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Abstract: Road surfaces in Taiwan, as well as other developed countries, often experience structural
failures, such as patches, bumps, longitudinal and lateral cracking, and potholes, which cause discom-
fort and pose direct safety risks to motorists. To minimize damage to vehicles from pavement defects
or provide the corresponding comfortable ride promotion strategy later, in this study, we developed
a pavement defect detection system using a deep learning perception scheme for implementation
on Xilinx Edge AI platforms. To increase the detection distance and accuracy of pavement defects,
two cameras with different fields of view, at 70◦ and 30◦, respectively, were used to capture the
front views of a car, and then the YOLOv3 (you only look once, version 3) model was employed to
recognize the pavement defects, such as potholes, cracks, manhole covers, patches, and bumps. In
addition, to promote continuous pavement defect recognition rate, a tracking-via-detection strategy
was employed, which first detects pavement defects in each frame and then associates them to
different frames using the Kalman filter method. Thus, the average detection accuracy of the pothole
category could reach 71%, and the miss rate was about 29%. To confirm the effectiveness of the
proposed detection strategy, experiments were conducted on an established Taiwan pavement defect
image dataset (TPDID), which is the first dataset for Taiwan pavement defects. Moreover, different
AI methods were used to detect the pavement defects for quantitative comparative analysis. Finally,
a field-programmable gate-array-based edge computing platform was used as an embedded system
to implement the proposed YOLOv3-based pavement defect detection system; the execution speed
reached 27.8 FPS while maintaining the accuracy of the original system model.

Keywords: pavement defect detection; YOLOv3; tracking-via-detection; Taiwan pavement defect
image dataset (TPDID); edge computing; embedded system

1. Introduction

Road potholes and patches pose risks to road users; they frequently cause motorcycle
riders to lose balance and fall. Generally, they are the major causes of damage to the
chassis and suspension of vehicles. They can seriously endanger the lives of drivers and
passersby. According to a report [1] by the Royal Automobile Club, a UK-based road rescue
company, the quality of roads has deteriorated over the past decade, and the number of
road rescue cases due to potholes has doubled. Road infrastructure is a significant factor in
the productivity, safety, and satisfaction of a country. Research conducted by the European
Community Research and Development Information Service [2] indicated that one-third of
the traffic accidents in Europe are attributed to bad road conditions. A total of 20 million
potholes were identified across Europe in 2011, but just half of them were patched, costing
almost €1.2 billion. Even though automobile manufacturers have worked hard to reinforce
chassis, it is still hard to withstand the ravages of the road conditions. For vehicles, potholes
in the road may result in damage to the vehicle’s shock absorber; the collision may trigger
deformation and damage of the wheel rim. It may also cause the vehicle to be temporarily
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out of control or even drift lanes due to a flat tire, causing a serious car accident. Moreover,
the production boom of automated vehicles (AVs) is sweeping across the world. As of
July 2019, there were 56 kinds of AVs in over 128 cities globally. Approximately 50% of
these are shuttle buses for public transport. Besides safety, a crucial issue for the future of
AVs is comfort, which is perhaps more important. Therefore, potholes on road pavements
affect not only the structural safety of the vehicle but also the comfort of passengers in
AVs. In severe cases, it can even cause vehicles to lose control and contribute to injuries
and casualties.

