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Featured Application: Development of a transonic compressor instability prediction tool un-
der distorted inlet flow conditions using extensive CFD runs for a supervised learning dataset.
ANN with optimal algorithm and different regression learning has been selected to produce all-
inclusive transonic compressor rotor performance and behavior at different inlet conditions.

Abstract: Non-uniform inlet flows frequently occur in aircrafts and result in chronological distortions
of total temperature and total pressure at the engine inlet. Distorted inlet flow operation of the axial
compressor deteriorates aerodynamic performance, which reduces the stall margin and increases
blade stress levels, which in turn causes compressor failure. Deep learning is an efficient approach to
predict catastrophic compressor failure, and its stability for better performance at minimum compu-
tational cost and time. The current research focuses on the development of a transonic compressor
instability prediction tool for the comprehensive modeling of axial compressor dynamics. A novel
predictive approach founded by an extensive CFD-based dataset for supervised learning has been
implemented to predict compressor performance and behavior at different ambient temperatures
and flow conditions. Artificial Neural Network-based results accurately predict compressor perfor-
mance parameters by minimizing the Root Mean Square Error (RMSE) loss function. Computational
results show that, as compared to the tip radial pressure distortion, hub radial pressure distortion
has improved the stability range of the compressor. Furthermore, the combined effect of pressure
distortion with the bulk flow has a qualitative and deteriorator effect on the compressor.

Keywords: compressor stall; pressure distortion; swirl flows; stability analysis; CFD; artificial neural
networks; regression analysis

1. Introduction

For the last few decades, aerodynamic instability in the transonic axial compression
system of commercial and military aero engines is under extensive research. Several
aircraft engines have witnessed severe operational issues and engine failures due to severe
inlet flow distortions. Well-known compressor instability phenomena are rotating stall
and surge. Aerodynamic and thermodynamic performances of turbofan engine aircraft
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are relying on the flow entrance in compressors. Distortion at the flow entrance creates
total pressure non-uniformity at the rotor blades. The non-uniform flow entrance in
the compressor may lead to an enormous range of ramifications for the compressor’s
operability. All commercial and military aircrafts are frequently endangered by complex
inlet flow conditions. Surge and rotating stall are undesirable phenomena that cause
mechanical, thermal loads, and structural damages to compressor blades, which decrease
compressor efficiency and pressure difference. The engine is required to be restarted the in
case of an unrecoverable surge, which has catastrophic outcomes in gas turbine engines.
These uncertainties may have been generated by operating the compressor ceaselessly
away from the surge line. On the other hand, due to its high performance and efficiency,
the compressor works close to the surge line. A safety margin should be determined to find
the surge avoidance line on the compressor map. However, measures are required when
both stall and surge are determined. These conventional control techniques may be active,
requiring energy expenditure and control loops, or passive, requiring no auxiliary power
and control loops. In both control methods, the compressor characteristic performance
map is modified, and the surge line is shifted towards lower mass flow [1].

A turbofan engine is designed to cope up with different climatic conditions, from
desert to coastal, tropical, arctic, agricultural, and oil fields. Weather conditions, surround-
ing temperature, and airborne contaminations have a great influence on the performance of
the turbofan engine. The unfavorable effects of non-uniform temperature inlet flow on gas
turbine engine operations have always been a hindrance to the performance of turbo-fan
engines. Propulsive efficiency is a function of the overall efficiency of the turbofan engine,
which itself is dependent on other ambient parameters. The primary concern of distorted
inlet temperature is the ingestion of hot gasses from the environment. At high ambient
temperatures, air density decreases, reducing the air-fuel mixture for combustion and re-
sulting in a decrease of lift, thrust, and aerodynamic drag. The performance and stability of
a transonic axial compressor with non-uniform inlet flow is a significant concern in recent
times for its design and operability of a low bypass turbofan engine. In both military and
commercial aircrafts, serpentine ducts produce significant inlet swirl distortion. High cir-
cumferential swirl flow and inlet flow angularity decrease aerodynamic performance, stall
margin, and increase rotor blade loading [2]. Learning algorithms can be helpful in various
applications, for example, prediction analysis, clustering, identification of uncertainty, and
instability of the data. The objective of deep learning, for the most part, is to comprehend
the structure of data and fit that data into models that can be comprehended and used by
researchers. The algorithm trains the input data source and utilizes the statistical analysis
approach to yield the output values that fall inside a specific range. Based on input data, it
develops structure models from sample data to automate the decision-making processes.
ML classes depend on how learning is received or how feedback on the learning is given to
the framework developed. Sohail et al. [3] investigated a predictive approach based on an
Artificial Neural Network (ANN) to predict the transonic compressor performance and
behavior at icy, moderate, and extreme hot diversified ambient temperature conditions
due to seasonal effects under design RPM. Their model produces substantially accurate
results of a compressor rotor at different ambient temperatures when compared with the
results of CFD analysis. The results visualized through unity plots are a clear indication
that, given any set of temperature and pressure values, the trained model can accurately
generate predictions of mass flow rate, temperature ratio, pressure ratio, and efficiency in
less computational time, as compared with simulating the models through CFD analysis.
However, variable RPM, pressure distortion, bulk flows, and their combined effects on
the compressor were not investigated. Furthermore, a shallow Artificial Neural Network
model had been developed and trained concerning the same set of features.

