
applied  
sciences

Article

Exploring 3D Wave-Induced Scouring Patterns around Subsea
Pipelines with Artificial Intelligence Techniques

Mohammad Najafzadeh 1,* and Giuseppe Oliveto 2

����������
�������

Citation: Najafzadeh, M.; Oliveto, G.

Exploring 3D Wave-Induced Scouring

Patterns around Subsea Pipelines

with Artificial Intelligence

Techniques. Appl. Sci. 2021, 11, 3792.

https://doi.org/10.3390/app11093792

Academic Editors: Francesco Granata

and Rudy Gargano

Received: 15 March 2021

Accepted: 14 April 2021

Published: 22 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Water Engineering, Faculty of Civil and Surveying Engineering, Graduate University of
Advanced Technology, Kerman 76315-117, Iran

2 School of Engineering, University of Basilicata, Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy;
giuseppe.oliveto@unibas.it

* Correspondence: moha.najafzadeh@gmail.com

Featured Application: The paper presents new equations for predicting 3D scouring patterns at
subsea pipelines under wave-only conditions. These equations are more reliable than conven-
tional approaches and exhibit a clear physical consistence.

Abstract: Subsea pipelines carry oil or natural gas over long distances of the seabed, but fluid leakage
due to a failure of the pipeline can culminate in huge environmental disasters. Scouring process
may take place beneath pipelines due to current and/or wave action, causing pipeline suspension
and leading to the risk of pipeline failure. The resulting morphological variations of the seabed
propagate not only below and normally to the pipeline but also along the pipeline itself. Therefore,
3D scouring patterns need to be considered. Mainly based on the experimental works at laboratory
scale by Cheng and coworkers, in this study, Artificial Intelligent (AI) techniques are employed
to present new equations for predicting three dimensional current- and wave-induced scour rates
around subsea pipelines. These equations are given in terms of key dimensionless parameters, among
which are the Shields’ parameter, the Keulegan–Carpenter number, relative embedment depth, and
wave/current angle of attach. Using various statistical benchmarks, the efficiency of AI-models-based
regression equations is assessed. The proposed predictive models perform much better than the
existing empirical equations from literature. Even more interestingly, they exhibit a clear physical
consistence and allow for highlighting the relative importance of the key dimensionless variables
governing the scouring patterns.

Keywords: Evolutionary Polynomial Regression (EPR); Gene-Expression Programming (GEP);
Keulegan–Carpenter number; Model Tree (MT); Multivariate Adaptive Regression Splines (MARS);
scouring; subsea pipeline

1. Introduction

Seabed pipelines are imperative to transport oil and gas from offshore platforms.
Oil leakage due to failure of pipeline causes environmental disasters, which influence
economic circumstances of nations. The flow structure of vortex around pipeline leads to
vibration and consequently metal fatigue, which is introduced as one of the most commonly
reported factors of pipeline failure. The scouring process may take place beneath pipelines
when these offshore structures encounter rigorous oceanic flow (i.e., currents or waves).
Longitudinal extension of the scour hole beneath the pipeline is inextricably bound to the
pipeline span leading to pipeline spanning. When the extension of free span has sufficient
extension in the longitudinal direction, seabed pipelines may experience severe vibration
due to the existence of vortex structures (Xie and Zhu [1]).

For almost half a century, the scouring process below pipelines has been drawing
meticulous attention by ocean and costal engineers in terms of safety of offshore structures.
The scour hole around a pipeline is characterized by three-dimensional development due
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to the existence of the piping mechanism and an uneven seabed after the pipeline operation.
When the scour hole grows longitudinally around the pipeline, the structure of free spans
is developed. Basically, fully developed free spans are the main reason that pipelines are
put into a failure state. In this case, the failure of pipelines is due to the fact that they are
more exposed to structural destructions corresponding to over-stressing circumstances.
The earliest experimental investigations proved that the formation of three-dimensional
free spans around pipelines are efficient to augment the instability level of the pipeline.
In addition to this, free spans can lead to natural self-burial into the scour hole formed
below the pipeline (Sumer and Fredsøe [2]). Figure 1 shows the structure of free spans in
the extension state. The propagation of the scour rate was seen in two opposite directions
along the pipeline. Three-dimensional growth of the free span depends on the conditions
of flow and sediment motion and pipeline geometry.
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Figure 1. Schematic drawing of 3D scour hole propagation with free span expansion at a submarine pipeline (on the left);
longitudinal and cross-section (i.e., Section A and Section B) views for a submarine pipeline prone to scour (on the right).

Figure 2 shows schematic diagrams of vortex structures around submarine pipelines
under currents. Figure 2a illustrates three types of vortex structures. In the near vicinity
of the pipeline, both vortices A and C move particles of bed sediments away from the
footing area, even though movements of particles occur in opposite directions to each
other. Vortex B also moves particles of bed sediment, but its acting area is constrained by
Vortex C. Ultimately, a small opening is formed beneath the pipeline, which is introduced
as the onset of unidirectional flow-induced scour. Figure 2b shows that as the water flows
beneath the pipeline, the upstream vortex disappears, creating tunnel erosion gradually.

Figure 3 shows schematic diagrams of vortex structures around submarine pipelines
under waves. As the full development of the scour hole is met, complicated flow structure
of vortex shedding occurs behind the pipeline (Çevik and Yüksel [3]). As the flow structure
has oscillatory pattern, a vortex system with wake intensity occurs on both sides of the
pipeline. Figure 3 also shows the flow structure of lee-wake erosion, which takes place on
both sides of the pipeline.
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Figure 2. Schematic diagram of onset scouring process for submarine pipelines under currents. (a)
Vortex A in front of the pipe, Vortex B in the corner downstream of the pipe, and the largest Vortex C
behind the pipe; (b) vortex shedding that forms after the scour develops.
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Figure 3. Schematic drawing of scouring vortices due to waves at a submarine pipeline. Wake
vortexes downstream of the pipeline (a,b) due to oscillatory flow.

A large number of experimental studies have been carried out to better understand
scouring mechanisms at submarine pipelines; the papers from [4–14] in the references
section are some examples. Generally, all the experimental studies were carried out in three
distinctive flow conditions: (1) Current, (2) regular wave, and (3) combined current and
wave. Cheng et al. [6] investigated three-dimensional scour rates below a pipeline exposed
to currents. They proposed an empirical equation for the prediction of longitudinal scour
rates below the pipeline. Additionally, Cheng et al. [9] studied the scouring mechanism
below a pipeline in two various flow conditions (i.e., combined wave and current, wave
only). They proposed two regression-based equations for the prediction of the longitudinal
scour rate in both flow conditions. In terms of the propagation of scour rates around
pipelines, it can be inferred that there is limited knowledge on the scour hole development.

Previous attempts generally indicated that empirical equations are restricted to the
range of experimental databases. Thus, these equations often do not have high potential of
generalizing the prediction of scour rates in the three-dimensional space below pipelines.

In the case of experimental investigations, it may be expected to find comprehensive
influences of various parameters on the scouring process below pipelines. An under-
standing of the free span propagation still requires in-depth investigations (Sumer and
Fredsøe [2], Cheng et al. [6], Cheng et al. [9]).

With the advent of soft computing techniques, complicated mechanisms of real-life
problems have become more understandable than before. In this way, there is a high
demand for the presentation of robust mathematical models on the basis of Artificial Intel-
ligent (AI) techniques in various fields of science. Over the last decade, a large number of
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AI approaches have been employed prosperously to obtain an accurate estimation of the
local scour depth below pipelines exposed to currents and regular waves. In fact, Artificial
Neural Networks (ANNs) (Azamathulla and Zakaria [15], Etemad-Shahidi et al. [16]),
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) (Zanganeh et al. [17]), Support Vector
Machine (SVM) (Parsaie et al. [18]), Classification and Regression Tree (CART) (Etemad-
Shahidi et al. [16], Yasa and Etemad-Shahidi [19]), Linear Genetic Programming (LGP),
Gene-Expression Programming (GEP) (Azamathulla and Yusoff [20], Najafzadeh and Sarka-
maryan [21]), Genetic Programming (GP) (Azamathulla and Ghani [22]), Group Method
of Data Handling (GMDH) (Najafzadeh et al. [23], Najafzadeh et al. [24]), Multivariate
Adaptive Regression Splines (MARS) (Haghiabi [25]), and Evolutionary Polynomial Re-
gression (EPR) (Najafzadeh and Sarkamaryan [21]) proved to be successful applications.
In the case of scour rates prediction, there have been a few endeavors to estimate three-
dimensional free spans via GMDH and ANN models below a pipeline exposed to regular
waves (Najafzadeh and Saberi-Movahed [26], Ehteram et al. [27]).

However, few investigations have been conducted to estimate scour propagation
rates at seabed pipelines by AI models. In fact, the experimental detection of three-
dimensional scour rates is generally expensive due to the need of advanced sensors and
other facilities. To the best of the authors’ knowledge, powerful AI techniques such as
MARS, GEP, and MT have not yet been applied in the prediction of scour propagation rates
around seabed pipelines exposed to regular waves. As main merits, these AI techniques
have potential in three main areas: (i) Presenting (non-linear) explicit equations for limited
number of data; (ii) reducing the number of influential variables; and (iii) preserving the
physical consistency of the generated models. The present paper moves in these directions,
identifying new equations to predict 3D scour patterns at seabed pipelines depending on
key dimensionless parameters. These equations would be more reliable than conventional
approaches, as well as preserving physical consistency.

2. AI Predictive Techniques on Scouring below Seabed Pipeline: A Brief Review

This section provides a brief review on the literature studies in which scouring below
seabed pipeline is addressed by AI techniques. The section is divided into two parts for
the sake of clarity depending on whether scour is due to currents or waves.

2.1. Current-Induced-Pipeline Scour

In the case of pipeline scour due to currents, a large number of investigations was
attempted to use various AI models along with preservation of scouring conceptions.

Azamathulla and Ghani [22] applied GP model to experimental datasets, which were
extracted from two various flow and sediment conditions. Ultimately, they proposed
a regression-based equation, which applies to both clear-water (CW) and live-bed (LB)
conditions. However, two major drawbacks arise from their research work. In the first
place, they should have separated the entire dataset into two basic sections depending
on whether the scouring process was governed by clear-water or live-bed approach flow
conditions. It is well known that these two regimes imply different scouring processes.
Incidentally, Azamathulla and Ghani [22] did not consider the ratio e/D of the pipeline
embedment depth e to the pipeline diameter D as a controlling variable in modeling live-
bed conditions; and the reason is that e/D in the experiments made by Moncada and
Aguirre [28], to which Azamathulla and Ghani [22] relate, was kept constant for live-bed
conditions. The second drawback of the study by Azamathulla and Ghani [22] is that
they considered the Reynolds number as the controlling variable of local scour depth,
though approach flows were fully turbulent. These issues cause some concerns on the
use of the equation developed by Azamathulla and Ghani [22] in practical applications.
Azamathulla et al. [29] later employed the LGP technique to provide an empirical equation
by still considering the same current-induced scour datasets. However, the equation given
by LGP is also undermined by the same drawbacks as for Azamathulla and Ghani [22].
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The same comments would apply to the study by Azamathulla and Zakaria [15], though
they applied ANN models.

