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Abstract: To meet the growing demand for wireless capacity, communications in the Terahertz (THz)
and optical bands are being broadly explored. Communications within these bands provide massive
bandwidth potential along with highly directional beam steering capabilities. While the available
bandwidth offers incredible link capacity, the directionality of these technologies offers an even
more significant potential for spatial capacity or area spectral efficiency. However, this directionality
also implies a challenge related to the network’s ability to quickly establish a connection. In this
paper, we introduce a multi-tier heterogeneous (MTH) beamform management strategy that utilizes
various wireless technologies in order to quickly acquire a highly directional indoor free space optical
communication (FSO) link. The multi-tier design offers the high resolution of indoor FSO while
the millimeter-wave (mmWave) system narrows the FSO search space. By narrowing the search
space, the system relaxes the requirements of the FSO network in order to assure a practical search
time. This paper introduces the necessary components of the proposed beam management strategy
and provides a foundational analysis framework to demonstrate the relative impact of coverage,
resolution, and steering velocity across tiers. Furthermore, an optimization analysis is used to define
the top tier resolution that minimizes worst-case search time as a function of lower tier resolution
and top tier range.

Keywords: beamforming; ultra-dense wireless networks; heterogeneous networks (HetNets); optical
wireless communication (OWC); indoor free-space optics (FSO)

1. Introduction

The continuous growth in demand for wireless capacity projects the use of spectrum
into the sub-mm, Terahertz (THz), and optical bands. Extreme directionality is a unique
characteristic of THz and optical wireless communications that can be exploited in future
ultra-dense networks [1–5]. Component technologies exist for short range (1–10 m) indoor
free space optical communications (FSO) with steering capabilities, instantaneous coverage
on the order of 1 cm2, and rates exceeding 400 Gb/s [6]. Research in THz communications
is driven by similar potential; however, this research area is still building momentum and is
mostly dominated by photonic approaches at this time [7,8]. In general, the challenge is that
directional systems require beam management to establish and maintain link connectivity
for quasi-static (i.e., portable) and mobile devices. In this paper, we introduce a multi-tier
heterogeneous beam management strategy that reconciles the nature of highly directional
indoor FSO links and the dynamic beam management needed to maximize network perfor-
mance for multiple mobile users. While this paper highlights the use of indoor FSO as the
highest resolution tier, it should be noted that the modular design of the multi-tier approach
could be applied to other highly directional technologies (e.g., THz communications).
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We propose a multi-tier heterogeneous (MTH) beam management strategy that bene-
fits from the resolution and steering velocity of various component technologies (Figure 1).
The multi-tier design offers the high resolution of indoor FSO links while the millimeter-
wave (mmWave) system narrows the FSO search space and relaxes the requirements of the
FSO network in order to assure a practical time-frame to search through the device space.
Heterogeneous integration allows for optimization of traffic distribution based on device
context-of-use. This heterogeneous multi-tier design enables high resolution indoor FSO links
as components of a high-performance access network serving mobile users and overcoming
anomalies such as occlusions, handover, device rotation, and steering/scanning latencies.

The proposed design does not intend to compete with mmWave architectures that
exist today; rather, it seeks to establish how dense networks of highly directional indoor
FSO links can coexist and work collaboratively with forthcoming mmWave technologies. In
addition, the MTH architecture is envisioned under the overarching coverage of a broadly
available RF small cell (RFSC). This highlights the design’s potential to add supplemental
capacity to conventional microwave systems (e.g., WiFi). Furthermore, we envision a mod-
ular integration of the tiers within the MTH architecture. This modular design can benefit
from beam management improvements at each tier and, accordingly, this manuscript does
not attempt to optimize each tier individually. Rather, we consider the implicit benefit of
a heterogeneous multi-tier approach to indoor FSO beam management and highlight the
relative performance gains related to the coverage and resolution at each tier. In particular,
we provide the following primary contributions within this manuscript:

1. A detailed description of the MTH beam management strategy including key require-
ments for pointing/acquisition/tracking, multi-tier beam refinement, heterogeneous
beam management, and configuration/deployment of the system

2. A foundational analysis framework that offers a qualitative visualization of relative
performance in terms of coverage, resolution, and steering velocity across tiers

3. An optimization analysis to define the top tier resolution that minimizes worst-case
search time as a function of lower tier resolution and top tier range
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Figure 1. System-level view (left); and depiction of a single zone (right). Instantaneous coverage is defined as the coverage
for a specific orientation/emission configuration (beam width, angle, etc.). Potential coverage is defined as the achievable
coverage over all configurations.

