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Abstract: Automated pathology image classification through modern machine learning (ML) tech-
niques in quantitative microscopy is an emerging AI application area aiming to alleviate the increased
workload of pathologists and improve diagnostic accuracy and consistency. However, there are very
few efforts focusing on fluorescence histology image data, which is a challenging task, not least due
to the variable imaging acquisition parameters in pooled data, which can diminish the performance
of ML-based decision support tools. To this end, this study introduces a harmonization preprocessing
protocol for image classification within a heterogeneous fluorescence dataset in terms of image acqui-
sition parameters and presents two state-of-the-art feature-based approaches for differentiating three
classes of nuclei labelled by an expert based on (a) pathomics analysis scoring an accuracy (ACC) up
to 0.957 ± 0.105, and, (b) transfer learning model exhibiting ACC up-to 0.951 ± 0.05. The proposed
analysis pipelines offer good differentiation performance in the examined fluorescence histology
image dataset despite the heterogeneity due to the lack of a standardized image acquisition protocol.

Keywords: fluorescence image classification; pathomics; machine learning; transfer learning;
deep learning

1. Introduction

With the rapid development of graphics processor units (GPU), Artificial Intelligence
(AI) applications are rapidly being introduced in the field of digital and quantitative
pathology. In particular, computational neural networks (CNN) though deep learning
and pathomics have radically advanced the research opportunities in this field leading to
many novel diagnostic applications. Examples of AI in this field include tissue classifica-
tion methods, nuclei segmentation as well as disease progression and therapy response
prediction.

The majority of published works using machine learning (ML) or deep learning (DL)
techniques for classification or segmentation are mainly focused on H&E histopathology
images across different types of tissue and disease [1–3]. Some of them use patches of
samples [4–6] while more recent publications are dealing with whole slide images [7–9].
Notably, there are few scientific papers employing ML techniques on fluorescence data,
possibly due to the fact that the number of annotated fluorescence image datasets publicly
available is limited. In addition, they do not cover a broad range of tissues and preparations
while at the same time there is a significant variability in imaging conditions leading to large
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heterogeneity in data across centers. A possible explanation is that the main application
of fluorescence in the field of surgical pathology is interphase FISH (Florescence in situ
hybridization), a high-cost, time-consuming technique. This technique is not used for
all tumors but for the diagnosis of a limited number of neoplasms (mainly sarcomas,
lymphomas and some solid tumors) by means of the detection of specific to each neoplasm
recurrent chromosomal aberrations (deletions, gains, translocations amplifications, and
polysomy), as well as to identify chromosomal alterations with established therapeutic
or even predictive implications. As a result, available datasets of fluorescence images
of normal tissues or tumors with not established diagnostic, therapeutic or predictive
chromosomal alterations are constructed mainly to serve training or research purposes and
the application of ML in fluorescence microscopy data is still sporadic and limited.

Based on the aforementioned considerations, this study constitutes an in-depth analy-
sis of image classification by using a recent publicly available fluorescence dataset which
exhibits a very high degree of heterogeneity in terms of imaging acquisition parameters.
The main aim of this study is to address a challenging nucleus classification problem by
using advanced AI methods and report the performance and robustness of the proposed
pathomics and deep learning methodologies for fluorescence histology image classification.

Related Works

Since there are no prior published studies regarding the examined dataset for direct
comparison, relevant works are briefly summarized. Regarding traditional ML approaches,
our bibliographic search resulted in only a few relevant publications indicating that this
AI application field is still understudied. Particularly, in [10] various machine learning
techniques were evaluated to accurately detect myelin in multi-channel microscopy im-
ages of a mouse stem cell. Another study presents the application of machine learning
(classification pipeline) for the real time visualization of tumor margins in excised breast
specimens using fluorescence lifetime imaging [11]. Furthermore, in [12] the authors have
developed a machine-learning classification method for the annotation of the progression
through morphologically distinct biological states in fluorescence time-lapse imaging. Ad-
ditionally, traditional texture and statistical features were extracted on both pathology and
radiology images to investigate the underlying associations between cellular density and
tumor heterogeneity [13]. Additionally, in [14] the authors have developed a deep learning
framework that virtually generates hematoxylin and eosin (H&E) images from unstained
tissue 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI) images.