Zanganeh et al. [17] improved the ANFIS model by using Particle Swarm Optimization
(PSO) to predict the local scour depth around seabed pipelines due to currents. However,
the experimental datasets used in their study were released from a few studies with
limited ranges for the governing variables. Furthermore, they did not always consider
turbulent flows (i.e., flows independent from Reynolds number) during the development
of the ANFIS-PSO models. Similarly, Azamathulla and Yusoff [20] proposed a regression-
based formulation by means of GEP technique. It looks like also their research did not
follow physical insights of scouring mechanisms in terms of sediment bed motion and
turbulent flow circumstances. Najafzadeh et al. [23] applied the GMDH technique to
predict the local scour for various sediment motion conditions of approach flows. They
not only enhanced existing inaccuracies in the literature, but also covered fundamental
misconceptions related to the physical insights of scouring processes in similar previous
investigations. They concluded that the performance of GMDH was relatively more
accurate than SVM technique.

Yasa and Etemad-Shahidi [19] presented the CART-model-based probabilistic frame-
work for various levels of risk in the design of undersea pipelines. They propose a regres-
sion equation, based on experimental data, for the economic design of a pipeline due to
scour depth. Haghiabi [25] used the MARS technique to provide a robust formulation
for the estimation of scour depth below pipelines exposed to clear-water circumstances.
He found that MARS model was more accurate than the ANN technique and empirical
equations. Najafzadeh and Sarkamaryan [21] presented some regression-based equations
by three robust AI models (i.e., EPR, GEP, and MT) for both clear-water and live-bed
conditions. As a merit, they found that the performance of the AI models-based regression
equations they considered had highly satisfying performance in comparison to empirical
equations from the literature. Parsaie et al. [18] employed SVM as a kernel-based AI model.
Even though the performance of SVM models indicated more accurate results than ANN
and ANFIS approaches, the proposed SVM model was designed for both clear-water and
live-bed conditions, though the scour mechanisms in these two conditions are completely
different, as previously remarked.

In summary, the main shortcomings of the above studies lie in unifying clear-water and
live-bed experimental data, though the related physical processes are intrinsically different.
Moreover, several investigations consider the Reynolds number as an influential parameter
on the scour depth even in the case of fully turbulent flow conditions. Indeed, regression
equations given by previous AI investigations appear to be not physically consistent.

2.2. Wave-Induced-Pipeline Scour

Etemad-Shahidi et al. [16] used a new version of MT technique to predict wave-
induced scour depth at underwater pipelines. They successfully extended MT to both
clear-water and live-bed conditions. Najafzadeh et al. [24] later trained traditional GMDH
algorithms by the Back Propagation (BP) technique. They found that the performance
of the GMDH-BP model was to a higher degree of accuracy in comparison to the ANFIS
model and the Multivariate Non-Linear Regression (MNLR) equation. Sharafati et al. [30]
developed an efficient stochastic technique on the basis of MT to achieve reliable predictions
of scour depth below pipelines exposed to waves. They concluded that their results attained
highly precise levels in comparison with the deterministic models.

In recent years, investigations have been characterized by a more strongly scientific
orientation. Najafzadeh and Saberi-Movahed [26] provided a new extension of GMDH by
GEP to estimate three-dimensional scour rates. From their study, GMDH-GEP indicated
relatively better performance in the prediction of three-dimensional free spans than GEP,
GMDH, and empirical equations. Moreover, Ehteram et al. [27] applied new improvements
of ANN, by Colliding Bodies’ Optimization (CBO), to model the three-dimensional nature
of scour below seabed pipelines. Ultimately, they concluded that the improvement of the
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application of CBO into ANN resulted in more accurate predictions than PSO and the
Whale Algorithm (WA).

However, the chief limitations of the above investigations are the regression-based-
equations, given by GMDH-GEP (Najafzadeh and Saberi-Movahed [26]), are their tree-like
structures with remarkable complexity, although equations are sufficiently accurate. On
the downside, the use of an improved ANN model by Ehteram et al. [27] acts as a black
box, which has no potential of being consistent with experimental observations.

3. Analysis of Datasets: Dimensional Analysis and Experimental Tests

In this section, the main dimensionless parameters, which would control the three-
dimensional scour processes at seabed pipelines, are first identified through the dimen-
sional analysis, and then the experimental data considered in this study are described
and discussed.

3.1. Dimensional Analysis

Three-dimensional scour rates depend on several factors, namely pipeline geometry,
wave properties, embedded depth of pipeline compared to the initial level of seabed,
and physical properties of seabed sediments (e.g., Cheng et al. [6], Wu and Chiew [8],
Cheng et al. [9], Wu and Chiew [31]). Hence, the following functional relationship can be
formulated:

χ(VH , VR, VL, e, D, Uw, T, d50, φ, α, ρ, ρs, µ, g) = 0 (1)

in which VH is the scour propagation velocity along the longitudinal (axial) direction of
the pipeline; VL and VR are the scour propagation velocities at the left- and right-hand
shoulders of the pipeline, respectively; e is the embedment depth; D is the pipe diameter;
Uw is the wave orbital velocity at the seabed; d50 is the median grain size of the seabed
sediment; T is the wave period; φ is the angle of repose of seabed sediments, α is the flow
incident angle to the pipeline (angle of attack); ρ is the density of water; ρs is the density
of the seabed sediment; µ is the dynamic viscosity of water; and g is the acceleration due
to gravity.

Previous studies revealed that the implementation of various AI models for the pre-
diction of scour rates below pipelines by considering dimensionless variables would lead
to results with highly convincing performance in comparison to those where dimensional
variables are used. What is more, the use of non-dimensional parameters can ameliorate
scale effects from experimental data on the performance of AI techniques (e.g., Najafzadeh
and Sarkamaryan [21], Haghiabi [25], Najafzadeh and Saberi-Movahed [26], Azamathulla
et al. [29]). In this way, by using the Buckingham theorem, the non-dimensional analysis
was performed. At first, ρ, D, and Uw were assigned as repeating variables, and then
11 non-dimensional parameters (∏1, ∏2, ∏3, . . . , ∏10, ∏11) were obtained:

χ1

(
VH
Uw

,
VR
Uw

,
VL
Uw

,
e
D

,
UwT

D
,

d50

D
, φ, α,

ρs

ρ
,

ρUwD
µ

,
gD
U2

w

)
= 0 (2)

where ∏5 and ∏10 are the Kelugan–Carpenter (KC) and Reynolds numbers of the pipeline
due to the regular wave (Rew), respectively. According to Cheng et al. [9], some ∏-variables
in Equation (2) could be rearranged and clustered as follows:

Π′7 = tanφ; Π′8 = sinα; Π′9 =
ρs

ρ
− 1 (3)

Π′11 =
1

Π11·Π′9·Π6
=

U2
w

g[(ρs/ρ− 1)]d50
(4)

Π′1 = Π′7·

√
Π′11·

(
Π1

Π6

)2
=

VH ·D·tanφ√
g
[
(ρs/ρ− 1)d3

50
] (5)
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Π′2 = Π′7·

√
Π′11·

(
Π2

Π6

)2
=

VR·D·tanφ√
g
[
(ρs/ρ− 1)d3

50
] (6)

Π′3 = Π′7·

√
Π′11·

(
Π3

Π6

)2
=

VL·D·tanφ√
g
[
(ρs/ρ− 1)d3

50
] (7)

in which Π′1, Π′2, and Π′3 can be indicated with V∗H , V∗R, and V∗L, respectively, and Π′11 is
the Shields’ parameter θw, which plays a key role in scour propagation below pipelines.

Therefore, the functional relationship (2) can be reduced as:

χ2

(
V∗H , V∗R , V∗L ,

e
D

, KC, sinα, Rew, θw

)
= 0 (8)

In fact, Cheng et al. [9] found that the Reynolds number of pipeline did not influence
the scouring process, and Rew can be removed from Equation (8). Furthermore, the
variables sinα and e/D can be finished as 1 + sinα and 1− e/D to avoid the mathematical
structure of the scour equation failing for α = 0◦ or e = 0 (Cheng et al. [9]). Finally,
Equation (8) can be written as:

χ3

(
V∗H , V∗R , V∗L , 1− e

D
, KC, 1 + sinα, Rew, θw

)
= 0 (9)

The functional relationship (9) indicates that four dimensionless parameters would
control the three dimensionless scour rates V∗H , V∗R , and V∗L .

3.2. Experimental Data

The availability of experimental data on scouring process at subsea pipelines is very
limited. In this study, as can be generally observed in a number of recent articles on the
topic under consideration, the experimental datasets extracted from Cheng et al. [9] were
collected to develop the selected AI approaches. The just-mentioned authors performed
three-dimensional scour experiments in a wave flume 50 m long, 4 m wide, and 2.5 m deep.
A sandpit 4 m long, 4 m wide, and 0.25 m deep was used as test section. The transitions
from the original flume bed to the test section and from the test section back to the original
flume bed were achieved through two 1:20 concrete slopes. The upstream end of the
sandpit was 21.5 m from the flow inlet, and the downstream end was 14.5 m from the flow
outlet. A pipeline with a smooth surface, 50 mm diameter, and 8 mm wall thickness was
tested. The experiments were performed for four various flow attack angles (α) 0◦, 15◦,
30◦, and 45◦. Furthermore, d50, φ, and ρs/ρ were 0.37 mm, 32◦, and 2.7, respectively. Even
though d50 was very small, the viscosity effect could not be significant at the interface flow-
sediment bed. Particles of bed sediment were in motion during the experiments (live-bed
conditions), and the corresponding Shields’ parameter due to wave condition was typically
either 0.18 or 0.30 (Cheng et al. [9]). A total of 125 tests were conducted, which included
60 wave-only tests and 65 tests under combined wave and current conditions. In the case
of wave-only conditions, scour propagation was not observed in the 16 tests. The results
of the other three tests were obtained in the state of onset of scour in multiple locations.
In addition to this, in three tests, the scour propagation process was only observed on the
upstream span shoulder, and these observations cannot be used to feed AI models because
the scour propagation should be observed in three dimensions: Longitudinal direction
of pipeline, and the left and right sides of pipeline (Cheng et al. [9]). In this way, there
are 22 experiments where pieces of information are not applied for modeling the scour
propagation in the wave-only conditions. Table 1 shows the ranges of experimental datasets.
From 38 experiments, 75% (29 datasets) and 25% (9 datasets) were randomly selected to
perform training (or calibration) and testing (or validation) tests for AI models, respectively.
The three mentioned scour rates are output variables, while the other non-dimensional
parameters are inputs feeding the selected AI models.
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Table 1. Basic statistical properties of the variables under study for AI modeling.

