HL.
5

E.HL.
10

W
it

h

max 43.00 38.00 33.00 27.00 24.00 27.00 18.00 11.00
avg 40.26 36.42 30.51 24.12 21.65 24.23 11.87 6.75
min 37.00 35.00 28.00 22.00 19.00 21.00 6.00 3.00
std 1.97 1.10 1.67 1.81 1.72 1.98 3.95 2.71

W
it

ho
ut

max 60.00 58.00 52.00 47.00 38.00 31.00 24.00 18.00
avg 57.35 54.26 48.54 41.91 34.97 26.97 17.02 12.70
min 55.00 51.00 45.00 37.00 32.00 23.00 9.00 7.00
std 1.68 2.20 2.12 3.14 2.08 2.85 4.58 3.47

FR.drop (%) 29.79 32.89 37.15 42.45 38.09 10.15 30.28 46.89

5.2. Response Time

The results for the response time are presented in the same way as for the frame rate.
The summary statistics and comparisons can be found in Figure 10 and Tables 5 and 6.
The complete datasets are available in the form of a set of scatted plots, linked in Figure 10.
Again, the gray color is used for data measured without the proposed components and the
black color for data measured with the components.

The response time increase in Tables 5 and 6 is computed as the percentage of the
average response time without the component, according to (3).

RT.inc (%) = 100% ∗ (avgry − avgrn)/avgrn (3)

In (3), avgrn is the average response time without the component and avgry is the
average response time with the component. The most significant response time increase
was observed with the 6-DoF SMC component (34.15% on average). The response time
increase with the ECA component was similar to the frame rate drop (6.08%). Surprisingly,
HoloGOM had negligible influence (2.27%). However, the response time on MS HoloLens
was significantly higher than on other devices, in all cases.
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Figure 10. Min–max–average charts comparing the response time in miliseconds (ms) with and with-
out the ECA (top), 6-DoF SMC (middle) and HoloGOM (bottom) component under various loads.
The complete data can be seen in http://lirkis.kpi.fei.tuke.sk/wp-content/collVREvalScPlResponse.
png (accessed on 22 April 2021).

Table 5. Response time summary statistics of the data collected in the E.ECA experiments and
response time increase computed from the averages. The statistics are given in milliseconds and the
response time increase as a percentage. All values are rounded to two decimal places. “With” means
with the component, “Without” without the component and “RT.inc” means response time increase.

E.ECA.5 E.ECA.10 E.ECA.15 E.ECA.20

W
it

h

max 20 25 35 43
avg 17.50 20.89 29.65 37.00
min 15 17 24 31
std 1.72 2.67 3.50 3.83

W
it

ho
ut

max 20 22 31 40
avg 17.11 19.32 26.70 36.00
min 14 17 22 32
std 1.98 1.67 2.88 2.54

RT.inc (%) 2.30 8.17 11.07 2.78

http://lirkis.kpi.fei.tuke.sk/wp-content/collVREvalScPlResponse.png
http://lirkis.kpi.fei.tuke.sk/wp-content/collVREvalScPlResponse.png
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Table 6. Response time summary statistics (ms) of the data collected in the E.6DF and E.HL experi-
ments and response time increase computed from the averages. The table is organized in the same
way as Table 5.

E.6DF.5 E.6DF.10 E.6DF.15 E.6DF.20 E.HL.5 E.HL.10

W
it

h
max 21 27 35 55 85 115
avg 19.35 26.14 34.04 51.29 59.22 81.87
min 17 25 33 48 33 55
std 1.36 0.82 0.76 2.20 14.91 18.11

W
it

ho
ut

max 17 24 29 32 73 94
avg 16.00 22.02 27.65 29.51 58.85 78.79
min 15 20 26 27 46 63
std 0.80 1.37 1.10 1.77 8.18 9.02

RT.inc (%) 20.95 18.71 23.13 73.82 0.63 3.91

5.3. Discussion

Regarding the first research question (RQ.1), we may conclude that each component
has certain negative impact on the performance, in terms of both the frame rate and the
client–server response time. The only exception was the E.ECA.1 experiment, where the
ECA component has virtually zero influence on the frame rate. As shown in Tables 4 and 6
and scatter plots, linked in Figures 9 and 10, the performance was stable both with and
without the corresponding components. In all cases but one, the values measured with
the corresponding component followed the same trend as the values without it. The only
exception was the response time in the E.6DF.20 experiment (PH+19PC) with the significant
rise of the response time when 6-DoF SMC was involved.