Zhong et al. applied reduced-order modeling technology to construct reduced-order
models (ROMs) based on the multi-fluid model from CFD data, to simulate biomass rapid
pyrolysis in a bubbling fluid bed reactor. CFD calculations were conducted at nine different
pyrolysis temperatures. Artificial Neural Network back-propagation was used to map the
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species mass fraction data of the CFD simulation onto the pyrolysis temperature and the
coordinates of each computational node in the reactor. The number of neurons and the
active function of the ANN had been optimized. The ability of the established ROMs to
predict species distribution at both training and testing temperatures was investigated [4].

Jiang et al. [5] investigated the centrifugal compressor performance maps of pressure
ratio and isentropic efficiency from a shallow dataset using an ANN approach. They
developed kriging models based on second-order polynomial and Neural Network models
to predict centrifugal compressor performance maps with the limited dataset. Simpers
et al. [6] presented an ML regression model to predict the high-pressure hydrogen com-
pressor material and develop a new alloy combination with favorable enthalpies by using
an existing open-source database. Their results concluded 28% of mean relative error,
whereas due to techno-economic analysis and material cost, composition constrained the
new hybrid materials for experimental verification.

Prytz et al. [7] analyzed the new vehicle compressor faults prediction by on-board
Volvo truck logged data using ML analysis. Although their results showed that predictive
maintenance was possible using the ML approach, due to shallow dataset classification,
quality, and cost avoidance, it did not get accurately predicted. The contribution of their
ML predictive fault-finding work is highly regarded for identifying the distinctive features
of the automobile industry.

In the past, curve fitting, auxiliary coordinates, and non-linear function analytical
functions are used for the prediction of the compressor performance map. However, for
the mapping approach, scaling and shifting technology have proved more fidelity and
accuracy of the gas turbine compressor. Fei et al. [8] proposed Gaussian kernel, feed-
forward back-propagation of ANN for prediction of compressor performance map at the
ideal conditions with a minimal data sample. Prediction accuracy decreases as the number
of samples reduces. Different models were compared in detail with the limited dataset,
and it was concluded that the Gaussian kernel function Backpropagation Neural Network
(GBPNN) had better prediction performance than the Backpropagation Neural Network
(BPNN) and support vector machine (SVM).

Recently, NASA researcher Tong [9] explored the applications of KNN, ANN, and
SVM supervised ML approaches to predict the engine core size. For the turbofan engine,
machine learning-based predictive tools were developed using the publicly available data
of two hundred manufactured engines. The aim was to predict engine core size analysis
based on pressure ratio, bypass ratio, and sea-level take-off thrust.

The results showed that the binary classification model predicted core engine sizes
with 92% accuracy, whereas the 3-class predictive models, i.e., acceptable, acceptable with
improved manufacturing technologies, and unacceptable core sizes, have an overall ac-
curacy of 75%, which predicts undesirable engine core sizes. Ye et al. [10] developed a
data-driven method to predict the pressure on a cylindrical body from the velocity dis-
tribution in its wake flow. They proposed a deep-learning Neural Network constituted
with CNN. The RMSE of the predicted results and the CFD results was less than 0.004.
Earlier, a time-marching throughflow method for the off-design performance analysis of
axial compressors was analyzed on rotor-67. The method was based on the Euler equations,
and an inviscid blade force model was proposed to achieve desired flow deflection. The
flow discontinuity problems at the leading and trailing edges were tackled by automatic
correction of the blade mean surface using cubic spline interpolation. The flow disconti-
nuity issues at the leading and trailing edges were addressed by using cubic splitting to
automatically fix the blade mean surface [11,12].