Dimensional
Variables Minimum Maximum Average Standard

Deviation

e[mm] 5.0 20.0 11.97 5.445
Uw[m/s] 0.3 0.5 0.40 0.068

T[s] 1.5 2.0 1.79 0.193
VH[mm/s] 1.6 6.5 3.32 1.289
VR[mm/s] 1.4 5.7 3.32 1.215
VL[mm/s] 1.5 6.1 3.32 1.210

Dimensionless
Variables Minimum Maximum Average Standard

Deviation

sinα[-] 0.10 0.71 0.32 0.263
e/D[-] 0.10 0.2143 0.0893 0.0893
KC[-] 8.70 18.00 14.68 3.698
θw[-] 0.18 0.30 0.27 0.051
V∗H[-] 1.27 5.16 2.64 1.025
V∗R[-] 1.19 4.85 2.64 0.961
V∗L [-] 1.11 4.53 2.64 0.965

Histograms for all the non-dimensional (independent) variables are depicted in
Figure 4a–d. These histograms show the frequency distributions for the parameters gov-
erning the scouring processes, providing brief and effective details on the data properties.
Incidentally, this analysis might turn out to be useful in further laboratory investigations.
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Figure 4a shows that the frequency of the flow attack angle, α, exhibits a rather
fragmented pattern with a significant percentage of the cumulative relative frequency
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(31.58%) devoted to α = 0. As observed in Figure 4b, the frequency distribution of e/D
is relatively symmetric and the tail of the distribution inclines to e/D = 0.4, whereas
the majority of experimental observations (around 55%) were collected for e/D ≤ 0.2.
Figure 4c also illustrates that the Kelugan–Carpenter number, KC, was not exhaustively
examined, with very fragmented distribution (i.e., KC = 8.7, 15.8, and 18.0). In addition,
the Shields’ parameter, θw, was not systematically explored, with most of the experiments
characterized by θw around 0.3 (Figure 4d). It is important to emphasize that all the
experiments were performed using only one bed sediment and in live-bed conditions. This
represents a limitation for the current available datasets, and further investigations on
clear-water regime and various sediment beds would be of interest.

For the sake of completeness, the tests of Cheng et al. [9] considered in this study are
summarized in Appendix A (Table A1).

4. Intelligent Computing Methods: Brief Descriptions and Implementations

The AI models considered benefit from two intrinsic advantages: The first merit
is to drive regression-based equations along with highlighting the physical meaning of
the experimental observations; the second remarkable merit is associated with the up-
scaling of datasets. In this way, the dimensionless structure of equations given by the
proposed AI models would be applicable at various scales from laboratory to field studies
(e.g., Parsaie et al. [18], Najafzadeh and Saberi-Movahed [26], Ehteram et al. [27], and
Sharafati et al. [30]).

4.1. Gene-Expression Programming (GEP)

Gene-Expression Programming (GEP), as an advanced platform of Genetic Algorithm
(GA), employs populations of individuals and chooses the most suitable of them based
on fitness. In fact, GEP puts genetic variation to use by at least one genetic operator
(Ferreira [32]). The intrinsic disparity between GA and GEP techniques arises from the basic
structure of the individuals. In GA, the individuals consist of chromosomes whose structure
has linear strings with a fixed length, whereas in GEP, the individuals are converted
into a coded form as linear strings whose length does not vary. In GEP, chromosomes,
introduced as the genome, need to be represented as expression trees with a nonlinear
mathematical structure. In addition, GEP employs characters related to linear chromosomes
with strings consisting of genes structurally configured as a head and a tail. The structure
of chromosomes needs to be modified using a wide range of genetic operators. In fact,
efficiency of overall expression trees is inextricably bound with the appropriate selection of
genetic operators (e.g., Ferreira [32]). Mutation rate, number of chromosomes, head size
of chromosome, gene transposition, number of generations, and gene recombination are
introduced as important genetic operators, which are used to set the optimum solution by
Evolution Techniques (ETs). All the ETs in GEP are linked together by using one of the
arithmetic operations.

The most favorable equations have been obtained for the prediction of the three
dimensionless scour rates around subsea pipelines. Desirable genetic operations to extract
the relationships with the highest level of precision via optimal evolution technique are
listed in Appendix B, Table A2.

In this study, GEP models have been developed via GeneXproTools5 platform. During
their development, the values of best-fit function were 1687, 1123, and 1322 for the estima-
tion of V∗H , V∗R , and V∗L , respectively. The best formulations are given in Appendix B (i.e.,
Equations (A1)–(A3)).

4.2. Evolutonary Polynomial Regression (EPR)

The EPR model is capable of effectively exploring the mathematical expressions that
can be fitted to a dataset. The selection of a congruent mathematical structure is closely
connected to the quality of existing pieces of information under the specific modeling
phenomenon. There are seven general mathematical expressions to model phenomena.
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One of the most frequently used expressions is known as (Giustolisi and Savic [33] and
Berardi et al. [34]):

Γ = ξ0 +
m

∑
j=1

ξ j·(η1)
ES(j,1)·(η2)

ES(j,2)· . . . ·(ηc)
ES(j,c)·z

[
(η1)

ES(j,c+1)
]
·z
[
(η2)

ES(j,c+2)
]
· . . . ·z

[
(ηc)

ES(j,2c)
]

(10)

in which m is the maximum number of mathematical terms, ξ0 is the bias term, ξ j is a
collection of coefficients, η is the input vector for a given problem, Γ is the output vector
estimated by EPR, c is the number of elements in input vectors, z is a specific function with
disparate mathematical structure, which needs to be defined by computer programmers,
and ES is the exponent range which is specified by the user (Giustolisi and Savic [35] and
Savic et al. [36]).

The typical inner function z is selected on the basis of prior knowledge about the
phenomenon. There are three typical regression techniques (i.e., dynamic regression,
statistical regression, and classification) that the EPR structure may use. Dynamic regression
is applied for time-dependent datasets while the statistical regression is an appropriate
approach for time-independent phenomena. In the classification modeling, a static system
includes the output vector, which must be an integer value, and the input vectors that need
to be arranged in classes. GA optimizes weighting coefficients used in Equation (10) by
determining a fair number of generations, which is inextricably bound with some items
such as number of input variables, exponent range of algebraic terms, and number of
mathematical terms.

The development stage of EPR model begins with the integration of the Multi-
Objective Genetic Algorithm (MOGA), which has been employed to optimally obtain
the general EPR expressions [see Equation (10)] in terms of coefficients and exponents. The
ES vectors including ±2, ±1.5, ±1, ±0.5, and 0 were used to develop Equation (10). The
maximum number of terms has been fixed equal to 5 and, additionally, 3600 generations
were produced for developing each regression equation returned by EPR. During each
performance of the EPR model, several regression equations were obtained among which
the best one, in terms of accuracy criterion (Mean Squared Error), was selected. Therefore,
three regression-based equations with natural logarithmic functions have been achieved for
the estimation of triple vectors of scour rates by EPR MOGA-XL software. These equations
are given in Appendix B (i.e., Equations (A4)–(A6)).

4.3. Multivariate Adaptive Regression Spline (MARS)

In the early 1990s, an adaptive regression technique was introduced, based on spline
conception, to build a non-parametric and stepwise regression equation; this model was
called Multivariate Adaptive Regression Spline (MARS). This regression model appears
to benefit immensely from the high potential of improving, over conventional regression-
based-equations, the feeding number of observations between 50 and 1000. Between the
principles of the MARS technique, the number of observations to develop a formulation is
in the range of 50–1000. In the current study, the available 38 experimental observations
are not well-suited in the applicability of the MARS technique, leading to an overfitting
process. To eradicate this problem, K-folds (dataset partitioning) are considered within
the performance of training and testing stages. In fact, 10 folds are set to fix the regression
equation by MARS. Furthermore, the MARS technique has the capability to be a crucial
enhancement in dealing with datasets with high dimensionality between 3 and 20. It
provides a hierarchical structure using a set of basis functions (BFs), which are selected
in a stepwise manner. Basically, the MARS model is capable of simulating a relationship
between input variables and target values by an approximation function of the type
(Friedman [37]):

Ω(x1, x2, x3, . . . , xO) = ω0 +
[
ω1·BF1(X) + ω2·BF2(X) + ω3·BF3(X) + . . . + ωQ·BFQ(X)

]
(11)

where Ω, ω0, O, and Q are the approximation function, constant coefficient, number of
input variables, and number of BFs, respectively. In addition, ω =

(
ω1, ω2, . . . , ωQ

)
is the
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set of weighting coefficients associated with the basis functions and X = (x1, x2, . . . , xO) is
the vector of input variables.

The programming computer codes of the MARS technique have been provided in
MATLAB2015 software. In this research, the MARS models (i.e., Equations (A7)–(A9) in
Appendix B) were developed for the prediction of V∗H , V∗L , and V∗R . The numbers of BFs
were set to 6, 7, and 4 for V∗H , V∗L , and V∗R , respectively, depending on the standard deviation
of each BF and the total influential number of parameters associated with the BFs.

4.4. M5 Model Tree (M5MT)

The M5 technique, as an efficient classification system, is frequently used to train
models that estimate values. M5 generally consists of tree-like models, which are mathe-
matically similar to multivariate-linear equations. It has the capability to deal with high
dimensionality of datasets efficiently. Furthermore, the main merit of M5 technique is that
model trees are much smaller and more accurate in comparison with the Regression Tree
(RT). Tree models are basically built by means of divide-and-conquer technique (Quin-
lan [38]). The initial stage in constructing a model tree is to calculate the standard deviation
(SD), as an error criterion, for the observed values in a training dataset. For a given sample
of training dataset, a multivariate linear technique is fitted at each node of the model tree.
M5 is limited to the input variables, which are referenced by linear equations somewhere
in the node sub-tree. As each linear equation is constructed at each node, the mathemati-
cal shape of the linear equation can be eliminated to reach the optimum predicted error.
Generally, M5 applies the Greedy Search (GS) algorithm in order to remove input variables
(or attributes) that have marginal contributions to the development of the linear equation.
Furthermore, processing the smoothing stage can enhance the accuracy level of each linear
equation at the node.