The remainder of the paper is organized as follows. In the following section, we pro-
vide background and motivation for Indoor FSO and multi-tier heterogeneous beamforming.
Section 3 then introduces the requirements of a system implementing MTH beam management.
Sections 4 and 5, respectively, introduce our analysis framework and preliminary results related
to optimization of the link acquisition process. Section 6 concludes the paper.

2. Background and Motivation

The number of mobile devices and the performance requirements of applications
requiring network access continue to drive an unabated growth in wireless traffic [9]. The
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increasing device density and per-device data demand continues to drive requirements for
area spectral efficiency [b/s/m2] or volumetric efficiency [b/s/m3]. The directionality and
dynamic control of steerable wireless technologies in the mmWave, THz, and optical bands
offer massive potential for improvement of both area spectral efficiency and realizable
system capacity [10–13]. In particular, exploiting narrow optical beams for local end-user
wireless access can provide data densities and user-experienced data rates that far surpass
5G specifications. This is technically feasible based on the demonstrated potential of steered
beams and the inherent signal density of focused light [6,14–20]; however, many research
challenges exist at the network and system levels. These challenges must be addressed in
order to realize the potential of such indoor FSO networks in practice.

Figure 2 demonstrates the breadth of characteristics for various wireless technologies
and use-cases for current and future wireless devices. The left image represents the
tradeoffs in directionality and coverage of various wireless technologies. Generally, the
high resolution of directional communications offers the potential for massive gains in
area spectral efficiency; however, the reduced instantaneous coverage also implies unique
challenges when considering network provisioning for multiple dynamic users [21–23].
The right image of Figure 2 depicts the potential alignment of technologies with wireless
devices that have various data demand and mobility characteristics. Applications such as
interactive cloud-based services, video sourcing, augmented reality, and virtual reality have
unique usage characteristics that vary greatly in terms of mobility and demand. These novel
applications are changing the way that we interact with wireless networks. Furthermore,
we expect unforeseen applications to contribute to the device and traffic dynamics in
the coming years. This device heterogeneity motivates our vision of a heterogeneous
multi-tier system, depicted in Figure 1, where the unique characteristics of various wireless
technologies are optimally aligned with the characteristics of the wireless devices that they
are connecting [24–26].
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Figure 2. Generalized evaluation of link technology characteristics (left) and a context-of-use based analysis of preferred
link technologies (right). We consider VLC as LED-based systems for both lighting and communications. FSO is broadly
categorized as fixed building-to-building FSO or short range steerable FSO for indoor communications. Range directly
related to potential coverage. Resolution is inversely related to instantaneous coverage. Absence of + or − indicates that the
technology is typically non-steerable.

2.1. Background and Existing Literature

Fiber optic and FSO communications are two proven high-data-rate technologies, each
with successful commercial adoption; however, both are typically used with persistent
point-to-point links. Indoor optical wireless communications technologies (e.g., visible
light communications or LiFi) are also beginning to see commercial acceptance; however,
these systems are typically static emission systems without beam steering due to lighting
requirements in the common dual-use paradigm (i.e., systems that provide both data
communications and indoor illumination). Furthermore, these systems do not approach the
extreme directionality of pencil-beam FSO links. Thus, novel architectures and protocols
are needed at the system level in order to address the challenge of connecting mobile
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and quasi-static users in dynamic environments using highly directional optical beams.
At the scale of cellular networks, heterogeneous beam management techniques have
been introduced in the literature in order to provide a method of coordination between
macrocell and microcell base stations [27–31]. However, this heterogeneity is typically
considered in the context of scale rather than wireless technology. In other words, the work
referenced in [27–31] primarily considers spatial tiers of similar RF mmWave technologies
that are collectively managed to avoid interference. Our vision considers the heterogeneous
integration of microwave, mmWave, and Indoor FSO technologies at the scale of indoor
wireless networks. Considering optimal tier alignment, mobility-aware networks have
also been presented at the cellular level in order to assign resources based on mobility
context [32,33]; however the scale of indoor FSO networks implies the need for novel
methods that account for translational and rotational motion at higher resolution. Work in
the area of heterogeneous radio and optical wireless networks has similarly introduced
the idea of mobility aware or context aware resource allocation [26,34,35]; however, this
has typically applied to the distribution of traffic across static RF small cells and static
directional optical cells.