Earlier authors [13] investigated the flow field in the tip clearance region of the
transonic compressor at non-uniform flow conditions under the design and off-design
RPM. The results found that hub radial pressure distortion and co-swirl flows improve the
stability range of turbofan. Furthermore, compressor performance alleviated the stall at
higher RPM combined with distorted inlet pressure.
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To the best of the author’s knowledge, limited work has been published that covers
a hybrid analysis of both deep learning Neural Network and ML regression learners
on transonic compressor prediction with multiple inlet variable parameter effects on
compressor outcomes. In this work, supervised learning regression learner algorithms
and ANN are employed to train data archived from CFD analysis. The current research
presents a novel predictive approach based on Regression Learner, ANN, and CFD to
predict the effects of pressure ratio, temperature ratio, and mass flow rate distribution on
transonic compressor performance. A significant aspect of this work is prediction analysis
with high accuracy at different flow conditions with lower computational costs and time.
Furthermore, the deep learning Neural Network produces substantially more accurate
results when compared with the results of CFD analysis.

2. Materials and Methods

Initially, a computational fluid dynamics study was conducted with an ISA model for
engine performance comparison with extreme ambient temperature conditions and inlet
flow distortion variables. Further calculations were done for dehydrated air, where there is
no considerable change in humidity. The adopted pressure changes were kept the same as
for the standard atmosphere [14].

Later on, based on an extensive CFD database, a supervised learning feed-forward
network topology ANN model has been applied at different compressor inlet conditions,
such as pressure distortion, temperature distortion, RPM variations, inlet swirl flow, and a
combination of all inlet distortion parameters.

The characteristic map of an axial flow compressor shows the difference in total
pressure ratio around the compressor as a function of corrected mass flow at a sequence
of constant corrected speed lines. Flow surge or choking may occur if the compressor is
not operating within its compressor map range. Inlet enthalpy and pressure ratio both
influence the blade speed ratio. The decrease in mass flow compared with the working line
causes a higher-pressure rise, and as a result, a larger increase in density in the first stage
than was expected at design time. Due to the greater rise in density, the second stage’s
flow coefficient is much smaller than the first stage, implying an even greater increase in
density [15–17].

The literature shows [18,19] that component maps are commonly used in gas tur-
bine output models to describe engine component efficiency in the operating regime. In
this research dataset based on CFD analysis, the average on the surface is derived into
6-independent variables i.e., static pressure, RPM, ambient temperature, total pressure, and
flow angularity at axial and radial flow, that are required to predict compressor performance
in terms of four dependent variables: mass flow rate, pressure ratio, temperature ratio,
and isentropic efficiency. Different regression models are used to examine the relationship
between dependent and independent variables. Regression statistics facilitates prediction
capability and can be utilized to foresee dependent variables when the independent vari-
ables are known. The ML-based regression model repository is used to demonstrate the
best suited and optimized regression model against the simulation results.

2.1. Computational Fluid Dynamics Setup
2.1.1. Mesh Method

Three curve files have been used to create the geometry of the hub, blade, and shroud
according to the specification of the geometry, as given in Table 1. Automatic Topology and
Meshing (ATM Optimized) is selected for high-quality mesh, and there is no need for a
control point of adjustment. ANSYS-Turbo-Grid® and CFX software was used to generate
high-quality hexahedral meshes and obtain the CFD solution for the rotor’s steady-state
case, keeping in view that five different meshes with different grid sizes were generated
to study solution dependence upon mesh refinement. 3D mesh at coarse, medium, fine,
superfine, and very-fine states were generated. For grid analysis, computations were
carried out with 0.37 million to 1.47 million mesh nodes. The grid points were gradated
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towards the blade surface, the leading edge, the trailing edge, the hub, the rotor blade
tip, and the housing to ensure that the y+ computed stayed below 100 (between 30–100).
This value of y+ was within the usual range for the implementation of standard wall
functions. It indicated a fair grid resolution near the walls, as the flow solution was
assumed to be periodic across the blade row. Table 2 shows the details of the meshes
used in the mesh dependence study, and Figure 1 shows the hexahedral-grid mesh with
0.97 million mesh elements, which is a reasonable compromise between computational
and experimental results.

Table 1. Specification of axial compressor rotor blade [20].

Rotor inlet hub-tip diameter ratio 0.75
Rotor blade Inlet tip radius 257 mm

Rotor blade aspect ratio 1.56
Tip clearance 1.016 mm
Tip solidity 1.29

Hub solidity 3.11

Table 2. Mesh dependence study [14].

Sr. No. Mesh No. of Nodes (Million) Design Mass Flow Rate (Kg/S)

1 Coarse 0.037 33.43

2 Medium 0.16 33.64

3 Fine 0.43 33.54

4 Super Fine 0.97 33.14

5 Very Fine 1.47 33.14

Figure 1. Hexahedral grid mesh of a single blade for rotor-67 [13].