M5MT model provides a collection of rules leading to linear regression equations. In
the case of 3D-scour rate modeling, Weka3.9, as data-mining software, was considered.
The linear equation being driven from M5 rules is expressed as:

V∗H,R,L = a0 + a1·(1 + sinα) + a2·
(

1− e
D

)
+ a3·KC + a4·θw (12)

with a0, a1, a2, a3, and a4 as constant coefficients of the linear equation.
In the process of M5 development, Tables A4 and A5 in the Appendix B summarize,

respectively, the M5 rules and the associated linear equations returned by the Model Tree
for the prediction of V∗H . It can be seen from these tables that 12 rules were provided and,
additionally, all 4 input variables were used as splitting parameters. In other words, all the
inputs were important in setting the 12 formulations. In the case of V∗L estimation, as it can
be seen in Tables A6 and A7 in Appendix B, 12 rules were obtained from M5 analysis with
splitting of the parameters 1 + sin α, 1− e/D, and KC. Interestingly, the 12 relationships
presented in Table A7 indicated that the Shields’ parameter, θw, due to regular waves, has
no role in predicting the scour rates at the left hand of the pipeline. Finally, as indicated
in Tables A8 and A9 in Appendix B, 13 rules in terms of linear regression equations were
extracted from M5 to predict V∗R . Similarly, here too it was ascertained that the Shields’
parameter does not control, at least significantly, the scour rate propagation at the right
hand of the pipeline.

5. Results and Discussion
5.1. Performance Indices

The proposed models are evaluated using five performance measures (index): Index
of Agreement (IOA), Sum of Squared Errors (SSE), Mean Absolute Error (MAE), Average
Discrepancy Ratio (ADR), and Scatter Index (SI):

IOA = 1−
∑N

j=1
[
V∗Est(j)−V∗Obs(j)

]2
∑N

j=1
[∣∣V∗Est(j)−V∗Obs

∣∣+ ∣∣V∗Obs(j)−V∗Obs

∣∣]2 (13)
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SSE =

∑N
j=1
(
V∗Est(j)−V∗Obs(j)

)2

N

 (14)

MAE =

[
∑N

j=1
∣∣V∗Est(j)−V∗Obs(j)

∣∣
N

]
(15)

ADR =
1
N

N

∑
j=1

V∗Est(j)
V∗Obs(j)

(16)

SI =

√
(1/N)∑N

j=1
((

V∗Est(j)−V∗Est
)
−
(
V∗Obs(j)−V∗Obs

))2

(1/N)∑N
j=1 V∗Obs(j)

(17)

in which V∗Est and V∗Obs are the computed and observed scour rate values, respectively, N
is the number of experimental observations, and V∗Est and V∗Obs are the average values for
computed and observed scour rate, respectively. The Index of Agreement (IOA), varying
between 0 and 1, expresses the Mean Square Error (MSE) ration to the potential error.
The IOA of 1 shows the most favorable agreement whereas for IOA=0, no agreement is
found for the AI model under study. Furthermore, IOA is capable of detecting additive
and proportional differences among experimental and computed averages and variances.
The SSE is able to measure how well the performance of AI models in 3D scour rates
prediction matches the corresponding observed scour rates. Smaller values of SSE are
indicative of a more reliable prediction, and additionally, a value of zero expresses the
most favorable accuracy level of the model under study. MAE is a statistical criterion to
measure error values between predicted and observed values; a value of zero indicates the
best performance of the model. ADR can be an index to demonstrate differences between
estimated and predicted values in terms of over prediction (or under prediction). The
most desired value of ADR is 1, indicating that the AI model stands at the highest level
of accuracy. Results of AI models demonstrate over prediction for ADR > 1 and under
prediction for ADR < 1. Ultimately, the error criterion of SI is indicative of presenting Root
Mean Squares Difference (%) in regard to average observation. The model with SI = 0
indicates the best performance in terms of accuracy.

5.2. Performance of Data-Driven Models under Study

In this subsection, the performance of the considered AI models is discussed. In the
case of M5MT, we will refer to the more complete equations marked with #1 in the Table A5,
Table A7, and Table A9. Table 2 shows training and testing results for prediction of V∗H . By
a quick glance, the values of statistical benchmarks illustrate that the EPR model predicted
non-dimensionless V∗H parameters with the highest accuracy (IOA = 0.9799, SSE = 0.0030,
and MAE = 0.0550) in the training stage compared to the other AI models, followed by
MARS (IOA = 0.9468, SSE = 0.0068, and MAE = 0.0826), M5MT (IOA = 0.9468, SSE = 0.0612,
and MAE = 0.0886), and GEP (IOA = 0.9244, SSE = 0.0111, and MAE = 0.1056). Furthermore,
values of SI (0.0599) and ADR (1.0026) given by the EPR model displayed this trend. All the
ADR values, which were approximately close to 1, indicated highly satisfying performance
for AI models. In the case of the testing stage, it is surprising that the EPR model was
found to fail in the prediction of V∗H even though it had the best performance in the training
stage. Hence, the assessment of statistical benchmarks indicated that MARS had highest
most accuracy level (IOA = 0.9506, SSE = 0.1156, and MAE = 0.0912), followed by M5MT
(IOA = 0.9430, SSE = 0.1323, and MAE = 0.0644), GEP (IOA = 0.9084, SSE = 0.2143, and
MAE = 0.0893), and EPR (IOA = 0.8237, SSE = 0.4124, and MAE = 0.1254). According to
Table 2, SI values demonstrated the superiority of the M5MT technique. From ADR values,
all AI models showed relatively marginal under prediction (ADR < 1) in the testing phase.
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Table 2. Statistical performances of the AI models in the estimation of V∗H .

AI Models
Training Stage

IOA SSE MAE SI ADR

M5MT 0.9468 0.0612 0.0886 0.0974 1.0090
GEP 0.9244 0.0111 0.1056 0.1158 1.0039
EPR 0.9799 0.0030 0.0550 0.0599 1.0026

MARS 0.9468 0.0068 0.0826 0.1016 1.0068

AI Models
Testing Stage

IOA SSE MAE SI ADR

M5MT 0.9430 0.1323 0.0644 0.0644 0.9682
GEP 0.9084 0.2143 0.0893 0.0893 0.9621
EPR 0.8237 0.4124 0.1254 0.1988 0.9260

MARS 0.9506 0.1156 0.0912 0.1048 0.9476

The performance of AI models for the estimation of V∗H in training and testing stages
is illustrated in Figure 5. In Figure 5, data are fitted to ±25% error lines. Most values of
V∗H predicted by the AI models in the training stage were in the range of an acceptable
error bound. Similarly, Figure 5b shows well-matched predictions versus experimental
observations, though a relatively significant under prediction is seen in the observed value
of V∗H = 3.8 for M5MT, GEP, and EPR models.
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In Table 3, statistical assessments of training and testing results in the prediction of
V∗L are given. It is inferred that the MARS technique (i.e., Equation (A9)) estimated V∗L
with the highest level of precision (IOA = 0.9950, SSE = 0.0157, and MAE = 0.0374) in the
training phase in comparison with M5MT (IOA = 0.9877, SSE = 0.0387, and MAE = 0.0672),
EPR (IOA = 0.9883, SSE = 0.0369, and MAE = 0.0754), and GEP (IOA = 0.9680, SSE = 0.1001,
and MAE = 0.1027). SI (0.0504) and ADR (0.9993) obtained by the MARS model were
also indicative of its superiority when compared to the other AI models. Table 3 also
indicates that M5MT and EPR models had approximately the same performance in the
prediction of V∗L according to the statistical benchmarks (i.e., IOA, SSE, and SI). More-
over, it can be inferred from the ADR values that all AI models had convincing efficiency;
specifically, the MARS model experienced a very marginal under prediction whereas the
other AI approaches showed insignificant over predictions. Results of the testing stage
demonstrated that the GEP-based formulation (i.e., Equation (A2)) had the best perfor-
mance (IOA = 0.9911, SSE = 0.0384, and MAE = 0.0544) in the prediction of V∗L . M5MT
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(IOA = 0.9896, SSE = 0.0449, and MAE = 0.0644), and MARS (IOA = 0.9828, SSE = 0.0738,
and MAE = 0.0870) stood at the second and third place in terms of precision level, respec-
tively. Ultimately, EPR (i.e., Equation (A5)) provided V∗L predictions with the lowest level
of accuracy in terms of SSE (0.1322) and MAE (0.0944). SI values confirm an unconvincing
performance associated with EPR (SI = 0.1502). ADR values indicated a very marginal
under estimation (ADR < 1) for the GEP model.

Table 3. Statistical performances of the AI models in the estimation of V∗L .

AI Models
Training Stage

IOA SSE MAE SI ADR

M5MT 0.9877 0.0387 0.0672 0.0772 1.0277
GEP 0.9680 0.1001 0.1027 0.1274 1.0242
EPR 0.9883 0.0369 0.0754 0.0771 1.0085

MARS 0.9950 0.0157 0.0374 0.0504 0.9993

AI Models
Testing Stage

IOA SSE MAE SI ADR

M5MT 0.9896 0.0449 0.0644 0.0481 1.0520
GEP 0.9911 0.0384 0.0544 0.0611 0.9987
EPR 0.9693 0.1322 0.0944 0.1052 1.0624

MARS 0.9828 0.0738 0.0870 0.0680 1.0729

For the sake of qualitative comparisons, Figure 6 illustrates the comparison between
predicted and observed values of V∗L . In the case of the training stage, Figure 6a shows
very compromising efficiency with almost all predictions inside ±25% error lines. In the
case of the testing stage, the EPR model remarkably overpredicted with the observed value
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Table 4 shows statistical benchmarks associated with the training and testing phases
for prediction of V∗R . In the training phase, statistical criteria demonstrated that the EPR-
base relationship [Equation (A6)] predicted V∗R values with the highest level of accuracy
(i.e., IOA = 0.9913, SSE = 0.0345, and MAE = 0.1030) than those obtained by other AI
models. Furthermore, SI values given by Table 4 indicate superiority of EPR model over
other AI techniques. According to IOA, SSE, and SI criteria, the MARS-based formulation
(Equation (A9)) placed second in precision (IOA = 0.9831, SSE = 0.0670, and SI = 0.103),
followed by M5MT (IOA = 0.9801, SSE = 0.0788, and SI = 0.1046) and GEP (IOA = 0.976,
SSE = 0.0953, and SI = 0.0964). In addition to this, ADR values illustrated that all AI
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models had compromising performance with values of ADR roughly close to 1. These
values are also indicative of very small overpredictions. The assessment of performance for
the testing phase indicated that the MARS model (Equation (A9)) had the most accurate
prediction in terms of IOA (0.9670), SSE (0.0855), and MAE (0.1086) in comparison to other
AI models. Additionally, the value of SI for MARS was indicative of the most successful
performance. M5MT with IOA of 0.9435, SSE of 0.1581, and MAE of 0.1356 came in second.
The performance of GEP model (Equation (A3)) with IOA = 0.9329 and SSE = 0.1892 was
comparatively at the same accuracy level as for EPR (Equation (A6)) (IOA = 0.9356 and
SSE = 0.1816). Additionally, MAE and SI values proved similarity of performance between
GEP and EPR models. Moreover, MARS model had more significant underprediction
(ADR = 0.9578) than GEP (ADR = 1.0020) with very marginal overestimation. ADR analysis
also demonstrated that M5MT and EPR provided low underprediction and fairly relative
overprediction, respectively.