2.2. System View

Figure 1 shows our system vision where multiple user devices (UDs) receive and
transmit data to overhead multi-element access points (APs) using a combination of low
GHz/microwave transmission from RFSCs, mmWave directional communications, and nar-
row electronically steered laser sources. The mmWave APs create multiple coverage zones
within the broader coverage of the RFSC. The indoor FSO links may be co-located with
mmWave APs or configured as sub-zones in the potential coverage range of a mmWave AP.
Each wireless technology has unique resolution and range that impacts the corresponding
instantaneous and potential coverage (defined in Figures 1 and 2). Along with steering ve-
locity, these characteristics define the time needed to scan a coverage zone. High resolution
is ideal in terms of area spectral efficiency; however, resolution is inversely related to the
scan time. The multi-tiered design allows for multiple levels of coverage—addressing the
indoor FSO signal acquisition through beam refinement as well as providing various access
tiers for UDs with different mobility traits. The radio resource control (RRC) manages
the various beam configurations and resource allocation in order to bridge between the
network and medium access control (MAC) layers.

3. MTH Beam Management Protocol

The MTH beam management protocol aims to allow multiple mobile UDs to establish
and maintain a connection with fast initial access and seamless connectivity. Accord-
ingly, the protocol must account for pointing, acquisition, and tracking (PAT) at each
directional tier; heterogeneous beam refinement and handover across tiers; allocation of
beams/resources in multi-UD environments; and zone configuration/deployment strate-
gies. The protocol design must also account for physical parameters including: beam width
variation, resolution, range, and transition rates at each tier; number of elements and layout
of elements in each tier; and control plane feedback latency.

3.1. Pointing, Acquisition, and Tracking (PAT)

Each directional tier must account for the well known PAT requirements of directional
communication technologies [36]. Pointing addresses the the need to direct an element’s
emission towards the desired UD. Pointing protocols may require the AP to scan for
available UDs or use an alternative communication medium to make the system aware
of the UD’s presence [37–39]. After the pointing process has determined the UD’s general
direction, the acquisition process iteratively adapts the beam emission profile (i.e., width
and direction) in order to concentrate emitted signal on the receiver. With an established
connection, tracking monitors the UD’s movement and potentially adapts the emission
profile to maintain the link [40]. There are obvious tradeoffs between narrow and broad



Appl. Sci. 2021, 11, 3627 5 of 13

emission. Wider emission simplifies tracking for small scale variations in the UD’s location.
Narrow emission can increase system capacity, but it requires more frequent adaptation
and high speed feedback to accommodate the small scale movement.

3.2. Multi-Tier Beam Refinement

A high-level depiction of the beam refinement and link selection protocol for a single
UD is shown in Figure 3. The three-tier beam refinement begins with the UD connecting to
the RFSC and progresses through the course resolution directional tier (e.g., mmWave) and
the fine-resolution indoor FSO tier. Prior to beginning the acquisition process for a higher
resolution tier, the UD assesses its current mobility traits and application requirements
(e.g., reliability, security, etc.) in order to make a decision about moving to the next tier. For
example, a quasi-static UD that is currently in motion is likely to postpone transferring to a
higher resolution tier. Similarly, a UD running a latency-constrained application may opt to
remain in Tier 2 if the Tier 3 connection has intermittent outages—even if the link capacity
is higher in Tier 3. Outages are more likely in Tier 3 due to the resolution of the FSO link
and the fact that optical wireless communications have a higher potential for occlusions.
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Figure 3. Multi-Tier Heterogeneous (MTH) beam refinement protocol. Device assessment compares UD mobility character-
istics and application reliability requirements with next tier characteristics prior to acquiring a higher resolution link.