2.1.2. Clean Inlet Flow Boundary Conditions

Three-dimensional steady compressible Reynolds-averaged Navier-Stoke equations
have been solved using the k-ε turbulence model. At the rotor inlet and outlet boundary,
the P-total inlet P-static outlet is considered. Furthermore, the flow direction is specified
for a clean inlet at design RPM 16,043, whereas no-slip conditions are used on walls, and
periodic conditions are applied at the periodic surfaces. Numerical computations were
carried out from choking conditions to near stall conditions by gradually rising outlet
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average static pressure to obtain a compressor rotor characteristic map. The near stall point
is predicted at the last stable condition of rotor 67. The following equation of Sutherland
viscosity law with three coefficients for ideal gas has been applied [21].

µ = µo
(

T
To

) 3
2
(

To + S
T + S

)
(1)

2.1.3. Distorted Inlet Flow Boundary Conditions

Total pressure has radial distribution in hub and tip, in such a way that the total
pressure at the blade tip area becomes equal to the total pressure of clean flow inlet in
hub radial pressure distortion. Whereas, in tip radial pressure distortion, total pressure
at the blade hub area becomes equal to the clean flow inlet at the blade hub area and
linearly decreases toward the blade tip area. For hub radial and tip radial inlet pressure, the
distortion boundary condition is specified by an expression, as given in Equation (2) [13].

Po ×
[

y′ + (n− y′)× (rs − r)
(rs − rH)

]
(2)

Here, y′, rs and rH are distorted radii at the desired span of the blade. The Inlet
boundary condition is changed accordingly to the Equation (3) for co-swirl flow, counter-
swirl flow, and flow angularity, pressure distortion, combined pressure, temperature, and
bulk flow distortion at desired circumferential or cartesian coordinates [13].

Vz = cosα
Vr = 0

Vθ=Vz × tan(±α)

 (3)

2.2. Deep Learning and Neural Network

Adaptive learning, real-time operation, self-organization, and fault tolerance via
redundant information coding are the significant advantages of Neural Networks. For
selecting deep learning algorithms, the building blocks are categorized as network topolo-
gies, adjustment of learning, selection of an algorithm, and activation function. In this
section, an Artificial Neural Network model has been developed and trained for the same
set of features required to perform the compressor simulation using CFD analysis, as
shown in Figure 2. The model accurately predicts values of mass flow rate, pressure ratio,
temperature ratio, and isentropic efficiency at the output by minimizing the Mean Square
Error (MSE) loss function. In the test phase, the trained model is evaluated with the test
data set. The results obtained from the test data are compared with the simulation results
of the CFD analysis. Based on the comparison, unity plots showing the difference between
the output and predicted values have been drawn, as stated in Section 3.2.1.

2.2.1. Artificial Neural Networks Methodology

This section discusses the methodology used to design, develop, and train a Neural
Network model that can generate predictions based on the simulation data of compressor
Rotor 67. The way available data is categorized into training, testing, and validation
subsets may have a big impact on an Artificial Neural Network’s results (ANN). Despite
numerous studies, no systematic approach to the best data division for ANN models has
been developed, whereas the literature shows that the optimal division of data for Neural
Network models is mostly taken as 80% [22–25]. The input and the target value of the
Neural Network are set, as shown above in Figure 2.
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Figure 2. Black box for compressor input and output variables.

Dataset Division: There are a total of 2541 samples at different inlet conditions for the
Neural Network model. To learn and better model the underlying distribution of input
data, the samples have been split so that 80% of the simulation data comprise training data.
Table 3 shows the dataset division and the number of samples that fall into each category.

Table 3. Dataset division.

Sr. No. Dataset Dataset Division Total Samples

1 Training Data 80% 2033
2 Testing Data 10% 254
3 Validating Data 10% 254

Evaluation Metric: the aim is to perform prediction based on the input set of features;
thus, prediction analysis provokes the network to use MSE as an evaluation metric. It is
defined as

MSE =
1
n

n

∑
j=1

(yj − ŷj)
2 (4)

where n is the total number of samples; yj is the target value corresponding to a particu-
lar set of temperature and ambient pressure values; and ŷj is the output value, which is
obtained through training of the Neural Networks. Model Architecture and Hyperparame-
ters: the designed Neural Network model is based on an Artificial Neural Network’s core
building blocks, as described by Ian Goodfellow [26]. Table 4 shows the model architecture
and hyperparameters.

Table 4. Neural Network architecture and hyperparameters.

Network Design Model

Hidden Layers 3
Learning Rate 0.01

Batch Size 32
Hidden Layers Non-linearity ReLU

Drop out 0

Training of Neural Network: Training refers to estimating a network’s parameters
(weights and biases) such that it minimizes a cost function. The cost function used is a
regression loss, as defined in Equation (4). The network learns the parameters from training
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data comprising of input and target feature vectors. The parameters are trained by iterative
minimization of the cost function. During the training phase, the ADAM optimizer has
been used to update the network’s weights and biases. The weights are initialized from a
random normal distribution. The initial learning rate value is set to 0.01, and β1 and β2
values are set to 0.9 and 0.999, respectively [27]. For a generalization purpose, the training
data is randomly shuffled and standardized to zero mean and unit variance, while the
network has been trained for 2000 epochs.