The ECA component has the lowest overall impact (4.03% on the frame rate and
6.08% on the response time on average). Based on this and its stable performance, we
may conclude that ECA was implemented correctly and can be used without the risk of
a significant performance loss. The 6-DoF SMC component was the most influential one.
The primary reason for this is the resource-hungry motion tracking process, where the
input from the phone primary camera has to be analyzed and the user motion calculated.
This conclusion is based on two facts. First, the impact on the frame rate (36.07%) was
almost the same as the impact on the response time (34.15%). Second, all the computations
of the 6-DoF SMC happen in the phone and network communication is not involved
in any way. The influence may be noticeably lower on a device better optimized for
the motion tracking.

On the mid-range device used (Redmi Note 7 with Android 10), the performance was
still acceptable with 10 users sharing the scene (the E.6DF.10 experiment). In E.6DF.10, the
minimal frame rate was 28 fps and the maximal response time was 27 ms. This means that
the user of the phone still perceives the movements in the virtual scene (VS) as fluent and
the information about the avatars of other users is up to date in each frame. The HoloGOM
component has almost no impact on the response time (2.27%), while the frame rate drop
is significant (29.1%). However, the performance on MS HoloLens is not good overall, with
or without the component. Even with only one user in the scene, the average frame rate
with the component was only 24.23 fps. With 5 and 10 users, the video output turned into
a slideshow experience (11.87 fps for 5 and 6.75 fps for 10 users on average). Because of the
performance drop being so significant, we decided not to carry out the experiments with
15 and 20 users on MS HoloLens.

When interpreting the results with respect to the second research question (RQ.2), we
have to be more careful. In the case of RQ.1, some generalizations have been possible as
the experiments compared the performance with and without the components under the
same conditions. The answer to RQ.2 is valid only for the used experimental setup, i.e.
the virtual scene, the personal computers (PC) and the smartphone. According to their
features and performance (see Table 1 in Section 4), the devices used belong to the middle
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range and that is why we limit RQ.2 to them and MS HoloLens. Considering a relatively
simple virtual scene with one ambient light source and no dynamic shadows, the average
frame rate on PC dropped below 30 fps only when 20 users shared the scene (to 23.88 fps).
The response time on PC was always high enough to keep the scene up to date in every
frame. With respect to the frame rate, the Redmi Note 7 smartphone is the most successful
device. Even with 20 users in the scene, the frame rate was always higher than 30 fps
(without 6-DoF motion tracking). The response time was high enough to update the scene
at least 36 times per second. MS HoloLens was the worst performer in this evaluation set,
and even without HoloGOM the experience was acceptable only without any other users
sharing the scene.

6. Components Reliability and Usability

While not focused on such goal, the experiments described in the previous sections
also tested the reliability of the proposed components, ECA and 6-DoF SMC in particular,
on the user experience level. During the E.ECA experiments with ECA turned on, one
experimentalist watched the ECA dashboard on the SRV. As the dashboard was displaying
the table with the actual positions of the avatars and the virtual scene, he was able to
compare the position coordinates, captured by ECA, with the positions of avatars in
the scene. No visible differences were observed. The 6-DoF SMC was permanently
employed during the E.6DF experiments with the component turned on. The component
was performing without problems and translated the experimentalist movement in the real
world to the avatar movement in the virtual scene reliably. During the E.HL experiments,
the experimentalist walking with MS HoloLens occasionally performed hand movements
in the MS HoloLens field of view to stimulate the HoloGOM component. However, to
make the user activity with MS HoloLens similar to the activities of users with other
devices (PH and PC), we did not include any gesture-involving tasks. The reliability of
the gesture recognition was tested separately, in a modified version of the scene from
Figure 7. The scene included two movable blocks: a blue block, movable by the dynamic
gesture (tap-and-drag), and a brown block, movable by the click-and-push gesture. An
experimentalist was moving the blocks using the gestures. Each gesture was successfully
performed 60 times. The modified scene is available at https://lirkisgcve.herokuapp.com/
hololens.html (accessed on 22 April 2021). Because it is adjusted to MS HoloLens, it is not
possible to move in it or manipulate with the blocks when opened on other devices.