Potholes, manhole covers, patches, and cracks are among the pavement defects iden-
tified in this study using an imaging lens and a deep learning (DL) YOLOv3 (you only
look once, version 3) model [3]. In addition, we employed the Kalman tracking algorithm
to improve the reliability and detection rate of the system, which not only significantly
reduces the miss rate and increases the average precision (AP) but also stabilizes the DL
prediction frame for surface defects. Moreover, to identify potholes at a longer distance, we
used two lenses with different fields of view (FoVs): 30◦ and 70◦ lenses. The 30◦ FoV lens
is mainly used for identifying potholes at a distance. However, when a pothole is close to
the vehicle, a pothole object may be too large to be fully represented in the image due to a
small viewing angle, resulting in misjudgment or lack of identification. Therefore, we also
employed the 70◦ FoV lens, which can be used to compensate for pothole detection at near
and medium distances. Using these two lenses simultaneously can reinforce the reliability
of the recognition results. Finally, we conducted a quantitative analysis and comparison
of DL object models with real-time object recognition, which includes YOLOv3 [3] used
in this paper as well as YOLOv4 (YOLO, version 4) [4], MobileNet-YOLO [5], TF-YOLO
(tiny fast YOLO) [6], and RetinaNet [7]. We ultimately chose YOLOv3 and implemented it
with a field-programmable gate array (FPGA)-based hardware accelerator as an embedded
system; the results show that YOLOv3 can still fulfill the criteria for real-time operation
while maintaining the accuracy of the original system model.

The main contributions of the proposed pavement defect detection system are
as follows:

- Two different FOV lenses and tracking-via-detection strategy are used to increase the
detection accuracy rate, decrease the misjudgment rate, and lengthen the recognition
distance efficiently.

- A lightweight YOLOv3 model is developed by the model compression technology and
then implemented on an FPGA-based hardware accelerator edge computing platform,
which not only satisfies the real-time computing requirements while maintaining the
accuracy of the original system model but also becomes a competitive product in the
automotive electronics market.

- To prove the effectiveness of the proposed pavement defect detection strategy, the
first dataset for Taiwan pavement defects is established, which is called the Taiwan
pavement defect image dataset (TPDID).

- In order to verify the robustness of the proposed road defect detection system, an
extensive video recorded on the Pacific Northwest highway [8] is used. The exper-
imental results show that the proposed system can effectively recognize potholes
under severe conditions, such as water surface reflection interference or potholes with
complex structures.

2. Related Works

The ability of object image recognition is the key technology at the core of this research.
In this study, we installed two lenses with different FoVs on a vehicle to capture images of
the road pavement ahead. We also used YOLOv3, a DL object recognition model, to detect
road pavement defects in front of the vehicle. Road defects identified in this paper are
mainly classified into six categories: road potholes, transverse cracks, longitudinal cracks,
transverse patches, longitudinal patches, and manhole covers, where the pothole category
is primarily defined as the pothole in which the pavement defects must surpass 10 cm and
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the vehicle’s wheels can fall into. Most related literature or commercial implementations
employed high-resolution lidar, high-intensity infrared sensors, and other high-cost percep-
tion equipment for pothole detection [9–14]. Their main purpose is to provide road repair
engineering units for subsequent repair by sensing whether the current road is defective.
Keiji et al. [15] used a high-intensity near-infrared light-emitting diode mounted under the
front bumper of a vehicle to measure whether the current road surface is dry, slippery, or icy
to give the driver a hint about the current road conditions. However, only relatively close
potholes could be identified, and this is prone to misinterpretation. Ground-penetrating
radar (GPR) has been frequently used to detect potholes and cracks to understand a con-
tinuous profile of existing road conditions. However, GPR is very expensive and requires
well-trained, experienced operators; moreover, the result shows the possibility of crack
detection that depends on the layers of cracks [16]. In addition, various academic institutes
and scholars have used picture recognition to identify road conditions as a consequence
of the advancement in image processing and sensor technologies. However, the literature
on the identification of road pavement defects is inadequate, especially in the first-person
perspective for pavement defect detection. Lin et. al. [17] used a nonlinear support vector
machine model with a Gaussian radial basis function to detect potholes. However, this
scheme is limited by the ambient light source and weather factors, and it needs quite a bit
closer recognizable distance. Fan et al. [18] used binocular vision for image capture of road
pavements and identified the road potholes based on a parallax stereogram. This strategy,
though, requires fairly close proximity to identify details regarding potholes. Moreover,
when the illuminance is low at night or in adverse weather, the algorithm becomes invalid.
Choudhury et al. [19] used a wide-angle lens mounted on the top of a vehicle to capture
images of road pavement ahead. Simultaneously, a perspective projection transformation
approach was used to detect road potholes in the aerial image using a blob recognition
algorithm. This technique only provided improved detection performance for potholes at
relatively short distances and is insufficient for all-weather applications. The watershed
approach detection of road potholes was also used by Chung et al. [20] in detecting road
potholes with smooth, broken, and cracked pavements. However, the recognition rate is
not high and is limited by the ambient light source. Recently, DL techniques have been
achieving state-of-the-art results for object detection on standard benchmark datasets and
computer vision competitions. In 2019, Chun et al. [21] employed fully convolutional
neural networks with semantic segmentation efficacy and virtual samples generated by
autoencoders. They used a semisupervised learning approach to conduct road pavement
hazard detection. Moreover, Baek et al. [22] proposed a pothole classification model using
edge detection and a YOLO-based feature extraction scheme for pothole detection. How-
ever, these studies have only considered ideal situations such as daytime on a sunny day.
The weather variations or illumination changes, such as poor weather conditions, shadows
cast from objects or water, and low-illumination environment, are challenging problems. In
addition, there are only subjective consciousness assessments lacking objective quantitative
analysis. Consequently, no effective approach is presently accessible for detecting road
pavement defects, and most significantly, pavement defects that are further out cannot be
detected so as to provide further application in vehicle control, such as a pothole warning
system or vehicle stability control system, and to simultaneously meet all-weather require-
ments. Besides, for vehicle applications, the overly complicated DL network architecture
is unable to meet the requirements of a real-time system and embedded hardware with
vehicle specifications.