Table 4. Statistical performances of the AI models in the estimation of V∗R .

AI Models
Training Stage

IOA SSE MAE SI ADR

M5MT 0.9801 0.0788 0.0728 0.1046 1.0163
GEP 0.9760 0.0953 0.1199 0.1147 1.0294
EPR 0.9913 0.0345 0.1030 0.0692 1.0113

MARS 0.9831 0.0670 0.1030 0.0964 1.0050

AI Models
Testing Stage

IOA SSE MAE SI ADR

M5MT 0.9435 0.1581 0.1356 0.1601 0.9955
GEP 0.9329 0.1892 0.1525 0.1755 1.0020
EPR 0.9356 0.1816 0.1500 0.1713 1.0503

MARS 0.9670 0.0855 0.1086 0.1601 0.9578

In terms of illustrative comparisons in training phase, Figure 7a indicated that GEP
and MARS techniques underpredicted, with an observed value of V∗R = 1.11.

 

M5MT 0.9801 0.0788 0.0728 0.1046 1.0163 

GEP 0.9760 0.0953 0.1199 0.1147 1.0294 

EPR 0.9913 0.0345 0.1030 0.0692 1.0113 

MARS 0.9831 0.0670 0.1030 0.0964 1.0050 

AI Models 
Testing Stage 

IOA SSE MAE SI ADR 

M5MT 0.9435 0.1581 0.1356 0.1601 0.9955 

GEP 0.9329 0.1892 0.1525 0.1755 1.0020 

EPR 0.9356 0.1816 0.1500 0.1713 1.0503 

MARS 0.9670 0.0855 0.1086 0.1601 0.9578 

In terms of illustrative comparisons in training phase, Figure 7a indicated that GEP 

and MARS techniques underpredicted, with an observed value of 𝑉𝑅
∗ = 1.11. 

  

Figure 7. Performance of AI models in the prediction of 𝑉𝑅
∗ for: (a) Training and (b) testing stage. 

As it can be seen in Figure 7a, the scatter plot for training phase shows highly pros-

perous performance with almost all data inside ±25% error ranges. Relatively important 

overprediction for M5MT and GEP was seen in Figure 8b at 𝑉𝑅
∗ = 2.22. MARS and GEP 

techniques underpredicted for 𝑉𝑅
∗ = 1.35, whereas EPR provided significant overpredic-

tion. 

5.3. Driving Physical Meaning of AI Results 

In this section, the physical performance of the AI models is controlled by analyzing 

3D scour propagation rates versus 𝑒 𝐷⁄  and 𝐾𝐶 values. 

5.3.1. Effects of 𝑒 𝐷⁄  on 𝑉𝐻
∗ 

Figure 8 illustrates the variations of 𝑉𝐻
∗ as a function of 𝑒 𝐷⁄ . In fact, this type of var-

iation was assessed for all the considered AI models at various levels of 𝐾𝐶 and 𝛼. 

1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5 4 4.5

V
R
*

(P
r
e
d

ic
te

d
)

VR*(Observed)

(b) 

M5MT

GEP

EPR

MARS

Figure 7. Performance of AI models in the prediction of V∗R for: (a) Training and (b) testing stage.

As it can be seen in Figure 7a, the scatter plot for training phase shows highly pros-
perous performance with almost all data inside ±25% error ranges. Relatively important
overprediction for M5MT and GEP was seen in Figure 8b at V∗R = 2.22. MARS and GEP tech-
niques underpredicted for V∗R = 1.35, whereas EPR provided significant overprediction.
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Figure 8. Variations of V∗H against e/D at: (a) KC = 8.7 and α = 0◦, (b) KC = 15.8 and α = 0◦, (c) KC = 18.0 and α = 0◦, (d) KC
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5.3. Driving Physical Meaning of AI Results

In this section, the physical performance of the AI models is controlled by analyzing
3D scour propagation rates versus e/D and KC values.

5.3.1. Effects of e/D on V∗H
Figure 8 illustrates the variations of V∗H as a function of e/D. In fact, this type of

variation was assessed for all the considered AI models at various levels of KC and α.
Figure 8a shows that the experimental values of V∗H , for KC = 8.7 and α = 0◦ increase

from 2.77 at e/D = 0.1 to 3.81 at e/D = 0.2 and then descend towards 1.51 at e/D = 0.4.
This non-monotonic trend is well captured by the MARS model, the results of which are
more in harmony with the observations in comparison to the remaining models. All the
AI models show underprediction at e/D = 0.2. Quantitatively, the EPR model exhibits
significant underprediction with SSE = 0.843 in comparison to GEP (SSE = 0.435), M5MT
(SSE = 0.300), and MARS (SSE = 0.161). According to Figure 8b, all the AI models were in
satisfying agreement with the observations in the case of KC = 15.8 and α = 0◦. Generally, AI
models predict a linear downward trend between V∗H and e/D, as observed experimentally.
Similarly, Figure 8c, which relates to the case of KC = 18.0 and α = 0◦, shows an even more
pronounced linear decreasing trend between V∗H and e/D, quite well captured by all the
AI models. EPR had the most satisfying performance (SSE = 0.018), while the GEP model
showed a significant overprediction at e/D = 0.4. Figure 8d, which relates to the case
KC = 15.8 and α = 30◦, exhibiting more alleviated values of V∗H when compared to those
in Figure 8b. This is due to the higher value of α (equal to 30◦ here while equal to 0◦ in
Figure 8b); it remains the observed downward trend between V∗H and e/D. Moreover, in
this case, the considered AI models perform satisfactorily by assessing the effect of the
angle α properly, though the MARS model appears more resilient for e/D from 0.1 to 0.2.
Moreover, MARS and GEP models indicated marginal underestimations at e/D = 0.1 and
0.4. More specifically, EPR with SSE of 0.003 shows the most compromising efficiency
compared to M5MT (SSE = 0.011), GEP (SSE = 0.0468), and MARS (SSE = 0.0631). Figure 8e,
which relates to the case KC = 18.0 and α = 30◦, clearly shows the effect of the angle α when
compared to Figure 8c, while it is less significant in realizing the effect of KC when compared
to Figure 8d (on the other hand, KC in Figure 8d is equal to 15.8 and slightly differs from
KC = 18.0 in Figure 8e). It is confirmed that V∗H decreases with increasing α as well as
decreasing with increasing normalized embedment depth e/D (especially for the highest
values of KC). AI models are still in harmony with these observed trends. Quantitatively,
EPR with an SSE of 0.028 had the most compromising efficiency compared to M5MT
(SSE = 0.031), MARS (SSE = 0.040), and GEP (SSE = 0.054). Further effects of the wave
angle of attack α on V∗H are highlighted in Figure 8g, which relates to the case KC = 15.8
and α = 45◦, when Figure 8b,d is considered for comparison. In this analysis, significant
underpredictions were found for the MARS model (SSE = 0.054) at e/D = 0.1 and for GEP
(SSE = 0.035) and MARS (SSE = 0.054) at e/D = 0.4. For the sake of completeness, Table 5
below shows the performance index SSE for all AI models by varying the normalized
embedment depth e/D. Overall, it appears that the M5MT model had the best performance
compared to the other AI models, though it is not always quite so straightforward.
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Table 5. SSE values for the considered AI models when predicting V∗H at various e/D ratios.

KC and α Values
SSE Values for AI Models

M5MT GEP EPR MARS

KC = 8.7 and α = 0◦ 0.300 0.435 0.843 0.161
KC = 15.8 and α = 0◦ 0.018 0.040 0.081 0.078
KC = 18.0 and α = 0◦ 0.147 0.276 0.018 0.142

KC = 18.0 and α = 15◦ 0.049 0.018 0.040 0.010
KC = 15.8 and α = 30◦ 0.011 0.047 0.003 0.063
KC = 18.0 and α = 30◦ 0.031 0.054 0.028 0.040
KC = 15.8 and α = 45◦ 0.005 0.035 0.006 0.054

5.3.2. Effects of e/D and KC on V∗R
Figure 9a–d shows the variations of V∗R against e/D at given values of KC and for

α = 0◦, according to AI models. All AI models exhibit a downward trend when interpreting
the variations of V∗R with e/D increasing from 0.1 to 0.4. For example, M5MT simulates that
V∗R decreases linearly with increasing e/D, as shown in Figure 9a. In addition, for a constant
value of e/D, V∗R increases with increasing KC, with a tendency towards an asymptotic
value. For example, V∗R increases sharply from 2.94 for KC = 8.7 to 4.56 for KC = 18, at
e/D = 0.1 as shown in Figure 10a. This trend was generally repeated in Figure 9b–d.
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that 𝑉𝑅
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Figure 10. Variations of V∗R against KC at e/D from 0.1 to 0.4 and α = 0◦ for: (a) M5MT, (b) GEP, (c) EPR, and (d) MARS.

Analogously, Figure 10a–d shows the variations of V∗R against KC at given values of
e/D, according to AI models. All AI models exhibit an upward trend when interpreting the
variations of V∗R with KC increasing from 8.7 to 18. For example, M5MT simulates that V∗R
increases from 2.4 for KC = 8.7 to 4.56 for KC = 18, at e/D = 0.2. However, in general, the
trend is not linear but approximately asymptotic. In addition, for a constant value of KC,
V∗R decreases as e/D increasing. For example, V∗R values decline from 4.344 for e/D = 0.1
to 2.927 for e/D = 0.4, at KC = 15.8, as shown in Figure 10d.