The same scene was used for user experience testing of HoloGOM with eight partic-
ipants. The MS HoloLens device with the scene loaded was provided to them, and they
were asked to move the blocks using the corresponding gestures. After performing the
task, they filled in the standard System Usability Scale (SUS) questionnaire [33]. During the
testing, one of the authors was available to explain the task to the participants and assist
them. The participants were aged from 24 to 54 years, and there were six men and two
women. The resulting SUS score was 66.56, which is slightly below the average (68, accord-
ing to Brooke [34]). When asked, all the users selected the dynamic gesture (tap-and-drag)
as the more suitable one. This was because the block was visible during the movement,
so the users were sure that they were performing the movement correctly. Some of them
suggested implementing visual feedback for the tap gesture to improve the situation.

One of the reasons behind our decision to focus on web-based XR was the easiness of
making shared virtual environments available to potential users. Just by providing a link
to the environment and a set of instructions, arbitrary users can utilize the environment
in a proper way. A promising scenario, outlined in [10], is a testing of virtual prototypes
of autonomous devices. In such case, a shared scene is used as a testing area, where one
client app takes the role of the tested prototype and real persons, using their client apps,
act as testers. Thanks to the ECA component, the client app representing the prototype can
be aware of the testers and react to their actions. To test usability of such scenario when
implemented with A-Frame, NAF and ECA, we prepared a shared virtual scene with an
autonomous robot, which cleans positions marked with red tiles. The robot reacts to other

https://lirkisgcve.herokuapp.com/hololens.html
https://lirkisgcve.herokuapp.com/hololens.html
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users by avoiding them when moving or by interrupting the cleaning process. The whole
application with the scene, including the server side (NAF and ECA modules), is hosted
on the Heroku cloud application platform (https://lgcve-cbot.herokuapp.com, accessed
on 22 April 2021), so the usability test was performed under real network conditions.
Volunteers were asked to visit the page and perform a simple task in the scene, according
to written instructions. No live assistance was provided for the volunteers and they did
not have any previous experience with the application. After the task, they filled in the
standard SUS questionnaire with additional questions to express their opinion about the
application and suggest improvements. We also asked them whether they had seen the
robot in the scene. The task was very simple: after entering the scene, a participant had to
visit some positions to get in the way of the robot. Within two days dedicated to the testing,
there were 183 participants, 157 men and 26 women. The age range was from 18 to 54 years,
with 83.9% from 20 to 22 years. The resulting SUS score was 77.48, an above-average result.
Overall, 22.9% (42) of the participants would like to have improved movement controls;
most of them did not like the need to hold the right mouse button down when looking
around. Only 3.8% (7) of the participants reported performance issues, namely low frame
rates or long loading periods. Fifteen participants (8.2%) did not see the cleaning robot
in the scene. Finally, 7.1% (13) of the participants explicitly mentioned that everything
was fine.

7. Conclusions

Software components, introduced and evaluated in this paper, solved certain limita-
tions of contemporary A-Frame and Networked-Aframe-based web XR applications.

The proposed 6-DoF SMC and HoloGOM components are more universal ones and,
after some modifications, can be used without A-Frame. The 6-DoF SMC component
provides six degrees of freedom (DoF) inside-out motion tracking for smartphones and
smartphone-based VR headsets. The HoloGOM component allows web XR users to
manipulate objects in virtual scenes using hand gestures. To our knowledge, there are
no other implementations providing corresponding functionality for A-Frame, and this
functionality is also lacking on other platforms, for example the Mozilla Hubs. Of course,
as the evaluation (RQ.1) revealed, the components are not flawless: 6-DoF SMC requires a
special version of web browser (Chrome Canary) and has a significant impact on both the
frame rate and network response time. This performance decrease can be attributed to the
motion tracking, which has to analyze the phone camera input. It seems that HoloGOM
suffers from overall performance of WebXR on MS HoloLens in our experiments. Both
components rely on features considered experimental. These issues are expected to be
solved in future versions of the underlying software platforms and corresponding devices.
The proposed ECA component is closely tied to A-Frame as it enriches the functionality
of its Networked-Aframe (NAF) extension. Thanks to ECA, user positions in a shared
virtual scene can be easily accessed. It also allows removing users from the scene. The
evaluation confirmed minimal impact of the ECA (RQ.1) on the performance (about 5%).
The only disadvantage is that ECA needs an upgrade to work with the newest version of
NAF. Fortunately, the upgrade has already been developed.