Regarding deep−learning-based analyses, several fluorescence imaging applications
have been reported, including super resolution on microscopy images [15–18], conversion
of standard hematoxylin and eosin stained histology images to UV light fluorescence
images [19] and particle detection [20] on sub-cellular sized molecules and virus structures.
Additionally, deep−learning in pathology images has been successfully applied in cancer
research [21,22], leading to state-of-the-art tissue sample characterization. Jang et al. [21]
presented a deep learning-based normal versus tumor differentiation model that was
trained in a specific type of cancer and evaluated on different cancer tissues such as liver,
bladder, colon, and lung. Valieris et al. [22] proposed a patch-based methodology of whole
−slide images with probability of DNA repair deficiency being assigned by a convolutional
neural network and a recurrent neural network for an aggregated prediction on a slide
basis. This analysis achieved an AUC of 0.8 for breast and 0.81 for gastric cancer.

2. Materials and Methods
2.1. Dataset Description and Labeling

The dataset used in this work is an annotated dataset that includes tightly aggregated
nuclei of multiple tissues suitable for the training of machine learning-based nuclear seg-
mentation algorithms. The dataset is publicly available and deals with sample preparation
methods generally used in quantitative immunofluorescence microscopy. The dataset
includes N = 79 fluorescence images of immuno and 4′,6-Diamidino-2-phenylindole dihy-
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drochloride (DAPI) stained samples containing a total of 7813 nuclei. More specifically,
41 images were derived from a human keratinocyte cell line (normal tissue), 10 images from
one Schwann cell stroma-rich tissue cryosection (from a ganglioneuroblastoma patient),
19 images from seven neuroblastoma patients, 1 image from a Wilms patient and 8 images
from two neuroblastoma patients. From the data description, it is noteworthy that there is
extensive heterogeneity in the dataset in terms of magnification, vendor, signal-to-noise
ratio, image size, and diagnosis. More information about the dataset can be found in the
work of Kromp F. et al. in [23].

The dataset contained 41 images of a normal cell’s nuclei from a human keratinocyte
cell line and 38 images of pathological nuclei from three different malignant pediatric
tu-mors, neuroblastoma-Schwannian stroma−poor, ganglioneuroblastoma-Schwannian
stroma-rich (and specifically from the Schwannian stroma-rich component of the tumor),
and Willm’s tumor. Neuroblastoma and ganglioneuroblastoma belong to the quite het-
erogeneous in terms of biologic, genetic and morphologic features group of peripheral
neuroblastic tumors which evolve from immature sympathetic neuroblasts during de-
velopment and constitute one of the commonest childhood extra-cranial solid tumors.
Microscopically, the Schwannian stroma-poor tumors are composed of neuroblastic cells
forming groups or nests separated by delicate, often incomplete stromal septa (neuropil)
without or with very limited Schwannian proliferation, while ganglioneuromas are charac-
terized by two distinctive components: (i) a mature Schwannian stromal component with
individually scattered mature and/or maturing ganglion cells and (ii) a neuroblastic com-
ponent. [24]. Wilms’ tumor (nephroblastoma) is a malignant embryonal neoplasm which
affects 1: 8000 children, mainly aged <10 years, and originates from nephrogenic blastemal
cells and mimics the developing kidney, showing divergent patterns of differentiation [25].

Thus, in terms of classification, the 41 images of the nuclei from the human ker-
atinocyte cell line were labelled from an expert pathologist as “normal”, the 10 images from
the Schwann cell stroma-rich component of ganglioneuroblastomas as “benign” as they
consisted exclusively of nuclei of the mature and maturing ganglion cells scattered in be-
tween the mature Schwann cell stroma, and the remaining 28 belonging to neuroblastoma
and Willm’s tumor categories, as “malignant”.