3.3. Beam Management

A basic instantiation of the MTH protocol can assume that individual UDs operate
with a greedy approach and attempt to connect to the tier with highest resolution and
link capacity; however, UD mobility, reliability/security requirements, and other device
characteristics can also be considered when determining the tier that maximizes average
throughput. An extension of the single-UD protocol would account for aggregate system
capacity and resource allocation across multiple UDs. To couple the beam management
across tiers for both single-UD beam refinement and multi-UD network configuration,
the MTH beam management protocol should sit within the radio resource control (RRC)
between the Network/Internet layer and the Link layer (Figure 4). This abstract view of
the protocol implementation demonstrates the importance of tight integration with both
the Data link/Physical layers and the Network layer. The protocol must integrate with
the Data link/Physical layers in order to manage the PAT process across tiers. It should
also integrate with the Network layer in order to manage routing of data traffic across tiers
during beam refinement and/or accommodate resource allocation decisions in scenarios
where the optimal tier is related to the UD context-of-use.
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Figure 4. MTH radio resource control for beam management in the TCP/IP 5-layer model.

3.4. Zone Configuration

Optimal system deployment should account for zone configuration—including the
number of elements per tier and the coverage associated with each element. The obvious
motivation for multiple elements is to provide an opportunity for multiple simultaneous
links; however, multiple elements also impact coverage and redundancy. Providing Tier 3
access throughout the Tier 2 zone requires a single element to steer to any location within
the zone. To relax this requirement, the indoor FSO network may be deployed to only cover
a portion of the zone or, alternatively, be configured with sectors or subzones assigned to
different elements (Figure 5). The challenge with sectors is that the protocols must account
for additional transitions as UDs move between sectors (i.e., from subzone to subzone).
Distributed elements also add redundancy and mitigate outage concerns. When elements
are distributed, potential coverage regions can overlap without leading to contention due
to the small instantaneous coverage. This provides redundancy in the potential links for a
UD to connect to, as we demonstrated in [19].

UD1 UD2

Mobility RangeLast UD2 

Transmission

Potential Coverage

Instantaneous 

Coverage

Single Element Zone

UD1 UD2

Potential Coverage

Multi-Element Zone

Sectored Multi-Element Zone

S1 S2 S3

Distributed Multi-

Element Zone

Figure 5. Potential coverage, instantaneous coverage, and associated multiple access strategies for single element (top left),
multi-element (top right), and sectored multi-element (bottom left) steerable FSO links as well as a sectored multi-element
zone with distributed elements (bottom right).

4. Analysis Framework

In this paper, we highlight a specific focus on the optimization of the beam refinement
process. We aim to allow UDs to connect to the highest resolution/maximum throughput
tier while minimizing access delay — both during initial access and upon occurrence of an
outage. The heterogeneous beam refinement allows the Tier 2 search to occur while other
UDs use Tier 3 for communication. Furthermore, a variety of search techniques (RSSI, ToF,
AoA, etc.) may be used, and the protocol may avoid connecting to the middle tiers during
beam refinement in order to speed up access to the higher tier.

Our preliminary analysis focuses on the ideal relationship between range (i.e., poten-
tial coverage), resolution, and steering velocity at each tier. To demonstrate the optimization
problem, consider a three-tier beam refinement strategy where each tier narrows the search
space to the area covered by a single configuration, and the next tier searches over the
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space covered by a single configuration of the previous tier. Assuming non-overlapping
configurations, the worst case search time is

Ts = Td + t2n2 + t3n3 = Td + t2α2β2 + t3α3β3 (1)

where Td is the RFSC’s device discovery time, ti is the time to switch between configurations
for tier i, and ni is the number of configurations in the ith tier. With the assumption of non-
overlapping configurations, we can define ni = αiβi where αi and βi are the resolution and
range of tier i, respectively. We define the tier resolution as the number of configurations
per unit area and the range as the total area covered by the tier. These parameters are
summarized in Table 1.