Moreover, statistical performance of AI techniques for the prediction of V∗R with con-
sideration of e/D and KC variations at α = 0◦ is presented in Table 6. It was found that all
the AI techniques had the best performance for better understanding the general pattern
of V∗R versus e/D at KC = 8.7. For instance, the GEP model indicated the most satisfying
efficiency at KC = 8.7 with an SSE of 0.0622 than results predicted at KC = 15.8 (SSE = 0.2602)
and KC = 18 (SSE = 0.0827). For KC = 8.7, EPR was found more compromisingly for the
assessment of V∗R with SSE = 0.0168 in comparison with M5MT (SSE = 0.0388), MARS
(SSE = 0.0483), and GEP (SSE = 0.0622). In the case of KC = 15.8, EPR had the most success-
ful efficiency while for KC = 18, the M5MT technique stood at the highest level of accuracy
for simulation of V∗R variations versus e/D ratios. In Table 6, it was inferred that AI models
indicated the best performance to perceive variations of V∗R versus KC values for different
e/D ratios. MARS (SSE = 0.0544), M5MT (SSE = 0.0244), and EPR (SSE = 0.0035) had the
most accurate efficiency at e/D = 0.3 while for e/D = 0.1, the GEP technique had the most
prosperous performance (SSE = 0.0349). GEP showed variations of V∗R versus at e/D = 0.1,
with the highest level of accuracy (SSE = 0.0349) whereas for e/D = 0.2, EPR was determined
as the most precise model. On the other hand, EPR (SSE = 0.0035) and MARS (SSE = 0.0920)
stood at the highest level of accuracy at e/D = 0.3 and e/D = 0.4, respectively.
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Table 6. SSE values for the considered AI models when predicting V∗R at various e/D ratios and
KC values.

AI Models
SSE Values for e/D Varying

KC=8.7 KC=15.8 KC=18.0

M5MT 0.0388 0.2038 0.0271
GEP 0.0622 0.2602 0.0827

MARS 0.0483 0.0844 0.1490
EPR 0.0168 0.0132 0.0969

AI Models
SSE Values for KC Varying

e/D=0.1 e/D=0.2 e/D=0.3 e/D=0.4

M5MT 0.0480 0.0948 0.0244 0.1924
GEP 0.0349 0.1298 0.0416 0.3338

MARS 0.0629 0.1662 0.0544 0.0920
EPR 0.0355 0.0106 0.0035 0.1197

5.3.3. Effects of e/D and KC on V∗L
Figure 11a–d shows the variations of V∗L against e/D at given values of KC, and for

α = 0◦, according to AI models. All AI models exhibit a downward trend when interpreting
the variations of V∗L with e/D increasing from 0.1 to 0.4. For example, M5MT simulates
that V∗L decreases linearly with increasing e/D, as shown in Figure 11a. In addition, for
a constant value of e/D, V∗L increases with increasing KC, with a tendency towards an
asymptotic value. For example, V∗L increases sharply from 2.776 for KC = 8.7 to 4.482 for
KC = 18, at e/D = 0.2.
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Figure 11. Variations of V∗L against e/D at KC from 8.7 to 18.0 and α = 0◦ for: (a) M5MT, (b) GEP, (c) EPR, and (d) MARS.
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Analogously, Figure 12a–d shows the variations of V∗L against KC at given values of
e/D, according to AI models. All AI models exhibit an upward trend when interpreting
the variations of V∗L with KC increasing from 8.7 to 18. For example, GEP simulates that V∗L
increases from 2.83 for KC = 8.7 to 4.207 for KC = 18, at e/D = 0.1. However, in general, the
trend is not linear but approximately asymptotic. In addition, for a constant value of KC,
V∗L decreases with e/D increasing. For example, V∗L plummets from 4.168 for e/D = 0.1 to
3.047 for e/D = 0.4, at KC = 15.8, as shown in Figure 12b.
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Figure 12. Variations of V∗L against KC at e/D from 0.1 to 0.4 and α = 0◦ for: (a) M5MT, (b) GEP, (c) EPR, and (d) MARS.

According to Table 7, the GEP model had the best performance (SSE = 0.0502) at
KC = 8.7 while all other AI models indicated the most accurate prediction of V∗L values for
KC = 18. The EPR technique predicted variations of V∗L versus e/D with highly satisfying
performance at KC = 15.8 (SSE = 0.0494) and KC = 18 (SSE = 0.0272). Table 7 also indicates
that M5MT (SSE = 0.0658), EPR (SSE = 0.0207), and GEP (SSE = 0.0188) had the most
favorable performance at e/D = 0.3 while MARS (SSE = 0.00633) stood at the highest level
of efficiency at e/D = 0.4. EPR model indicated more successful efficiency for e/D = 0.1
(SSE = 0.0720) and e/D = 0.2 (SSE = 0.0617) than the remaining AI models. What is more,
GEP raised the most well-matched predictions for the variations of V∗L versus KC with
SSE = 0.0188 at e/D = 0.2, while EPR had the best performance (SSE = 0.00633) at e/D = 0.4.
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Table 7. SSE values for the considered AI models when predicting V∗L at various e/D ratios and
KC values.

AI Models
SSE Values for e/D Varying

KC=8.7 KC=15.8 KC=18.0

M5MT 0.0874 0.0958 0.0488
GEP 0.0502 0.1037 0.1627

MARS 0.0618 0.1847 0.0563
EPR 0.0606 0.0494 0.0272

AI Models
SSE Values for KC Varying

e/D=0.1 e/D=0.2 e/D=0.3 e/D=0.4

M5MT 0.0725 0.0959 0.0658 0.0751
GEP 0.1804 0.0803 0.0188 0.1425

MARS 0.2189 0.1260 0.0526 0.0063
EPR 0.0720 0.0617 0.0207 0.0286

6. Conclusions

This study aimed to explore 3D scouring patterns around subsea pipelines under
wave-only conditions. To this purpose, the experimental work by Cheng et al. [9] was
considered. Experimental data were collected in a wave flume 50 m long, 4 m wide, and
2.5 m deep. A total of 60 wave-only tests were considered, though some of these tests
(i.e., 22 tests) have proved to be of no use. An almost uniform siliceous sand with d50
equal to 0.37 mm and specific gravity of 2.70 was used for the mobile bed. Experiments
were conducted under live-bed conditions with the Shields’ parameter θw ranging from
0.18 to 0.30, the Keulegan–Carpenter number KC from 8.7 to 18.0, the initial pipeline
embedment depth, e, from 0.1D to 0.5D, and the flow incident angle, α, relative to the
pipeline varying from 0◦ to 45◦. Four robust data-driven models were applied to predict the
3D scour propagation around undersea pipelines, namely Gene-Expression Programming
(GEP), Evolutionary Polynomial Regression (EPR), Multivariate Adaptive Regression
Spline (MARS), and M5 Model Tree (M5MT). Generally, the following conclusions can be
drawn from the current investigation:

1. The considered predictive methodologies indicated two main potentialities: (i) Pro-
viding non-linear regression equations with a high degree of complexity (as naturally
seen in the scouring process around submarine pipelines) when developed by a limit
volume of datasets; (ii) selecting the effective variables (i.e., e/D, KC, α, θw) on the
scour rates estimation under a full automated manner.

2. All AI models applied in this study provided explicit relationships with satisfying
performance for the prediction of 3D scour rates. However, the performance indices
in the training and testing phases overall revealed that the MARS technique is most
the eligible one. Therefore, the scour Equations (A7)–(A9), given in Appendix B, asso-
ciated with the Basis Functions (BFs) explicitly stated in Table A3, are recommended
in the prediction of V∗H , V∗L , and V∗R , respectively.

3. The physical consistency of the AI models was controlled by analyzing 3D scour prop-
agation rates versus the normalized embedment depth e/D, the flow incident angle
α, and Keulegan–Carpenter number KC. It was confirmed that scour propagation
rates decrease with increasing e/D, decrease with increasing the angle of attack α,
and increase with KC number. Conversely, it was ascertained the Shields’ parameter
does not control, at least significantly, the scour rate propagation at the right- and
left-hand pipeline shoulders.

4. A comparison with the conventional approach by [9] for the prediction of V∗H would
prove the superiority of the proposed scour equations. For example, by applying
Equation (8) in [9], the performance index IOA is 0.842, significantly lower than the
values of IOA for all the considered AI techniques (i.e., 0.9670 for MARS, 0.9435 for
M5MT, 0.9356 for EPR, and 0.9329 for GEP).
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List of Notations and Acronyms

Notations

ai constant coefficient in M5MT model
c number of elements in input vectors in EPR model
D pipeline diameter
d50 median grain size of the seabed sediment
e pipeline embedment depth
ES exponent range in EPR model
g acceleration due to gravity
KC Kelugan -Carpenter number
m maximum number of mathematical terms in EPR model
N number of experimental observations
O number of input variables in MARS model
Q number of Basis Functions in MARS model
Rew pipeline Reynolds number
T wave period
Uw wave orbital velocity at the seabed
VH scour propagation velocity along the longitudinal (axial) direction of the pipeline
VL scour propagation velocity at the left-hand shoulder of the pipeline
VR scour propagation velocity at the right-hand shoulder of the pipeline
V∗Est computed scour rate value
V∗H,L,R dimensionless scour propagation velocity
V∗Obs observed scour rate value
V∗Est average value for computed scour rate values
V∗Obs average value for observed scour rate values
xi i-th input variable in MARS model
X vector of input variables in MARS model
z specific function in EPR model
α flow incident angle to the pipeline (or angle of attack)
φ angle of repose of the seabed sediment
Γ output vector in EPR model
ηi i-th input vector in EPR model
θw Shields’ parameter
µ dynamic viscosity of water
∏i i-th non-dimensional parameter
ρ density of water
ρs density of sediment
ω set of weighting coefficients in MARS model
ωi i-th weighting coefficient in MARS model
ω0 constant coefficient in MARS model
Ω approximation function in MARS model
ξ0 bias term in EPR model
ξ j j-th coefficient in EPR model
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Acronyms

ADR Average Discrepancy Ratio
AI Artificial Intelligence
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
BP Back Propagation
CART Classification and Regression Tree
CBO Colliding Bodies’ Optimization
CW Clear-Water regime
EPR Evolutionary Polynomial Regression
GEP Gene-Expression Programming
GMDH Group Method of Data Handling
GP Genetic Programming
IOA Index Of Agreement
LB Live-Bed regime
LGP Linear Genetic Programming
MAE Mean Absolute Error
MARS Multivariate Adaptive Regression Splines
MNLR Multivariate Non-Linear Regression
MSE Mean Square Error
cMT Model Tree
PSO Particle Swarm Optimization
SI Scatter Index
SSE Sum of Squared Errors
SVM Support Vector Machine
WA Wale Algorithm

Appendix A. Experiments by Cheng et al. (2014): Test Conditions and Main Results

In this Appendix the tests of Cheng et al. [9] are summarized in terms of test conditions
and main results. Only the tests considered in this study are given below (Table A1). It
should be noted that H is the wave height.