2.2. Data Pre-Processing

Since the dataset was very heterogeneous in terms of magnification as is illustrated in
Figure 1 (left), an automated method to normalize the sizes of the nuclei across the dataset
was developed. The main rationale for this preprocessing step is that pathomics features
mainly rely on texture, which is well known to be scale-dependent [26]. In more detail, the
average nucleus area (A) was computed for each image and an algorithm adjusted the size
of the images in order to achieve similar nuclei sizes in all images. This harmonization step
was necessary in order to produce comparable and reliable shape and texture features from
each nucleus. The first step of this process was to find the minimum value of the calculated
nucleus average area across all images (M). Next, the images were resized with step 0.05%
until the nucleus area ”A” matched the mean value ”M”. To ensure that all images had the
same size prior to feature extraction, the final step was to pad all the processed images with
zeros. The workflow is shown in Figure 1. Lastly, the same procedure was repeated for the
annotated images (masks), which were also provided in the dataset. In order to compute
the area of each object (nucleus), the label function of the Mahotas library was used [27].

2.3. Pathomics Analysis
2.3.1. Feature Extraction

Feature extraction was based on the annotations provided by the dataset with a
fixed bin size using the default values which has been reported to preserve a higher
number of reproducible features in radiomics studies [28–30]. Furthermore, we used
all the available features classes from the pyradiomics library [31] including statistical
features such as first order statistics and higher order statistical texture features such as
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Grey-Level Run Length Matrix (GLRLM), shape-based 2D features, texture features such
as Grey-Level Co-Occurrence Matrix (GLCM), Grey Level Size Zone Matrix (GLSZM) and
Grey Level Difference Matrix (GLDM). Additionally, local binary patterns 2D (LBP) and
image transformation techniques such as Logarithmic, Exponential, Gradient, and wavelet
transforms were used leading to 1032 features.

Figure 1. Workflow for image pre−processing. ”A” denotes the mean nucleus size/area of the
current image, ”M” the minimum mean nucleus area of all images and “ε”denotes a small number
of pixels.

2.3.2. Feature Selection

To identify a meaningful group of features with minimum redundancies and relevant
information characterizing the three labelled nuclei types, feature selection was performed
on the training set with the pymrmr library [32] based on the mutual information dif-
ferences (MID) method. Thus, the identified feature subset from the training set were
transferred to the unseen testing set. For our experiments, we used a step size equal to 1
and computed the corresponding performances selecting from 1 to 50 important features.
Ashas been experimentally proven in the aforementioned feature selection methodol-
ogy [32], the computational complexity exponentially increases and after a certain number
of selected features, the error rate reaches a plateau. Therefore, several number of features
had to be tested in our analyses in order to find the optimal number of selected features
based on error minimization.

2.4. Deep–Learning Descriptors
2.4.1. Deep–Analysis Specific Image Preprocessing

Deep–learning analysis requires a uniform pixel array dimensionality in vertical and
horizontal axes. After the aforementioned data preprocessing by rescaling with respect
to the nuclei size as described in Section 2.2, different image sizes were produced. Thus,
additional preprocessing steps involving image cropping and padding were applied to
ensure the same image size across every sample. Every pretrained model input was set to
250 by 250 pixels. Consequently, original images with higher pixel count were cropped and
padded into sub-images to match the aforementioned input. This augmented the examined
dataset from 79 to 105 images. The image identifier and nuclei characterization label of the
additional 26 images were preserved to avoid compromising the cross-validation process.
Therefore, the sample stratification was based on the unique image identifiers.
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2.4.2. Transfer Learning Analysis

A transfer learning approach with models pretrained on ImageNet dataset [33] was
followed as an “off-the-shelf” feature extraction module. Thus, training of deep models on
the examined dataset was avoided since the limited size of the dataset was inappropriate for
a de novo network development. In particular, seven families of model architectures with
their variations were tested, namely Xception [34], Inception [35], ResNet [36], VGG [37],
MobileNet [38], DenseNet [39], NasNet [40]. Their architectural differences in terms of
number of layers and learned parameters, type of convolutional kernels and uniqueness of
layer organization produced a diverse set of deep imaging descriptors.