Although current object recognition algorithms based on deep neural networks have
outstanding performance in many applications, DL models often need high-performance
computing hardware. e.g., multicore high-performance graphics processing unit and a
similar processing system, and consume a lot of power; thus, several AI-based applications
are difficult to apply to embedded systems with limited memory space and computing
resources. Therefore, in this study, in addition to the development of an AI-based defect
detection scheme, we use the model compression technology toward a lightweight model,
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and then an FPGA-based hardware accelerator edge computing platform is employed
as an embedded system to implement the proposed pavement defect detection model.
Experimental results show that the proposed system not only satisfies the real-time com-
puting requirements while maintaining the accuracy of the original system model but also
becomes a competitive product in the automotive electronics market.

3. Pavement Defect Detection Scheme

In this study, YOLOv3 was employed as the primary DL model to detect road defects.
Two lenses with different FoVs, 30◦ and 70◦, were used for anterior image acquisition. By
using the two FoV cameras, minor pavement defects, including tiny potholes or patches,
may also be detected completely and accurately at a long distance. Moreover, pavement
defects at close proximity are detected based on the results of a large-angle lens, which will
not lead to misjudgment, as the small-angle lens is unable to capture the full image of a
pavement defect when it is too close. Particularly, the 30◦ FoV lens is used for identifying
long-distance pavement defects, whereas the 70◦ FoV lens is used primarily to locate
medium and proximal defects in road pavement.

Consequently, in the proposed model, the application of both recognition results not
only effectively increases the detection accuracy rate but also reduces misjudgments and
improves reliability. The structure of the proposed road pavement defect detection model
is shown in Figure 1. In addition, a Kalman filter (KF) was integrated to improve system
reliability and robustness to ensure continuity and reliability of the detection model. The
outcome of the quantitative analysis is presented in the experimental results in Section 5.

Figure 1. YOLOv3-based model for pavement defect detection.