Table 1. MTH analysis parameters.

Parameter Description

Ts Maximum Search Time
Td Discovery Time (Tier 1)
ti Configuration Switching Time (Tier i)
ni Number of Configurations (Tier i)
αi Tier i Resolution [configurations/m2]
βi Tier i Range [m2]

Assuming that the search space of tier i + 1 is equal to the instantaneous coverage
(i.e., area covered by a single configuration) of tier i, then βi+1 = 1/αi. In other words,
tier i narrows the search space to an area covered by a single configuration and tier i + 1
searches this space. Accordingly, Equation (1) can be rewritten as either of the following:

Ts = Td + t2α2β2 + t3
α3

α2
(2)

Ts = Td + t2
β2

β3
+ t3α3β3 (3)

The key observation in this analysis is the impact of α2 (or, similarly, β3). Specifically,
there is an ideal resolution of Tier 2 that minimizes Ts and this resolution is dependent on
the range of Tier 2 and resolution of Tier 3. Furthermore, the relative importance of β2 and
α3 is dependent on the relative switching speeds of Tiers 2 and 3. To determine the optimal
Tier 2 resolution, we must determine α2 that minimizes Ts for given Td, t2, t3, β2 and α3.
Observing Equations (2) and (3), we can find the rate of change of Ts with respect to α2 and
β3, respectively.

d
dα2

Ts = t2β2 − t3
α3

α2
2

(4)

d
dβ3

Ts = −t2
β2

β2
3
+ t3α3 (5)

Given that Ts is a convex function for α2 ∈ R>0, we can set the derivative from
Equation (4) to zero and solve for the positive value of α2 (i.e., Tier 2 resolution) in order
to find the value of α2 that minimizes Ts. We can similarly observe Equation (5) in order
to view the impact in terms of β3 (i.e., Tier 3 range or, similarly, Tier 2 instantaneous
coverage). Following this process, we find the optimal Tier 2 resolution and Tier 3 range
in Equations (6) and (7), respectively. Given that βi+1 = 1/αi for this specific problem
formulation, we recognize the direct relationship between the optimal Tier 2 resolution
and Tier 3 range. As such, the optimal value for β3 could be directly derived from knowl-
edge of α2 (or vice versa). However, the inverse relationship of the derived results in
Equations (6) and (7) demonstrates that the general relationship holds and offers a sense
of validation. Furthermore, the direct relationship implies that all relevant information
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can be defined by either α2 or β3; however, each can be used to better visualize the relative
performance impact under different operating conditions (as seen in Section 5).

arg min
α2∈R>0

(Ts) =

√
t3α3

t2β2
(6)

arg min
β3∈R>0

(Ts) =

√
t2β2

t3α3
(7)

Under the given assumptions, these results could be used to define the ideal mmWave
(Tier 2) emission profile for a system with known FSO emission profile and FSO/mmWave
configuration switching times along with a specified coverage area. However, these
simplifying assumptions are obviously limited in terms of practical application since a
more realistic system would account for configuration overlap and non-uniform coverage,
feedback and pipelined scanning, and other protocol characteristics. Accordingly, these
results are intended primarily for qualitative analysis in order to observe the relative impact
of various system parameters.

5. Results and Analysis

To observe the relative impact of the parameters, we evaluate the search time for a
few scenarios where the switching time of the Tier 3 FSO link is faster than, equivalent to,
or slower than the switching time of the Tier 2 mmWave link. To provide a more general
analysis, all results are depicted in time relative to the switching time of the mmWave link
(i.e., t2). Without loss of generality, we also assume Td = 0 since the Tier 1 discovery time
is a constant offset independent of the other parameters.