The pretrained models were downloaded from the online repository of Keras [41].
The neural and classification layers were omitted because they were trained to differentiate
among 1000 classes of natural images. The remaining weights of the convolutional layers
were transferred to a new fully convolutional model for feature extraction on fluorescence
microscopy images.

Additionally, three different approaches were implemented during feature extraction
including raw features from the last convolutional layer of each model, features with
global average and global maximum pooling at a kernel level. Following extraction
an unsupervised variance-based feature selection process was applied for reducing the
dimensionality of the deep vectors. Five thresholds were examined from 0.0 to 0.5 variance
at a feature level. The resulted deep descriptors were standardized by value rescaling on a
feature-basis prior to classification. Finally, traditional machine learning algorithms (SVM
RBF and Logistic Regression) were trained on these deep descriptors to distinguish among
normal, benign, and malignant nuclei. A detailed depiction of the overall methodology for
the proposed deep analysis is illustrated in Figure 2. The source code of the aforementioned
analysis can be found at https://github.com/trivizakis/deepcell (access date: 9 April 2021).

Figure 2. Pretrained models from the Keras repository were leveraged for the proposed deep learning
analysis, specifically in feature extraction. The unsupervised threshold-based feature selection process
was followed by a classifier, either SVM RBF or logistic regression.

2.5. Ternary Classification

In order to differentiate normal, benign and malignant nuclei images, two classifiers
from the scikit-learn library [42] were used; the logistic regression implemented with the
one-versus-rest (OVR) scheme and the support vector machine (SVM) with the radial basis
function kernel (RBF) for both pathomics and deep descriptors.

Support vector machines (SVM) have been used extensively in medical image classifi-
cation [43,44] for differentiating tissue by utilizing deep features. In the context of nuclei
type differentiation both classifiers were trained in a 10-fold cross-validation scheme on
the extracted imaging and deep descriptors. The data stratification was applied on an

https://github.com/trivizakis/deepcell
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image identifier basis with respect to the class representation across folds to avoid sample
selection bias and overfitted models.

2.6. Model Performance Evaluation Metrics

In order to evaluate the performance of both pathomics and deep learning analyses
the mean AUC and ACC with their standard deviations were calculated on the unseen
testing sets. In particular, the feature selection for pathomics was based on optimizing the
classification accuracy.

3. Results

The examined fluorescence dataset has a class distribution of 51.9% for normal, 12.7%
for benign and 35.4% for malignant samples. With varying magnification scales, the original
image dimensions ranged from 550 by 430 to 1360 by 1024 pixels. A harmonization process
prior to analysis, as defined in Section 2.2 and depicted in Figure 1, was motivated by the
need for the nuclei’s shape and texture features to be comparable. Additional cropping and
padding were performed to the harmonized images for deep feature extraction to achieve
a uniform image shape of 250 by 250 pixels for each of the examined fluorescence image,
as shown in Section 2.4.1.

3.1. Pathomics

After the extraction of the 1032 textural and statistical features, a feature selection
process was performed with the Minimum Redundancy Maximum Relevance (mRMR)
algorithm that identifies the most relevant patterns in the training set. A step size equal to
one was used by mRMR to compute the corresponding performances using one up to 50
selected features. However, for the sake of simplicity only indicative performance results
for a subset of the used values are reported in Table 1. In more detail, for the case of the
logistic regression classifier, the results varied from 0.956 to 0.996 for AUC and 0.8 to 0.957
for ACC. The SVM RBF classifier resulted in AUC values from 0.954 to 0.986 and ACC
from 0.786 to 0.929.

Table 1. Area under the curve score and accuracy (mean ± standard deviation) of classification
per number of selected pathomics features for the two classifiers used. The best performance was
highlighted with bold.