Table A1. Tests of [9]: main characteristics and results under wave-only conditions.

Test# α e/D H T Uw KC θw VH VL VR
[-] [◦] [-] [m] [s] [m/s] [-] [-] [mm/s] [mm/s] [mm/s]

w15t15e1 0◦ 0.1 0.13 1.5 0.29 8.7 0.18 3.5 3.6 3.4
w15t15e2 0◦ 0.2 0.13 1.5 0.29 8.7 0.18 3.8 4.8 2.8
w15t15e3 0◦ 0.3 0.13 1.5 0.29 8.7 0.18 2.6 2.6 2.6
w15t15e4 0◦ 0.4 0.13 1.5 0.29 8.7 0.18 1.9 2.0 1.8
w16t18e1 0◦ 0.1 0.17 1.8 0.44 15.8 0.30 5.7 6.3 5.1
w16t18e2 0◦ 0.2 0.17 1.8 0.44 15.8 0.30 4.9 5.4 4.4
w16t18e3 0◦ 0.3 0.17 1.8 0.44 15.8 0.30 4.3 4.6 4.0
w16t18e4 0◦ 0.4 0.17 1.8 0.44 15.8 0.30 3.2 3.7 2.8
w16t20e1 0◦ 0.1 0.15 2.0 0.45 18.0 0.29 6.1 6.5 5.7
w16t20e2 0◦ 0.2 0.15 2.0 0.45 18.0 0.29 5.4 5.3 5.5
w16t20e3 0◦ 0.3 0.15 2.0 0.45 18.0 0.29 4.7 4.7 4.7
w16t20e4 0◦ 0.4 0.15 2.0 0.45 18.0 0.29 3.4 3.0 3.7
a15w15t15e3 15◦ 0.3 0.13 1.5 0.29 8.7 0.18 2.2 1.6 2.7
a15w15t15e4 15◦ 0.4 0.13 1.5 0.29 8.7 0.18 1.5 1.6 1.5
a15w16t18e1 15◦ 0.1 0.17 1.8 0.44 15.8 0.30 5.4 5.2 5.6
a15w16t18e2 15◦ 0.2 0.17 1.8 0.44 15.8 0.30 4.3 4.1 4.5
a15w16t18e3 15◦ 0.3 0.17 1.8 0.44 15.8 0.30 4.2 4.0 4.4
a15w16t18e4 15◦ 0.4 0.17 1.8 0.44 15.8 0.30 2.8 2.6 3.1
a15w16t20e2 15◦ 0.2 0.15 2.0 0.45 18.0 0.29 4.8 4.4 5.2
a15w16t20e3 15◦ 0.3 0.15 2.0 0.45 18.0 0.29 4.0 3.7 4.3
a15w16t20e4 15◦ 0.4 0.15 2.0 0.45 18.0 0.29 3.2 3.4 3.0



Appl. Sci. 2021, 11, 3792 25 of 31

Table A1. Cont.

Test# α e/D H T Uw KC θw VH VL VR
[-] [◦] [-] [m] [s] [m/s] [-] [-] [mm/s] [mm/s] [mm/s]

a30w15t15e1 30◦ 0.1 0.13 1.5 0.29 8.7 0.18 2.6 2.2 3.0
a30w15t15e2 30◦ 0.2 0.13 1.5 0.29 8.7 0.18 1.8 2.2 1.4
a30w16t18e1 30◦ 0.1 0.17 1.8 0.44 15.8 0.30 3.9 3.9 4.0
a30w16t18e2 30◦ 0.2 0.17 1.8 0.44 15.8 0.30 3.4 3.2 3.6
a30w16t18e3 30◦ 0.3 0.17 1.8 0.44 15.8 0.30 2.9 2.7 3.1
a30w16t18e4 30◦ 0.4 0.17 1.8 0.44 15.8 0.30 2.5 2.3 2.6
a30w16t20e1 30◦ 0.1 0.15 2.0 0.45 18.0 0.29 3.8 3.4 4.1
a30w16t20e2 30◦ 0.2 0.15 2.0 0.45 18.0 0.29 3.2 3.1 3.4
a30w16t20e3 30◦ 0.3 0.15 2.0 0.45 18.0 0.29 2.7 2.3 3.1
a30w16t20e4 30◦ 0.4 0.15 2.0 0.45 18.0 0.29 2.3 2.3 2.3
a45w15t15e1 45◦ 0.1 0.13 1.5 0.29 8.7 0.18 1.8 1.9 1.7
a45w15t15e2 45◦ 0.2 0.13 1.5 0.29 8.7 0.18 1.6 1.8 1.4
a45w16t18e1 45◦ 0.1 0.17 1.8 0.44 15.8 0.30 2.7 2.8 2.7
a45w16t18e2 45◦ 0.2 0.17 1.8 0.44 15.8 0.30 2.2 2.5 1.9
a45w16t18e3 45◦ 0.3 0.17 1.8 0.44 15.8 0.30 1.8 2.0 1.6
a45w16t20e1 45◦ 0.1 0.15 2.0 0.45 18.0 0.29 2.8 2.4 3.1
a45w16t20e2 45◦ 0.2 0.15 2.0 0.45 18.0 0.29 2.3 2.3 2.3

Appendix B. Implementation of the Intelligent Computing Methods: Tables
and Equations

• GEP-derived equations

The parameters characterizing the GEP method for 3D-scour rate predictions are made
explicit in Table A2.

Table A2. Parameters of the GEP model for 3D-scour rate predictions.

Parameters Description of Parameters Setting of Parameters

P1 Function set +,−,·,/, Power (x2), min(x1, x2), (1−x),
ln(x), average(x1, x2), arctan(x), tanh(x)

P2 Linking function Addition
P3 Mutation rate 0.003
P4 Inversion rate 0.00546

P5
One-point and two-point

recombination rates 0.00277

P6 Gene recombination rate 0.00277
P7 Permutation 0.00546
P8 Maximum tree depth 6
P9 Number of genes 3
P10 Number of chromosomes 30
P11 Best fitness values 773.67 (V∗H), 763.76 (V∗R), 761.35 (V∗L )

GEP models have been developed via GeneXproTools5 platform. During their devel-
opment, the values of best-fit function were 1687, 1123, and 1322 for the estimation of V∗H ,
V∗R , and V∗L , respectively. The best formulations were the following:

V∗H = tanh
(

arctan
(

ln
(

min
(
−3.8810 + KC,

(
1− e

D
)2
))))

+[
−KC− e

D + sinα +
(
2.3133− e

D
)
·
(
1− e

D
)]

+ min
[

tanh
((

θw
1+sinα

))
·
(

4.1825+KC
2

)
, 3.9524
(1+sinα)2

] (A1)



Appl. Sci. 2021, 11, 3792 26 of 31

V∗L =
[
− e

D + sinα + 3.5804−sinα
2

]
+

{
arctan

[
1−0.5·(2+sinα− e

D )+min(8.9196−KC,θw−1−sinα)
2

]}2

+

[
1−

{
tanh

(
1 + e

D + sinα−
(
1− e

D
)2
)}4

] (A2)

V∗R =
[
1− e

D + θw − (1 + sinα)2
]
·
(
sinα− e

D
) 1

3 +
{

tanh
[

arctan
(

KC−3.836
2

)]
+ 1− e

D

}2
+ 1

−
[
tanh

(
1− e

D
)
− 2− KC + e

D
]
·θ2

w

(A3)

• EPR-derived equations

EPR models have been developed by EPR MOGA-XL software. The best formulations
for the estimation of V∗H , V∗R , and V∗L were the following:

V∗H = 0.3235 ·(KC)0.5 + 0.02161·
(
1− e

D
)0.5KC0.5θw

2·ln
[

KC2·θw
2

(1− e
D )

2·(1+sinα)0.5

]
+ 0.00278

·(1 + sinα)0.5(1− e
D
)0.5KC0.5θw

0.5·ln
[
(1− e

D )
0.5·θw

0.5

(1+sinα)

]
+ 0.01438·(1 + sinα)2KC0.5θw

·ln
[(

1− e
D
)0.5·(1 + sinα)2·θ2

wKC0.5
] (A4)

V∗L = 0.01157·Ln
[

θw
KC2·(1+sinα)

]
+ 0.001464·ln

[(
1− e

D
)
·(1 + sinα)·θ0.5

w
]
+ 0.3205·

(
1− e

D
)
+ 0.01153

· (1− e
D )

2·θw
2

KC ·ln
[
(1− e

D )
2·θw

2·KC2

(1+sinα)0.5

]
+ 0.4768·(1 + sinα)·ln

[
1

(1+sinα)1.5

] (A5)

V∗R = 0.000671 ·ln
[

θw
KC2·(1+sinα)1.5

]
+ 0.3438·KC0.5·θw + 0.01371· (1− e

D )
2·KC

θw

·ln
[

KC1.5

(1− e
D )·(1+sinα)1.5·θ2

w

]
+ 0.57711·(1 + sinα)0.5(1− e

D
)0.5 ·ln

[
(1− e

D )
0.5

(1+sinα)2

]
+0.02773·(1 + sinα)2(1− e

D
)2·ln

[
(1− e

D )
2·(1+sinα)2

θ0.5
w

] (A6)

• MARS-derived equations

The formulations for the basis functions (BFs) and their weighting coefficients associ-
ated with the estimation of 3D- scour rates are listed in Table A3.

MARS models have been developed by MATLAB2015 software. The best formulations
for the estimation of V∗H , V∗R , and V∗L were the following:

V∗H = 3.4903− 13.568·BF1 + 22.259·BF2 − 4.7028·BF3 − 20.026·BF4 − 3.5962·BF5 + 4.6579·BF6 (A7)

V∗L = 3.8165− 4.4937·BF1 + 1.8162·BF2 + 3.2772·BF3 − 4.1566·BF4 − 0.20284·BF5 − 0.2084·BF6
−7.4663·BF7

(A8)

V∗R = 3.3939− 0.18259·BF1 + 4.3799·BF2 − 8.1073·BF3 − 4.2723·BF4 (A9)
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Table A3. Explored basis functions (BFs) in MARS models for 3D-scour rate predictions.