2.2.2. Artificial Neural Networks Setup

Many famous and open-source deep learning frameworks exist, such as TensorFlow,
Theano, Torch, and Keras [28–30]. After a brief pre-study of different deep-learning
libraries, Keras has been chosen as a framework for implementing neural networks. A
preference towards Python programming language eliminated some of the possible deep
learning frameworks, such as Torch. As mentioned in Table 4, the model architecture
comprises the input layer, two hidden layers, and an output layer; thus, the chosen library
is a popular framework for rapid prototyping and developing high-level modularity of
Neural Networks.

3. Results

As stated above the methodologies, this section is divided into three subsections that
are based on CFD results, Artificial Neural Network analysis, and regression-based analysis.
Later on, a comparative analysis of ANN and regression learners has been conducted.

3.1. Computational Results and Analysis

Figure 3 shows blade flow path geometry, blade mesh, characteristic map validation by
plotting pressure ratio versus normalized mass flow rate and the compressor’s isentropic
efficiency versus normalized mass flow rate under design RPM and tip clearance (TC) of the
rotor. Due to axisymmetric surfaces, compressor rotor geometry is defined by distribution
points in the meridional Z-R plane, where “Z” represents axial location, and “R” shows the
radius of the point on the given surface.

Figure 3. (a) Pressure ratio vs. normalized mass flow rate, and (b) isentropic efficiency vs. normalized mass flow rate.
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Figure 4a,b compares the total pressure and temperature ratio loading distribution
at peak efficiency. It is observed that the computational total pressure loading is slightly
decreased near the leading-edge region. The downstream spanwise variations of total pres-
sure and total temperature ratios depict nice validation with available experimental data.

Figure 4. Computational and experimental span-wise profiles of (a) total pressure ratio and (b) total temperature ratio at
the peak efficiency condition.

Distorted Inlet Flow Conditions

Non-uniform axial inlet flow frequently occurs in aircraft gas turbine engines that
result in chronological distortions of aircraft compressors. High circumferential swirl
flow and inlet flow angularity decrease the aerodynamic performance [2]. Distorted inlet
flows always have a negative effect on compressor performance and stability, mostly when
they are operated at a high ambient temperature and reduced RPM as they deteriorate
the compressor rotor. Figure 5a–e shows the characteristic map of hub radial pressure
distortion with variable ambient temperature, tip radial pressure distortion with variable
ambient temperature, bulk flow with the variable RPM, the combined effects of hub radial
pressure distortion with bulk swirl, and tip radial pressure distortion with the bulk swirl
on compressor rotor performance and behavior.

The results show that the rotor mass flow rate, efficiency, pressure ratio, and tempera-
ture ratio were significantly reduced when the ambient temperature increased excessively.
Shallow ambient temperature and denser air produced a higher mass flow rate, pressure
ratio, and greater compressor efficiency. The mass flow rate at 99% hub radial and tip radial
pressure distortion at 270K had high choking mass flow rates due to low-temperature re-
gions. Still, its stability range was less than the other distorted flows. By further analyzing
the characteristic maps of Figure 5a,b, the rotor’s stability range is high at 270K of 95% hub
and tip radial pressure distortion.

In contrast, it is further analyzed that the hub radial pressure distortion has a bet-
ter overall stability range than the tip radial distortion at lower ambient temperatures.
Figure 5c shows that when the compressor is run at a speed slower than the design speed
for various operational reasons, the pressure ratio decreases. In contrast, the operation is
at a lower mass flow. Hence the blades are operating at high positive incidence, which
may result in a stall. The characteristic maps show that counter swirl flow distortion with
higher RPM has higher mass flow rates than the co-swirl flows, but its stability range is
lesser than the co-swirl flows.
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Furthermore, 10◦ co-swirl at 90% of design RPM has a better overall stability range
than other flow distortion. Hub radial and co-swirl flows have a better comprehensive
stability range than tip radial and counter swirl flows. When these distortions are combined,
it had a qualitative effect on compressor performance. Figure 5d–g show hub and tip radial
pressure distortion combined with bulk flows. The characteristic map shows that at 90%,
hub radial combined with 10◦ co-swirl has a better overall stability range.

Figure 5. Cont.
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Figure 5. Characteristic map of (a) hub radial pressure distortion with variable ambient temperature, (b) tip radial pressure distortion
with variable ambient temperature, (c) bulk flow with the variable RPM, (d) the combined effects of hub radial pressure distortion with
the co-swirl flow, (e) the combined effects of hub radial pressure distortion with the counter swirl flow, (f) tip radial pressure distortion
with the co-swirl flow, and (g) tip radial pressure distortion with the counter swirl flow.