Logistic Regression (OVR) SVM RBF

Selected
Features AUC ACC AUC ACC

3 0.956 ± 0.047 0.8 ± 0.093 0.965 ± 0.056 0.786 ± 0.064
6 0.968 ± 0.033 0.871 ± 0.103 0.954 ± 0.042 0.843 ± 0.118
10 0.983 ± 0.03 0.871 ± 0.128 0.981 ± 0.032 0.843 ± 0.159
20 0.986 ± 0.033 0.957 ± 0.105 0.965 ± 0.086 0.929 ± 0.103
30 0.992 ± 0.019 0.886 ± 0.064 0.978 ± 0.033 0.914 ± 0.035
40 0.996 ± 0.006 0.943 ± 0.049 0.976 ± 0.031 0.871 ± 0.07
50 0.99 ± 0.019 0.943 ± 0.073 0.986 ± 0.033 0.886 ± 0.064

3.2. Transfer Learning

The experiments were performed on computational infrastructure featuring a 10-
core Xeon processor with 32 gigabytes of RAM and an Nvidia GTX 1070 graphics card
with 8 gigabytes of VRAM. The extraction of deep features from a single image requires
approximately 14 ms to 426 ms depending on the architecture. Seven deep architecture
families with a total of eighteen model variations were examined. The models were trained
on ImageNet dataset, the neural network layers were rejected and three methods for
extracting the deep features were applied, as described in Section 2.4.2. The “off-the-shelf”
feature extractor transfer learning technique includes: (a) preserving convolutional layer
weights from the Keras pretrained model, (b) introducing a new input of images of size 250
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by 250 pixels, and (c) removing fully connected and Softmax layers (Figure 2). To prevent
samples from the same image being used in both the training and testing sets, a stratified
10-fold cross-validation technique was used on a unique image identifier basis.

Additionally, five variance thresholds were integrated ranging from 0.0 to 0.5 sig-
nificantly reducing the dimensionality of deep descriptors. Finally, traditional machine
learning classifiers were trained with a new per deep descriptor labeling for distinguishing
among normal, benign, and malignant nuclei, and they were capable of reaching a testing
ACC of up to 0.945 ± 0.06. In terms of ACC performance, the Xception (0.923–0.944),
Inception (0.916–0.945), and DenseNet (0.916–0.951) were the top performing deep de-
scriptors across all three feature types, as can be observed in Table 2. It is worth noting
that models based on the VGG and ResNet families consistently gave an error higher
or equivalent (12.3–35.4%) than the benign class distribution despite the higher score of
separability (AUC up to 0.896), indicating that these models have likely been biased toward
the minority class.

Table 2. Performance of nuclei image characterization is organized by feature type, architecture family, variance threshold
and classifier. The best model performance for each feature type was highlighted with italics and the best overall model
with bold.

Feature Type Model
Family

SVM RBF Logistic Regression OVR

Variance
Threshold ACC AUC Variance

Threshold ACC AUC

Raw

Xception 0.0 0.943 ± 0.07 0.956 ± 0.05 0.0 0.925 ± 0.08 0.944 ± 0.07
VGG 0.3 0.646 ± 0.09 0.664 ± 0.08 0.5 0.905 ± 0.07 0.925 ± 0.06

ResNet 0.4 0.876 ± 0.07 0.898 ± 0.07 0.3 0.924 ± 0.10 0.943 ± 0.07
Inception 0.5 0.916 ± 0.09 0.929 ± 0.07 0.5 0.942 ± 0.06 0.960 ± 0.04

MobileNet 0.0 0.905 ± 0.09 0.909 ± 0.07 0.0 0.924 ± 0.09 0.941 ± 0.07
DenseNet 0.1 0.926 ± 0.13 0.940 ± 0.10 0.4 0.944 ± 0.06 0.951 ± 0.05
NasNet 0.0 0.897 ± 0.10 0.908 ± 0.09 0.0 0.907 ± 0.07 0.926 ± 0.05