BFs for V*
H Prediction

BF1 max{0, 0.29− θw}
BF2 max{0, 0.29− θw}·max{0, [(1 + sinα)− 1.2587]}
BF3 max{0, [0.8− (1− e/D)]}
BF4 max{0, [0.8− (1− e/D)]}·max{0, [1.2587− (1 + sinα)]}
BF5 max{0, [(1 + sinα)− 1.258]}
BF6 max{0, [1.2587− (1 + sinα)]}

BFs for V*
L Prediction

BF1 max{0, [(1 + sinα)− 1.258]}
BF2 max{0, [1.258− (1 + sinα)]}
BF3 max{0, [(1− e/D)− 0.8]}
BF4 max{0, [0.8− (1− e/D)]}
BF5 max{0, 15.8− KC}
BF6 max{0, 15.8− KC}·max{0, [(1 + sinα)− 1.258]}
BF7 max{0, [0.8− (1− e/D)]}·max{0, [1.2587− (1 + sinα)]}

BFs for V*
R Prediction

BF1 max{0, 15.8− KC}
BF2 max{0, [(1− e/D)− 0.7]}
BF3 max{0, [0.7− (1− e/D)]}
BF4 max{0, [(1 + sinα)− 1.258]}

• M5MT-derived equations

Tables A4 and A5 summarize, respectively, M5 rules and associated linear equation
returned by Model Tree for the prediction of V∗H . 12 rules were provided and, additionally,
all the four input variables were used as splitting parameters.

Table A4. List of explored rules returned by M5MT model to predict V∗H .

If 1+ sinα <= 1.379:
| If 1 e/D <= 0.75:
| | If KC <= 12.25: LM#1
| | If KC > 12.25:
| | | If 1 e/D <= 0.65: LM#2
| | | If 1 e/D > 0.65: LM#3
| If 1 e/D > 0.75:
| | If 1+ sinα <= 1.129:
| | | If θw <= 0.295: LM#4
| | | If θw > 0.295: LM#5
| | If 1+ sinα > 1.129: LM#6
If 1+ sinα > 1.379:
| If KC <= 12.25:
| | If 1+ sinα <= 1.603: LM#7
| | If 1+ sinα > 1.603: LM#8
| If KC > 12.25:
| | If 1-e/D <= 0.65: LM#9
| | If 1- e/D > 0.65:
| | | If 1+ sinα <= 1.603:
| | | | If 1 e/D <= 0.75: LM#10
| | | | If 1- e/D > 0.75: LM#11
| | | If 1+ sinα > 1.603: LM#12
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Table A5. Linear equations obtained by M5MT model to predict V∗H .

Linear Equations by M5MT Model

#1 V∗H = −1.5478− 2.1346·(1 + sinα) + 5.5576·
(
1− e

D
)
+ 0.0246·KC + 9.5079·θw

#2 V∗H = −1.602− 2.1346·(1 + sinα) + 5.811·
(
1− e

D
)
+ 0.0211·KC + 9.5079·θw

#3 V∗H = −1.602− 2.1346·(1 + sinα) + 5.811·
(
1− e

D
)
+ 0.0211·KC + 9.5079·θw

#4 V∗H = −0.4133− 2.793·(1 + sinα) + 4.6905·
(
1− e

D
)
+ 12.512·θw

#5 V∗H = −0.4133− 2.793·(1 + sinα) + 4.6905·
(
1− e

D
)
+ 12.5124·θw

#6 V∗H = −0.2965− 2.8258·(1 + sinα) + 4.6905·
(
1− e

D
)
+ 12.5124·θw

#7 V∗H = −1.2191− 2.4643·(1 + sinα) + 3.5315·
(
1− e

D
)
+ 0.0209·KC + 5.8612·θw

#8 V∗H = −1.2191− 2.4643·(1 + sinα) + 3.5315·
(
1− e

D
)
+ 0.0209·KC + 5.8612·θw

#9 V∗H = 1.3753− 2.6322·(1 + sinα) + 3.8196·
(
1− e

D
)
+ 0.0166·KC + 5.8612·θw

#10 V∗H = 1.3642− 2.6582·(1 + sinα) + 3.8972·
(
1− e

D
)
+ 0.0166·KC + 5.8612·θw

#11 V∗H = 1.3649− 2.6582·(1 + sinα) + 3.8972·
(
1− e

D
)
+ 0.0166·KC + 5.8612·θw

#12 V∗H = 1.4057− 2.6653·(1 + sinα) + 3.8509·
(
1− e

D
)
+ 0.0166·KC + 5.8612·θw

Tables A6 and A7 show that in the case of V∗L estimation, 12 rules were obtained from
M5 analysis with the splitting of the parameters 1 + sin α, 1− e/D, and KC.

Table A6. List of explored rules returned by M5MT model to predict V∗L .

Rule#1
IF 1+sinα <= 1.603, 1 e/D <= 0.65, KC > 12.25, 1+ sinα <= 1.379
THEN LM#1
Rule#2
IF 1+ sinα <= 1.603, 1 e/D > 0.65, KC <= 12.25, 1+ sinα <= 1.129
THEN LM#2
Rule#3
IF KC > 12.25, 1+ sinα <= 1.379, 1 e/D <= 0.75
THEN LM#3
Rule#4
IF KC > 12.25, 1+ sinα <= 1.379
THEN LM#4
Rule#5
IF KC > 12.25, 1+ sinα > 1.603, 1 e/D <= 0.85
THEN LM#5
Rule#6
IF KC <= 12.25, 1+ sinα <= 1.603, 1 e/D <= 0.65
THEN LM#6
Rule#7
IF KC <= 12.25, 1+ sinα <= 1.603
THEN LM#7
Rule#8
IF 1+ sinα <= 1.603, 1 e/D <= 0.7
THEN LM#8
Rule#9
IF KC <= 12.25
THEN LM#9
Rule#10
IF 1+ sinα <= 1.603, 1 e/D <= 0.85
THEN LM#10
Rule#11
IF 1+ sinα <= 1.603
THEN LM#11 = 3.7233×(1+ sinα)+8.642
Otherwise
Rule#12 LM#12
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Table A7. Linear equations obtained by M5MT model to predict V∗L .

Linear Equations by M5MT Model

#1 V∗L = 0.4207− 2.2586·(1 + sinα) + 4.0342·
(
1− e

D
)
+ 0.1384·KC

#2 V∗L = 0.71− 2.5502·(1 + sinα) + 4.1387·
(
1− e

D
)
+ 0.1501·KC

#3 V∗L = 2.2943− 2.8549·(1 + sinα) + 4.6573·
(
1− e

D
)
+ 0.0646·KC

#4 V∗L = 3.1812− 3.2497·(1 + sinα) + 4.1348·
(
1− e

D
)
+ 0.0691·KC

#5 V∗L = 2.1734− 2.5643·(1 + sinα) + 3.8075·
(
1− e

D
)
+ 0.0639·KC

#6 V∗L = 0.6837− 1.3108·(1 + sinα) + 2.6787·
(
1− e

D
)
+ 0.0823·KC

#7 V∗L = 1.9259− 2.0976·(1 + sinα) + 2.7366·
(
1− e

D
)
+ 0.0829·KC

#8 V∗L = 3.6165− 3.1164·(1 + sinα) + 3.6362·
(
1− e

D
)
+ 0.046·KC

#9 V∗L = 4.4871− 3.7599·(1 + sinα) + 3.2793·
(
1− e

D
)
+ 0.0609·KC

#10 V∗L = 4.2091− 3.3313·(1 + sinα) + 4.2603·
(
1− e

D
)

#11 V∗L = 8.462− 3.7233·(1 + sinα)
#12 V∗L = 2.1843

13 rules in terms of linear regression equations were extracted from M5 to predict V∗R ,
as indicated in Tables A8 and A9.

Table A8. List of explored rules returned by M5MT model to predict V∗R .

If KC <= 12.25:
| If 1 e/D <= 0.85:
| | If 1+ sinα <= 1.379: LM#1
| | If 1+ sinα > 1.379: LM#2
| If 1 e/D > 0.85: LM#3
If KC > 12.25:
| If 1+ sinα <= 1.379:
| | If 1 e/D <= 0.75:
| | | If 1 e/D <= 0.65: LM#4
| | | If 1 e/D > 0.65:
| | | | If 1+ sinα <= 1.129: LM#5
| | | | If 1+ sinα > 1.129: LM#6
| | If 1 e/D > 0.75:
| | | If KC <=16.9: LM#7
| | | If KC > 16.9: LM#8
| If 1+ sinα > 1.379:
| | If 1+ sinα <= 1.603:
| | | If 1 e/D <= 0.85:
| | | | If 1 e/D <= 0.75: LM#9
| | | | If 1 e/D > 0.75: LM#10
| | | If 1 e/D > 0.85: LM#11
| | If 1+ sinα > 1.603:
| | | If 1 e/D <= 0.85: LM#12
| | | If 1 e/D > 0.85: LM#13
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Table A9. Linear equations obtained by M5MT model to predict V∗R .

Linear Equations by M5MT Model

#1 V∗R = 0.3424− 2.154·(1 + sinα) + 4.0823·
(
1− e

D
)
+ 0.1151·KC

#2 V∗R = 0.3424− 2.1582·(1 + sinα) + 4.0823·
(
1− e

D
)
+ 0.1151·KC

#3 V∗R = 0.2434− 2.1481·(1 + sinα) + 4.2686·
(
1− e

D
)
+ 0.1151·KC

#4 V∗R = 0.4536− 2.0057·(1 + sinα) + 4.9602·
(
1− e

D
)
+ 0.0951·KC

#5 V∗R = 0.5106− 2.0057·(1 + sinα) + 4.8913·
(
1− e

D
)
+ 0.0951·KC

#6 V∗R = 0.5106− 2.0057·(1 + sinα) + 4.8913·
(
1− e

D
)
+ 0.0951·KC

#7 V∗R = 0.902− 2.0057·(1 + sinα) + 4.36·
(
1− e

D
)
+ 0.0964·KC

#8 V∗R = 0.9056− 2.0057·(1 + sinα) + 4.36·
(
1− e

D
)
+ 0.0964·KC

#9 V∗R = 2.4404− 2.8991·(1 + sinα) + 4.341·
(
1− e

D
)
+ 0.0685·KC

#10 V∗R = 2.4387− 2.8991·(1 + sinα) + 4.3454·
(
1− e

D
)
+ 0.0685·KC

#11 V∗R = 1.3649− 2.8991·(1 + sinα) + 4.3111·
(
1− e

D
)
+ 0.0685·KC

#12 V∗R = 2.5596− 3.0402·(1 + sinα) + 4.3839·
(
1− e

D
)
+ 0.0685·KC

#13 V∗R = 2.5652− 3.0402·(1 + sinα) + 4.3839·
(
1− e

D
)
+ 0.0685·KC
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