The first results, depicted in Figure 6, illustrate the search time when the FSO tier
can switch between configurations much faster than the mmWave tier (i.e., t2 = 100t3).
The plot on the left shows the search time versus α2 and the plot on the right shows the
corresponding results as a function of β3. In each plot, results are shown for combinations
of β2 ∈ {9, 25} and α3 ∈ {625, 2500, 10, 000}. These Tier 3 resolution values represent
FSO links with instantaneous coverage of 16, 4, and 1 cm2, respectively. When the Tier
2 resolution is low, we can see that the search time is heavily influenced by the Tier 3
resolution (i.e., the third component of Equation (2)). This implies that the Tier 2 scan
completes quickly and most of the time is spent searching within Tier 3. Conversely, as
the resolution increases there are more Tier 2 configurations in a given space and fewer
Tier 3 configurations within the instantaneous coverage of a single Tier 2 configuration;
therefore, the scan spends most of its time in Tier 2. Accordingly, the search time is heavily
influenced by the Tier 2 range (i.e., the second component of Equation (2)). This is similarly
seen in the right plot where search time is heavily influenced by Tier 2 range when Tier 3
range is small and heavily influenced by Tier 3 resolution when Tier 3 range is large.

In Figure 7, we demonstrate the impact of relative switching times—specifically, we
show results for scenarios where: (a) switching between FSO configurations is 10× faster
than switching between mmWave configurations; (b) FSO and mmWave switching times
are equivalent; and (c) switching between FSO configurations is 10× slower than switching
between mmWave configurations. The key observation here is that the trends are similar;
however, increasing the time to switch between FSO configurations or reducing the time to
switch between mmWave configurations shifts the optimal Tier 2 resolution to the right
and, accordingly, reduces the optimal Tier 3 range. Intuitively, this makes sense since
reducing the relative performance of Tier 3 implies that the system should increase the
utilization of Tier 2.
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Figure 6. Maximum search time for MTH protocol as a function of Tier 2 resolution (i.e., α2) and Tier 3 range (i.e., β3) when
t2/t3 = 100.
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Lastly, Figure 8 highlights the impact that Tier 2 range, Tier 3 resolution, and relative
switching times have on the optimal Tier 2 resolution (or, similarly, Tier 3 coverage). The
obvious observation is that the three sets of figures appear similar; however, the color bar
range shows that relative switching time has an impact on magnitude of the outcomes. As
FSO switching becomes faster, Tier 3 can explore a larger space in a similar time, therefore
the optimal Tier 2 resolution (i.e., α2) decreases and the optimal Tier 3 range (i.e., β3)
increases. Observing the impact of β2 and α3, we can see that larger spaces (i.e., larger
β2 values) increase the optimal Tier 3 range in order to distribute the additional required
search time across both tiers. Increased Tier 3 resolution drives the FSO link towards
pencil-beam emission, requiring more Tier 3 configurations over a given area; thus, the
optimal Tier 2 resolution increases to again better utilize Tier 2 in the search.

To reiterate the point from above, this analysis presents a qualitative example of the
tradeoffs; however, quantitative analysis depends on the uniformity of coverage, hardware
characteristics (e.g., steering velocity), and the feedback latency of the control messaging
protocol between AP and UD, which may be pipelined. Accordingly, this analysis demon-
strates tradeoffs in design parameters, but the optimal search time ultimately depends on
the protocol characteristics.

Figure 8. Optimal Tier 2 resolution (i.e., α2) and Tier 3 range (i.e., β3) for systems where relative switching times are related
by: t2/t3 = 10 (top); t2 = t3 (middle); and t2/t3 = 0.1 (bottom).
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6. Conclusions

In this paper, we provide a thorough overview of the requirements and considera-
tions for a novel multi-tiered heterogeneous beam management strategy that promises to:
(a) improve traffic distribution across technologies; and (b) improve initial access time of a
steerable indoor FSO network. In particular, we introduce a high level beam refinement
protocol that accounts for device characteristics and link reliability before moving to a tier
with higher directionality. The protocol also aims to improve indoor FSO acquisition time
by taking advantage of the unique characteristics of directional technologies operating at
different tiers. To evaluate the relative impact of various system parameters, we developed
a qualitative analysis framework for the proposed MTH beam management strategy. This
framework was used to demonstrate tradeoffs in the design decisions and derive an opti-
mization analysis that minimizes the worst-case search time in a three tier implementation.
While the presented evaluation is intended primarily for relative comparison, the anal-
ysis motivates a tighter coupling and integration of various directional communication
technologies within the future wireless communications ecosystem.
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