3.2. ANN Results and Discussions

Figure 6 shows the MSE loss function of the model during the train and test phase. The
result indicates that the loss function settles down during the phase of training. The trained
model is further tested with the test data, which shows that the loss function follows a
complete training data loss function, whereas the loss function remained the same, and
therefore the model does not need further training of data.
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Figure 6. Loss function of the Neural Network model during train and test phase.

Table 5 shows the MSE value during train and test time. The values signify generaliza-
tion of the trained model on the test dataset, as the weight is quite close to the train data
MSE value.

Table 5. Mean Square Error value at validation and test phase.

Dataset Division. MSE Value

Validation 0.024
Testing 0.029

3.2.1. Unity Plots

Earlier a time-marching throughflow method for the off-design performance analy-
sis of axial compressors was analyzed on rotor-67. The method was based on the Euler
equations, and an inviscid blade force model was proposed to achieve desired flow deflec-
tion. The flow discontinuity problems at the leading and trailing edges were tackled by
automatic correction of blade mean surface using cubic spline interpolation. The flow dis-
continuity issues at the leading and trailing edges were addressed by using cubic splitting
to automatically fix the blade mean surface [11,12]. In this research, multilayers, Feedfor-
ward, and a supervised learning Neural Network with the ReLU activation function are
selected for training, testing, and validating the data set. The unity plot elaborates on the
network’s performance when the trained model is passed through the test dataset. The
plot shows the trained model’s generalizability such that the predicted samples should
lie closer to the unity line. Figure 7a–d shows the test data unity plots of mass flow rate,
pressure ratio, temperature ratio, and isentropic efficiency. The x-axis corresponds to the
test dataset’s target values, while the y-axis shows the predicted values obtained when the
trained model is tested with the test data set.
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Figure 7. Testing dataset unity plots for (a) mass flow rate, (b) pressure ratio, (c) temperature ratio, and (d) isentropic
efficiency.

3.3. Regression Learner Predicted vs. Actual Response

The predicted versus actual regression learner plots are utilized to check model
execution after preparing a model. An ideal regression model has an expected response
equivalent to the true response, so all the values lie on a regression line. Variations from
regression on the line are termed as prediction errors for that point. A reasonable model
has minimum errors; thus, the forecasts dissipate close to the regression line. Typically,
almost perfect modeled results are evenly spread around the regression line. The complete
algorithm of linear regression, stepwise regression, tree (fine, medium, and coarse), SVM
(quadratic, cubic, fine, medium, and coarse), ensembled (boosted tree, and bagged tree),
and gaussian process regression (GPR) models (squared exponential GPR, Matern 5/2
GPR, exponential GPR, and rational quadratic GPR) are analyzed, whereas the response
plot of these models is selected based on predicted versus actual results, which dissipate
close to the regression line [31,32]. A comprehensive examination of these models was
evaluated in terms of root mean square error and R-squared error.
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Based on the minimum error, Figures 8–12 show various regression model learners and
their selection for mass flow rate, pressure ratio, temperature ratio, and isentropic efficiency.

Figure 8. Regression models for mass flow rate (a) Ensembled Bagged Tree, (b) Tree Fine, (c) SVM Medium, (d) Stepwise
Linear, (e) GPR Matern, and (f) GPR Rational Quadratic.
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Figure 9. Regression models for pressure ratio (a) Ensembled Bagged Tree, (b) Tree Fine, (c) SVM Medium, (d) Stepwise
Linear, (e) GPR Matern, and (f) GPR Rational Quadratic.
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Figure 10. Regression models for temperature ratio (a) Ensembled Bagged Tree, (b) Tree Fine, (c) SVM Medium, (d) Stepwise
Linear, (e) GPR Exponential, and (f) GPR Rational Quadratic.
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Figure 11. Regression models for isentropic efficiency (a) Ensembled Bagged Tree, (b) Tree Fine, (c) SVM fine, (d) Stepwise
Linear, (e) GPR Matern, and (f) GPR Rational Quadratic.
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Figure 12. Best Response Regression Models (a) Exponential GPR for mass flow rate, (b) GPR Matern for pressure ratio, (c)
GPR Matern for temperature ratio, and (d) GPR Exponential for isentropic efficiency.