Further, as the vehicle moves forward, the potholes get closer to the vehicle, and the
pavement defect will become larger, which may induce misjudgment, e.g., marking several
specific defects within the pavement defect or marking many tiny potholes within the
pothole. In this scenario, we use a tracking-via-detection framework [23,24] (Figure 2).
The KF [11,25] tracking algorithm with intersection over union (IOU) estimation is used to
maintain the reliability of the detection model and to lower the miss rate. It primarily tracks
the location, length, and width information of the object’s prediction frame to improve the
recognition rate.

The Kalman filter is used to update the estimate of the state variables by using the
previous state estimate and the current state observation to obtain the current state estimate.
During the approximation process, it is necessary to meet the minimum mean-squared
error estimate so that the estimated value will be closer to the actual system state after each
iteration. Thus, firstly, the state of the previous time step is used to predict the state of the
next time step, which is the state prediction stage. Assume the variation of the prediction
frame is linear, so the system state and output equation can be defined as

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1,
zk = Hx̂k|k−1

(1)
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where x̂k|k−1 is used to predict the estimate at time step k from the previous time step
(k− 1); x̂k−1|k−1 is the best-estimated state at the previous time step (k− 1); uk−1 is the
state control quantity at the previous time step (k− 1), which is assumed to be 0. Moreover,
zk =

[
x y h w

]T is the output state of the system measurement at time step k, and
it also refers to the result of the current pothole recognition prediction frame. Among
them, x and y are the upper-left coordinates of the prediction frame, respectively, h and
w are the length and width of the prediction frame; A is the state transition matrix; B is
the control matrix. A is extremely important, characterized in particular by the dynamic
relationship between the pavement defect prediction frame identified and the vehicle itself.
The prediction of the prediction frame is currently assumed to be a linear relationship
between speed and time. Subsequently, the covariance matrix of the estimated value is to
be updated, which can be expressed as

Pk|k−1 = APk−1|k−1 AT + Q (2)

where Pk|k−1 is the covariance matrix at time step k predicted by the covariance matrix at
time step k− 1; Q is the system noise. The optimum state approximation outcome can
be reached, and it can be represented in conjunction with the system state and observed
values in [11] (i.e., the prediction frame details of the current pothole recognition result).

x̂k|k = x̂k|k−1 + Kk(zk − Hx̂k|k−1) (3)

where Kk is the Kalman gain, which represents the weighting between the measured value
and the estimated value. It also indicates that when the value of Kk is large, it means the
credit of observed value is greater than the estimated value currently; otherwise, it means
that the credit of estimated value is greater than the observed value. Its Kalman gain can
be estimated by the following equation:

Kk = Pk|k−1HT(HPk|k−1HT + R)
−1

(4)

where R is the observation error matrix, and the covariance matrix at the last time step k
can be updated to

Pk|k = (I − Kk H)Pk|k−1 (5)

We can estimate the current state (also referred to as the coordinate, length, and width
details of the pavement defect prediction frame) based on the state of the prior time step
and modify the predictive information with the observation information to obtain the best
estimate. Therefore, this paper seizes on the Kalman filter, which may not only prevent the
sudden emergence of no prediction frame due to misjudgment but also be less vulnerable to
error information due to sudden misjudgment in the prediction frame of each identification
outcome. The detection block in Figure 2 is the identification of defects in road pavement
based on the YOLOv3 model used in this study. In order to increase the computational
efficiency, the image of 30◦ FOV lens and the image of 70◦ FOV lens were merged into one
image via coordinate transformation, and this merged image was used as the input to the
YOLOv3 model to identify pavement defects. At this point, it is the identification result
when t = 1. Then, we used the Kalman filter to track the identified road pavement defect
prediction frame for t = 2 ∼ j. However, we must simultaneously mark the object at time
step t = j, to prevent any tracking loss that may happen as a consequence of the object’s
absence or masking, and compare the identification outcome to the tracking consequence
by IOU. When IOU > 0.5, the tracking results can continue to be trustworthy; otherwise,
the new identification results can be used as the basis of subsequent tracking. This process
will increase the recognition rate efficiently and reduce the miss rate.
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Figure 2. Tracking-via-detection framework.