Global
Maximum

Xception 0.4 0.933 ± 0.06 0.943 ± 0.05 0.2 0.923 ± 0.07 0.944 ± 0.05
VGG 0.2 0.659 ± 0.06 0.679 ± 0.04 0.1 0.905 ± 0.06 0.922 ± 0.04

ResNet 0.1 0.876 ± 0.10 0.892 ± 0.10 0.2 0.926 ± 0.11 0.940 ± 0.10
Inception 0.3 0.918 ± 0.10 0.932 ± 0.10 0.3 0.945 ± 0.07 0.922 ± 0.04

MobileNet 0.3 0.907 ± 0.08 0.921 ± 0.07 0.4 0.914 ± 0.07 0.934 ± 0.06
DenseNet 0.5 0.916 ± 0.08 0.933 ± 0.06 0.3 0.951 ± 0.05 0.962 ± 0.04
NasNet 0.0 0.897 ± 0.08 0.909 ± 0.07 0.2 0.913 ± 0.08 0.926 ± 0.07

Global
Average

Xception 0.2 0.944 ± 0.06 0.953 ± 0.06 0.2 0.925 ± 0.08 0.938 ± 0.07
VGG 0.0 0.763 ± 0.14 0.783 ± 0.13 0.2 0.905 ± 0.09 0.910 ± 0.08

ResNet 0.1 0.875 ± 0.07 0.896 ± 0.07 0.3 0.942 ± 0.07 0.954 ± 0.06
Inception 0.3 0.945 ± 0.06 0.959 ± 0.05 0.0 0.935 ± 0.07 0.951 ± 0.06

MobileNet 0.4 0.913 ± 0.08 0.923 ± 0.07 0.2 0.924 ± 0.07 0.948 ± 0.06
DenseNet 0.2 0.935 ± 0.06 0.941 ± 0.06 0.4 0.935 ± 0.07 0.948 ± 0.06
NasNet 0.2 0.915 ± 0.09 0.919 ± 0.09 0.0 0.925 ± 0.07 0.942 ± 0.07

4. Discussion

This study was mainly focused on the classification of a publically available fluo-
rescence dataset. The dataset contained 41 images of normal nuclei of human cells and
38 images of pathological nuclei from three different types of rare pediatric embryonal
tumors. Two of them, neuroblastoma and ganglioneuroblastoma, are neuroblastic tumors
of different grades of differentiation and malignancy which belong to the group of tumors
arising from the sympathoadrenal lineage of the neural crest during development, while
the third one, Wilms’ tumor (nephroblastoma) is a malignant embryonal neoplasm derived
from nephrogenic blastemal cells. Two different AI pipelines based on pathomics and deep
learning were implemented for the automated classification between normal benign and
malignant types of nuclei as labelled by the expert. The classification was a challenging
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task for the AI pipelines since the dataset exhibited significant heterogeneity in terms of
vendor, image size, magnification, and signal–to–noise ratio.

The first step of our analysis was to address the heterogeneity in nuclei sizes emanating
from different magnifications and image sizes since size and shape related features from
the pyradiomics library could potentially introduce exaggerated values not corresponding
to actual differences and lead to unreliable results. To overcome this limitation, an adaptive
pre-processing technique in Section 2.2 was proposed to ensure that in all images, nuclei
sizes fall within a similar size range. This harmonization step was used for both presented
ML analyses in order to ensure uniform nuclei image dimensions.

Regarding the classification performance with pathomics feature extraction, we ex-
perimentally showed by repeating the classification with a different number of selected
features using the pymrmr algorithm, that for 20 selected features the minimum error
was achieved, as presented in Table 1 for both classifiers. Additionally, it is noteworthy
that when using more than 20 selected features, the performance accuracy drops (Table 1).
Despite the heterogeneous nature of the dataset, classification through pathomics analysis
exhibited the highest performance with an AUC of 0.986 and an ACC of 0.957 regarding
the logistic regression classifier. In a similar way, the SVM RBF classifier performed almost
equally to the logistic regression, with slight differences presenting an AUC of 0.965 and
an ACC of 0.929.