On a 2.5-stage fully loaded axial compressor, a new Bezier surface modeling approach
for the entire suction surface and pressure surface of blades was created, and the multi-
island genetic algorithm was directly used for optimization. The smoothness of the blade
surface can be ensured by the high-order continuity of control points [33]. The paper
first adopted the novelty of extensive CFD analysis on distorted inlet flow, and then a
different regression learner was applied to predict the compressor performance at variable
conditions, as shown above. To achieve the optimum hyperparameters, two supervised
learning methods, (SVR) and (GPR), had been used earlier to train the models with a
Bayesian optimization algorithm. On five rotational speed lines, the qualified models
are inserted into the through-flow code using the streamline curvature method (SLC) to
estimate the overall output and internal flow field of the transonic compressor [34]. In the
current research, sensitivity analysis has been applied to select the most influential features
of the axial compressor at distorted inlet flow conditions and different RPM. The analysis
had been conducted on linear regression, SVM, GPR, and tree regression learners. The
Matern 5/2 kernel takes the spectral densities of the fixed component and applies Fourier
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modifications to the Radial Basis function kernel. On the other hand, it does not measure
data in high-dimensional spaces. GPR exponential and GPR Matern have greater statistical
algorithms than other regression models, according to the results. The Gaussian Process
Regression (GPR) models are difficult to understand, according to the findings.

Decision trees are non-parametric, interpretable, and fast, but they are locally opti-
mized and prone to overfitting. Imbalanced classes also possess significant concern for
decision trees. Although SVM is useful in high dimension space and acquires little memory,
it is not suitable for large data sets, and target sets are closed to overlap. In stepwise
regression models, predictive variables are carried out by removing the weakest correlated
variable. Therefore, for case-sensitive datasets mostly, it is not suggested. The algorithm of
Exponential GPR is indistinguishable from the Squared Exponential GPR. Aside from that,
the Euclidean distance is not squared. Exponential GPR handles smooth capacities well
with minor mistakes. However, it does not deal well with discontinuities. The Matern 5/2
kernel takes the fixed portion’s spectral densities and makes Fourier changes to the Radial
Basis function kernel. In contrast, it does not measure the data for high-dimensional spaces.
Results show that GPR Exponential and GPR Matern have better predictive algorithms than
other regression models. The Gaussian Process Regression (GPR) models have difficult
interpretability. Still, they possess higher accuracy and are non-parametric Kernel-based
probabilistic models, with multivariate distribution of the predetermined collection of
random variables.

3.4. ML and DL Prediction Errors

Due to Single Independent Variables (SIV) levels and interactions with Multiple Inde-
pendent Variables (MIV) in deep learning and machine learning, the effects of prediction
analysis may differ slightly from an actual dataset. It is deduced that both machine learning
and deep learning have produced predictions with exceptional accuracy based on the above
statistical normalized RMSE and comparison between machine and deep learning with
CFD results at different inlet conditions. Based on supervised learning, Table 6 shows the
normalized RMSE calculations of ML and DL performance prediction for mass flow rate,
pressure ratio, temperature ratio, and efficiency at Single Parameter Variable (SPV) and
Multiple Parameter Variable (MPV) inlet conditions, respectively. In most cases, the results
show an accurate prediction with an error of less than 1%, which is considered significantly
reliable. The swirl flow in the compressor has intricate patterns, and its dataset is slightly
above 1% error but in an acceptable range of deep learning prediction analysis. The result
shows the comprehensive agreement of deep learning Artificial Neural Network multiple
inlet parameters predictive results with CFD results analysis.

Table 6. Machine learning and deep learning RMSE comparison.

Sr. No Conditions Norm. RMSE
Mass Flow Rate

Norm. RMSE
Pressure Ratio

Norm. RMSE
Temperature Ratio

Norm. RMSE
Efficiency

1 Analysis of deep learning Tamb 0.0033 0.0039 0.00071 0.00273

2
Analysis of multiple

independent variables using
machine learning

0.0089 0.0036 0.0041 0.0043

3
Analysis of multiple

independent variables using
Deep Learning

0.0259 0.0553 0.0091 0.018

4

Analysis of multiple
independent variables,

excluding swirl flow using
Deep Learning

0.0218 0.0393 0.0081 0.0166
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The Root Mean Square Error (RMSE) is frequently used to measure the difference
between the predicted values of ML, deep learning analysis, and predicted CFD values.
The individual differences between predicted and observed values are termed as residuals,
whereas the RMSE aggregates these residuals into a single measure of predictive power.
Figure 13a,b shows the RMSE comparison of the regression learner.