4. Lightweight Model and Embedded System Implementation

At present, most recognition systems based on DL technology are often computa-
tionally complex; thus, they need to be built on the basis of high-performance computing
equipment. However, these high-performance computing platforms not only are expensive
but also have the disadvantage of high power consumption and heat dissipation problems.
Thus, these platforms cannot be used in the automotive industry. To overcome the above
problems, the model compression technology was used in the proposed pavement defect
detection model, and then the lightweight model was deployed on the Xilinx ZCU104
embedded system.

The purpose of model compression is to achieve a lightweight model that is simplified
from the original without significantly reducing accuracy. Various model compression
strategies have been proposed, including microarchitecture [26,27], pruning [28–30], quan-
tization [31,32], low-rank decomposition [33,34], and knowledge distillation [35,36]. Each
scheme has its advantages and disadvantages as well as suitable situations. For example,
the microarchitecture method mainly simplifies the model structure to reduce the number
of network parameters; however, it usually sacrifices a certain level of accuracy. Although
some unstructured pruning or sparsifying methods can accurately remove insignificant
parameters to achieve model compression, they cannot be accelerated by general hardware.
In this study, quantization was used for the YOLOv3 model; the flowchart of model com-
pression and verification is shown in Figure 3. The model weight of the original YOLOv3
training framework was a 32-bit floating-point representation with 246.3-MB size. Through
the quantification process, the model weight was converted to an 8-bit integer representa-
tion. The quantified model was only 23% of the original model’s size. The improvement
effect of the model compression ratio is shown in Figure 4. For the quantified model, part
of training data were used for fine-tuning again to restore the detection accuracy of the
original model. Therefore, the lightweight model did not lose its accuracy when the model
compression ratio became 77%.

Figure 3. Model compression strategy and verification flowchart.
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Figure 4. Improvement effect of model compression ratio.

Thus, the quantified model could be implemented on the Xilinx FPGA-based em-
bedded platform for the proposed real-time pavement defect detection model to decrease
the requirements of computational resources and satisfy the low power consumption re-
quirement of the automotive electronics industry. As shown in Figure 5, two AI-based
embedded systems were used for comparing the quantitative performance: one was Nvidia
TX2 using graphics processing unit acceleration scheme, and the other was Xilinx ZCU104
platform via FPGA hardware acceleration. Figure 5c shows the quantitative performance
comparison for the two embedded systems, when the input image size was 416 × 416
and the average accuracy of the PC-based identification system before compression was
maintained. The execution speed of the Xilinx ZCU104 embedded system was 27.8 FPS,
which not only achieved the real-time demand response but also satisfied the low power
consumption requirement of the automotive electronics industry.

Figure 5. Implementation of embedded system for YOLOv3-based pavement defect detection systems. (a) Xilinx ZCU104
platform; (b) Nvidia TX2 platform; (c) quantitative performance comparison.

5. Experimental Results and Quantitative Analysis

To prove the effectiveness of the proposed detection strategy, experiments were per-
formed on our established Taiwan pavement defect image dataset (TPDID), which is the
first dataset for Taiwan pavement defects (Figure 6). TPDID has 62,000 samples, and
pavement defects are divided into six categories, namely Category 0: road potholes and
sudden slopes (31,708 samples), Category 1: manhole covers (9284 samples), Category
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2: longitudinal cracks (16,810 samples), Category 3: transverse cracks (4761 samples),
Category 4: longitudinal patches (18,023 samples), and Category 5: transverse patches
(10,291 samples). The lenses used for this database were RGB three-channel lenses that
complied with vehicle application regulations. In this study, two lenses with different
FoVs were used to achieve efficient recognition at short, medium, and long distances; this
strategy can efficiently increase the detection accuracy rate, decrease the misjudgment rate,
and lengthen the recognition distance.