An interesting result of the experimental evaluation is an answer to the question how
the shared XR, utilizing A-Frame and NAF, performs on MS HoloLens and mid-range
hardware (RQ.2). The mid-range hardware representatives were the devices used in the
experiments, namely PC with Intel Core i5 CPU, 4GB RAM and integrated graphics and a
Xiaomi Redmi Note 7 smartphone. The answer can be formulated as follows: when using
relatively simple virtual scene and avatar models, one can enjoy shared XR with A-Frame
and NAF even on mid-range hardware, except MS HoloLens. To be more precise, the
smartphone handled the shared scene with 20 users without any problems. PC handled
the scene with 15 users equally well, while the average frame rate dropped to 23.88 fps
with 20 users. MS HoloLens was able to handle the scene with no other users connected.
With five users in the scene, the average frame rate dropped below 20 fps.

https://lgcve-cbot.herokuapp.com
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The components and scenes, developed as parts of the LIRKIS G-CVE platform, offer
promising application and experimentation areas for future research and development.
For example, virtual industrial installations, such as the one presented in [35], and dis-
tant education, in particular aiming at the current efforts to develop so-called digital
intelligence [36] or supporting people with special needs, such as autism spectrum disor-
der [37]. It is also planned to utilize LIRKIS G-CVE for future versions of the experiments
described in [38,39], which focus on an assessment of VR influence on visuospatial cogni-
tive functions [40]. Other applications, already under development, are training of civil
engineering personnel, safety training and visualization of data from physical experi-
ments in virtual environments. Such applications can also be extended by undergoing
developments regarding authentication utilizing keyboard dynamics [41], additional EMG
sensing and face recognition, together with emotion recognition [42] and EEG sensing.
The experimental setup, introduced in this article, will be reused for other evaluations.
For now, the evaluation of 6-DoF SMC with multiple mobile devices is planned. It would
also be interesting to compare its performance with VR headsets, such as Oculus Quest,
where the 6-DoF motion tracking is supported out of the box.
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(Kultúrna a edukačná grantová agentúra MŠVVaŠ SR) grant Nos. KEGA 009TUKE-4/2019 “Content
innovation and lecture textbooks for Biometric Safety Systems” and KEGA 035TUKE-4/2019 “Virtual-
reality technologies and handicapped people education”.

Institutional Review Board Statement: Ethical review and approval were waived for this study,
because the research presents no more than minimal risk of harm to subjects and involves no
procedures for which written consent is normally required outside the research context.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Acknowledgments: The authors would like to thank our alumni students Michal Ivan, Tomáš
Balluch, Kristína Matiková and Dávid Gula for their contributions to the implementation of the
proposed components and corresponding virtual scenes.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

3D three-dimensional
6-DoF Six Degrees of Freedom
API Application programming interface
AR Augmented Reality
ARCore Google Play Services for AR
CoVAR collaborative virtual and augmented reality system
EasyRTC open source WebRTC toolkit
ECA Enhanced Client Access
EEG Electroencephalogram
EMG Electromyography
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G-CVE Global—Collaborative Virtual Environments
GOM Gesture-Based Object Manipulation
GUI Graphical User Interface
fps frames per second
HL MS HoloLens
HMD Head Mounted Display
HTC High Tech Computer Corporation
HTML HyperText Markup Language
HoloGOM MS HoloLens Gesture-Based Object Manipulation
HUB
(Mozilla)

Hub is a VR chatroom designed for headset and browser

IMU Inertial Measurement Unit
LIRKIS Laboratórium Inteligentných Rozhraní

Komunikačných a Informačných Systémov
LIRKIS En: Laboratory of Intelligent inteRfaces

of Communication and Information Systems
MR Mixed Reality
MS Microsoft corporation
NAF Networked-Aframe
PC Personal computer
PH Smart phone
px pixels
RQ research question
RTC Real Time Communication
RT Response Time
SMC Smartphone Motion Capture
SRV server
SU shared users
SUS System Usability Scale
SWCH Ethernet Switch
Three.js cross-browser 3D JavaScript library
TrackCap Smart phone 6-DoF motion Tracking and Capturing library
VirCA Virtual Collaboration Arena
VE Virtual Environment
VR Virtual reality
VS Virtual Scene
W3C World Wide Web Consortium
WebGL JavaScript API for rendering interactive 2D and 3D graphics
WebRTC Web Real-Time Communication
WebVR Web Virtual reality devices support API
WebXR Web Extended reality devices (VR, AR) support API component
XR eXtended reality
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