As discussed earlier, based on predicted versus actual results, which are dissipated
close to the regression line, the response plot of these models is selected. Figure 13 shows
that GPR Exponential has better RMSE results for isentropic efficiency and mass flow
rate for the selection of the model. Similarly, for selecting pressure ratio and temperature
ratio, GPR Matern has a better overall RMSE value, whereas GPR Exponential and GPR
Quadratic lie close to the GPR Matern.
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4. Discussion

The research emphasized numerical modeling, simulation, and prediction of transonic
axial compressor rotor 67 performance at different inlet conditions. The paper focused on
the utilization of regression models for different performance parameters through machine
learning and Artificial Neural Networks. Initially, a computational fluid dynamics study
was conducted under steady and distorted inlet flow conditions. Then, a supervised
learning feed-forward network topology ANN model was applied to predict rotor-67
performance under different inlet steady and distorted conditions. In contrast with recent
research, Sheng Qin et al. [35] proposed a multipurpose optimization approach based on
reinforcement of the learning methodology. The hybrid optimization approach was applied
for analysis of the total pressure drop and laminar flow field of a compressor cascade blade.
Initially, the (Deep Deterministic Policy Gradient) DDPG network used an ANN-based
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surrogate model as the environment. An approach based on reinforced learning multi-
objective optimization was proposed, where the profile geometry was designated as the
DDPG network’s state, and the optimized geometry was considered as the action. Based
on learned design experience, the optimizer approached fine performance cascade blade
prediction. The introduction of novel objective functions over the pressure distribution
of airfoils, such as the direction of the shock wave and a flat-roof-top factor, to design
supercritical airfoils is a key component approach of A. Zeinalzadeh [36].

S. Pazireh and J. Defoe [37] introduced a blade profile loss model, which required
the trailing edge boundary layer momentum thickness. An ANN was trained using over
400,000 variations of blade section form and flow conditions to approximate the momentum
thickness for a given blade section. The training data were produced using a blade-to-blade
flow field solver. Blade geometry and local flow conditions were the only parameters that
the model considers. B.Cui et al. [38] coupled helicity-modified S–A model with a transition
prediction model to improve the reliability and accuracy of the original S–A model for
simulation of the transonic compressor rotor flows. The results show that modified helicity
suppressed the strong vortex structures. Furthermore, the transition prediction model
better analyzes the transition phenomena on both sides of the rotor blade.

Q. Cao et al. [39] investigated the performance deterioration of gas turbines and
classified the major types of degradation i.e., by increasing tip clearance, corrosion/wear,
fouling, and used Deep Neural Networks to forecast the degradation trend. By using a
backpropagation algorithm optimized by Lenvenberg Marquardt, the researchers utilized
the regression model to convert the efficiency and flow potential, which was determined by
the thermodynamic model, into values under maximum load and ISO conditions. T. Olsson
et al. [40] presented a novel data-driven approach based on real installation operational
data for predicting the system degradation of micro gas turbines over time. A linear
regression technique was employed for the estimation and forecasting of degradation.

5. Conclusions

CFD simulations are usually computationally expensive, require high memory, and
are time-consuming iterative processes. In contrast, ML and deep learning have the most
efficient approach to predicting the compressor’s catastrophic failure and its stability for
better performance at minimum computational cost and time. Flow physics, aerodynam-
ics, and induced forces were analyzed. Different regression model approaches in ML
and deep learning were used as prediction analysis for multiple independent variables
simultaneously. The following conclusions can be drawn from the current work:

• Hub radial pressure distortion has improved the stability range of the compressor,
whereas tip radial inlet flow distortion has deteriorated the compressor’s performance.

• Detailed analysis of combined distortions in CFD analysis suggests that adding new
distortion, i.e., either co-swirl flow or counter swirl flow in already existing inlet distor-
tion, has a qualitative effect on the compressor. As distortion has a deteriorating effect
on compressor performance, we cannot predict its impact on compressor stability.

• Different regression models in ML were used for prediction analysis of the compressor
rotor performance. The results obtained from the different regression models depict a
promising approach to predicting the compressor variables with minimum error. In
contrast, the GPR algorithm was able to learn and trained the CFD-based dataset, thus
providing promising results for prediction analysis.

• The results obtained from the Deep learning Artificial Neural Network (ANN) show
that, despite using a conventional method of predicting parameters through CFD
analysis, the use of ANNs is a promising approach to predicting the compressor’s
parameter rotor blade.

• The resulting regression learner and Artificial Neural Networks have a less than
1% prediction error at a computational cost, which is several times lesser than the
underlying CFD solver’s cost.
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Nomenclature

Adam Adaptive Moment Estimation
ANN Artificial Neural Network
CFD Computational fluid dynamics
CNN Convolutional neural network
DL Deep Learning
ISA International Standard Atmosphere
KNN k-Nearest Neighbors
ML Machine Learning
MIV Multiple Independent Variables
MSE Mean Square Error
ReLU Rectified Linear Unit
RPM Revolution per minute
SVM Support Vector Machine
GPR Gaussian Process Regression
SIV Single Independent Variables
TC Tip clearance
µ Sutherland viscosity
α Flow Angle
Po Total Pressure
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