Figure 6. Taiwan pavement defect image database (TPDID).

Figure 7 shows the results of pavement defect detection using the YOLOv3 model.
The images of the road pavement captured via the 30◦ FoV and 70◦ FoV lenses are on
the left and right sides of Figure 7, respectively. The top two images in Figure 7a,b show
the detection results of road pavement defects at time step t. The image below shows the
detection and tracking results at time step t + j. As the left side of Figure 7 indicates that
30◦ FoV has a focal length in the distance due to the small angle of view, the pavement
defects in the far FoV are large and clear. The right side of 70◦ FoV has a broader viewing
angle, wider viewing field, and closer focal length, making it suitable for detecting medium
and short distance objects. The pink frame in Figure 7 is the identified pothole category,
the red frame is the manhole cover category, and the green frame is the longitudinal
crack. Alongside this, we can observe from the upper left of Figure 7a that when the road
pavement defect is far away from the vehicle, it can be identified by 30◦ FoV. By contrast,
no detection results are available via 70◦ FoV as shown in the upper right of Figure 7a.
With this in mind, the detection results of 30◦ FoV are preferable when smaller pavement
defects are found; moreover, if the distance between the pavement defects and the vehicle
is decreasing, the detection results of 70◦ FoV are preferred to avoid incomplete pavement
defects. In addition, since the features of the road potholes are not noticeable in Figure 7b,
no recognition results are obtained from the images of the two distinct FoV perspectives
at time step t (no pink prediction frame at the top of Figure 7b). Conversely, at time step
t + j, when the distance between the pothole and the vehicle is decreasing (the two lower
images in Figure 7b), both images identify the pothole. Thus, the approach presented in
this study not only effectively extends the recognition distance of pavement defects using
two different FoV lenses but also contributes to effectively increase the detection accuracy
rate and decrease the miss rate. Meanwhile, a tracking algorithm was employed in this
study to improve the reliability of the detection system.
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Figure 7. Pavement defect detection results by two lenses with different viewing angles. (a) Detection
results at time step t; (b) Detection and tracking results at time step t + j.

Figure 8 shows the loss function and mean AP (mAP) of the neural network training
process of YOLOv3 for the proposed pavement defect detection system. As seen in Figure 8,
we consider the network model parameter set at the maximum mAP (approximately
70.2415%) as the network model applied for testing. Figure 9 demonstrates the quantitative
analysis for six pavement defect categories using the YOLOv3 model. The left-hand side
of Figure 9a indicates the average detection accuracy of each category, and the right-hand
side of Figure 9b shows the miss rate of each category. Notably, when the IOU threshold
value >0.5, its pothole category average precision is about 71%, and the miss rate is 29%,
according to the quantification result. The best detection results were obtained from
Category 1, which had an average precision of 89% and a miss rate of 17%. This is primarily
because there is a considerable amount of manhole covers on the roads of Taiwan, and the
features are very distinctive, which is why the detection performance of this category is
the best.
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Figure 8. Loss function and mAP for our proposed pavement defect detection system.

Figure 9. Average precision and miss rate for 6 pavement defect categories. (a) Average detection accuracy of each category;
(b) Miss rate of each category.

Figure 10 shows the pavement defect detection results for Category 0 under a low-
illumination night environment via a car camera. Since an average car camera has a high
dynamic range characteristic, it can be seen from Figure 10 that the output image looks like
a grayscale image. Although the image is no color information, it can effectively reduce
the noise for the camera in low-light conditions and further improve the ability to identify
objects at night. As shown in Figure 10, it can still give a great pothole recognition effect in
a low-light environment at night.



Appl. Sci. 2021, 11, 3725 11 of 16

Figure 10. Pothole recognition results in low-illumination night environment.