An additional harmonization pre-processing stage involving image cropping and
padding in the DL approach was necessary prior to performing the feature extraction from
the pretrained models (Section 2.4.1) to ensure consistent input image size. Due to the
small size of the examined dataset, only transfer learning techniques were considered.

The DenseNet consistently achieved the highest performance (up to ACC 0.951 ±
0.05 and AUC 0.962 ± 0.04) regardless of the employed pooling technique, as shown in
Table 2. The state-of-the-art performance of the proposed methodology demonstrates the
feasibility of DL analysis in fluorescence histology image analysis and modelling despite
the limited size of the available data. This encouraging result indicates that AI can be used
with advantage to address clinical unmet needs in fluorescence pathology image analysis.
To this end, creating larger, labelled and diverse datasets in terms of vendor and image
settings is of utmost importance for developing more generalizable and trustworthy AI
models in this field.

The pathomics-based models with 3, 6, 10 (LR and SVM RBF) and 40, 50 (SVM RBF)
features, as well as the deep descriptors from VGG, ResNet (SVM RBF with all the three
types of deep features) in Table 2, may have made biased predictions because the prediction
error (12.3–20%, Tables 1 and 2) is higher or equal to the minority class distribution (12.7%).
Regardless of the fact that the classifier seems to be capable of effectively separating samples
from the three classes suggested by the high AUC value, the lower accuracy score (ACC)
in this case indicates a biased classifier.

Leveraging AI for characterizing vast amounts of pathology image data can spare clin-
ical experts from tedious and time-consuming tasks, thus alleviating their heavy workload.
At the same time, the collaboration of humans and AI has the potential to augment the
overall efficiency of the decision-making process based on pathology image analysis.

We are aware that our research has some limitations. The first limitation arises from the
relatively small size of the dataset used (N = 79 images). That said, the analysis pipeline was
carefully selected considering the size of the dataset size, and this was the main reason that
more traditional techniques were used. The proposed pipeline should be further evaluated
in larger and even more diverse datasets to promote the generalizability of the results.
Furthermore, alternative feature selection techniques can be tested in the context of a more
extended study. In addition, we are aware that the image pre-processing method involving
down sampling could lead to loss of image information, but this step was necessary for
the DL models. Lastly, different tissue preparation processes for fluorescence imaging as
well as different imaging settings lead to different noise distributions and increased data
heterogeneity, posing additional challenges for AI classification algorithms
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5. Conclusions

The proposed classification with pathomics and DL methods demonstrated good
performance (ACC up to: 0.957 ± 0.105 for pathomics and 0.951 ± 0.05 for DL) on dif-
ferentiating between normal, benign and malignant nuclei types. These results indicate
that the proposed classification scheme is a promising framework for aiding pathology
fluorescence image analysis and interpretation. To accelerate the clinical translation of such
tools a closer collaboration between AI researchers and clinicians is required. At the same
time, the development of a larger fluorescence histology image database is a sine qua non
condition for optimizing such DL models and increasing robustness and generalizability.
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7. Dimitriou, N.; Arandjelović, O.; Caie, P.D. Deep Learning for Whole Slide Image Analysis: An Overview. Front. Med. 2019, 6, 264.
[CrossRef] [PubMed]

8. Kurc, T.; Bakas, S.; Ren, X.; Bagari, A.; Momeni, A.; Huang, Y.; Zhang, L.; Kumar, A.; Thibault, M.; Qi, Q.; et al. Segmentation and
Classification in Digital Pathology for Glioma Research: Challenges and Deep Learning Approaches. Front. Neurosci. 2020, 14, 27.
[CrossRef] [PubMed]

9. Barisoni, L.; Lafata, K.J.; Hewitt, S.M.; Madabhushi, A.; Balis, U.G.J. Digital pathology and computational image analysis in
nephropathology. Nat. Rev. Nephrol. 2020, 16, 669–685. [CrossRef]
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