To verify the robustness of the proposed road defect detection system, an extensive
video recorded on the Pacific Northwest highway [36], which includes the potholes and
patches of snow and water, was used. The experimental results show that the proposed
system can effectively recognize potholes under severe conditions, such as water surface
reflection interference or potholes with complex structures (see Figure 11 below). The
experimental results can be visualized via videos that can be found at the following link:
https://youtu.be/_6OhNANpTWg (accessed on 4 February 2021).
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We also conducted the quantitative analysis and comparison of prominent PC-based
DL object recognition models, such as YOLOv4, MobileNet-YOLO, TF-YOLO, and Reti-
naNet, for pavement defect detection. Figure 12 shows the detection results for different
models for pavement defects, where panels a–d show the detection results of YOLOv4,
MobileNet-YOLO, TF-YOLO, and RetinaNet, respectively. YOLOv4 had good detection
results, whereas MobileNet-YOLO and TF-YOLO had poor detection results for 30◦ FoV,
especially TF- YOLO, and the recognition qualities were not good with both FoVs. Lastly,
RetinaNet could also identify some defects, but some defects were not identified.

https://youtu.be/_6OhNANpTWg
https://youtu.be/_6OhNANpTWg
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Figure 12. Pavement defect detection results using different deep learning models. (a) YOLOv4; (b) YOLO-mobilenet; (c)
TF-YOLO; (d) RetinaNet.

Further, we conducted a quantitative comparison and analysis of mAP and FPS for
each of the abovementioned models (Figure 13). From the figure, except for TF-YOLO,
whose computational speed attained roughly 27 FPS, all other models reached over 30
FPS, which fulfilled the demand of real-time vehicle applications. MobileNet-YOLO had
the fastest computation speed, but the average detection accuracy rate was relatively low;
meanwhile, YOLOv4 not only had a higher detection score but also fulfilled the demands
of real-time operation. In consideration of both mAP and computing speed, we adopted
the YOLOv3 model with the KF tracking algorithm as the road pavement defect detection
algorithm and implemented the system via Xilinx embedded hardware platform. We
will attempt to use the YOLOv4 model with another tracking algorithm in the future and
believe that it will have a much better recognition effect.
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Figure 13. Quantitative comparison of mAP and FPS for different deep learning models.

Figure 14 demonstrates the miss rate analysis of the DL object detection model com-
pared in this study using TPDID. It is obvious that YOLOv4 focused on the condition of
10−1 FPPI and had a smaller miss rate, implying that the model corresponds effectively
with the proposed road pavement defect detection system. In the future, we will continue
to build up sample dataset repositories to further enhance the detection accuracy and
reliability of the proposed detection system.

Figure 14. Comparison of miss rate for different deep learning models.
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Finally, the AP of Category 0 for each model in different distance intervals with
respect to 70◦ FoV was evaluated. The results are shown in Figure 15; when the defect is
approximately 20–30 m away from the vehicle, the vertical (Y-axis) size of the image is
about 400 pixels. YOLO series resulted in a better detection accuracy rate than others when
IOU is 0.5, especially in the interval of 0–2, i.e., within 0–16 m, which means that the YOLO
series can have better detection results at both medium and short distances.
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6. Conclusions

In this study, to detect road pavement defects in front of vehicles, two cameras with
different FoVs were employed. Further, YOLOv3 and KF were integrated to effectively
enhance the detection accuracy and lower the miss rate. We determined that the detection
accuracy for the road pothole category reached 71%, with a 29% miss rate. In addition,
we conducted a lightweight design of the YOLOv3 model via network weight quantiza-
tion technology and successfully implemented it on commercially available embedded
hardware with FPGA acceleration functionality. It can run at a speed of 27.8 FPS to fulfill
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the requirement of automotive applications. Moreover, we also constructed an image
repository of the Taiwan pavement defect image database (TPDID) and, finally, quantita-
tively analyzed and compared the modern real-time DL object recognition models. In the
future, we will continue to build up the sample data under different weather and ambient
brightness conditions to satisfy the robustness requirements for all weather conditions.
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