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Abstract: The progress in technology and science leads to the invention and use of many electrical
devices in the daily lives of humans. In addition to that, people have been easily exposed to increased
newly generated artificial electromagnetic waves. Exponential use of modern electronic devices
has automatically led to increase in electromagnetic wave exposure. Therefore, we constructed the
prototype of wireless power charging system to study the biocompatibility of electromagnetic field
(EMF) generated by this system on various human cell lines. There are many studies indicating
the negative bio-effect of EMF on various types of cells, such as induction of apoptosis. From the
other point of view, these effects could rather be beneficial in the way, that they could eliminate the
progress of various diseases or disorders. For that reason, we compared the impact of EMF (87 kHz,
0.3–1.2 mT, 30 min) on human normal as well as cancer cell lines based on morphological and cellular
level. Our results suggested that EMF generated by wireless power charging systems does not have
any detrimental effect on cell morphology, viability and cytoskeletal structures of human neural cells.

Keywords: wireless power transfer; electromagnetic field; standardization; cytotoxicity assay; neural
cell lines; cell morphology

1. Introduction

Technological growth in human life, especially in the development of electrical and
communication technologies has resulted in increased exposure to artificial electromagnetic
fields (EMF). People use the newly developed wireless technologies in cell phones or com-
puters daily. As a result, living organisms are being exposed to artificial EMF that they have
not experienced before. The effect of radiofrequency-EMF (RF-EMF) on living/biological
systems has been controversial due to many studies with various results. Moreover, the
International Agency for Research on Cancer (IARC), which is a part of World Health
Organization (WHO), was assigned to define the link between use of mobile phones and
head/neck cancers. Therefore, IARC has classified RF-EMF as possibly carcinogenic to
humans (Group 2B) [1].

Many people, especially young people, use the wireless connection every day. The
possibilities of exposure to considerable doses of EMF waves is all around us. Therefore,
the social interest of the effect of RF-EMF exposure has been increased [2]. The research
on RF-EMF effect on human health is very controversial. Many studies have been fo-
cused on negative impact of RF-EMF on human health and development of cancer [3],
neurological [4,5] and reproductive disorders [6,7], immune dysfunction [8–10], genetic
damages [11], cognitive effects [12], and electromagnetic hypersensitivity [13]. Moreover,
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the detailed knowledge regarding the mechanism of the effects of RF-EMF on biological
processes has not been elucidated clearly. Some recent studies highlighted that RF-EMF
produced from mobile phones is absorbed by the brain in level, which can affect its activ-
ity [4,14]. Additionally, the increased thermal effect of RF-EMF on neural cells could lead
to changes in some physiological functions of neuronal cells [15,16].

Electromagnetic waves are generated using various electronic devices. Living systems
can absorb produced waves. These waves cause vibration of polar or charged molecules,
which are components of plasma membrane or cytoplasm of cells. Therefore, RF-EMF
could be critical to human health and safety. Based on this, specific absorption rate
(SAR) standards were specified by International Commission on Non-Ionizing Radiation
Protection (ICNIRP). SAR refers to the amount of ratio wave energy absorbed by unit
mass of human body (W/kg). ICNIRP has adopted a conservative position and uses
4 W/kg averaged over 30 min as the RF-EMF exposure level [17,18]. To ensure that thermal
effects are avoided, safety factors have been incorporated into exposure limits, resulting in
whole-body-averaged limits of SAR to 0.08 and 4 W/kg in uncontrolled and controlled
environments, respectively [17].

As the wireless charging becomes an increasingly discussed issue addressed not
only by academic researchers, but also by industrial subjects, standardization is required
for a smooth and reliable commercialization. It should allow interoperability between
different chargers and increase safety. Therefore, the standards must include safety and
efficiency criteria, EMF limits, and interoperability targets along with wireless charging
testing. Among the most important standards for WPT is SAE TIR J2954/2 [19], which
is concerned with alignment methods, interoperability, and frequency band and power
levels. It establishes the efficiency greater than 90% when using matched coils and higher
than 85% when using interoperable systems. Since the wireless charging is accompanied
by an intermediate to high-frequency EMF, it is also necessary to instruct the EMF levels.
Another guideline is established in IEEE Standard for safety levels with respect to human
exposure to RF-EMF, 3 kHz to 300 GHz [20].

Several studies focused on the possible impact of electromagnetic waves generated by
EMF on neurons have recently been published with great interest, especially in relation
to brain tumor development [1]. In addition, the increased risk observed in some of the
epidemiological studies is inconsistent with the stable frequency of occurrence of oncolog-
ical diseases in the population. There are discussable results according to experimental
conditions, models of study or used methods. The effect of IM-MF was studied on the
process of development to analyze the differentiation processes during embryogenesis. It
was proved that 21 kHz MF does not have any toxic effect on animal embryonic cell lines
and their differentiation [21]. However, a further study found frequency-dependent effects
on cell proliferation but without a clear trend [22].

Recently, only few in vitro studies examined the effect of WPT used for charging of
electrical vehicles on human health [23]. The aim of present study is to investigate the
impact of an electromagnetic wave (magnetic field intensity, 0.3–1.2 mT and frequency
87 kHz) on various human neural cell lines. Furthermore, we compared exposed and
control cells on various levels, such as (i) cell morphology and adherence using light
microscopy; (ii) cell viability using spectrophotometry; (iii) ratio of living, apoptotic and
dead cells determined by flow cytometry; (iv) compactness of the cell cytoskeleton analyzed
by fluorescent microscopy. These analyses could point to the safe use of newly generated
prototypes of power wireless charging systems on human brain cells, which could lead
toward neurodegeneration or tumor development.

2. Material and Methods
2.1. Design of Experimental Thermo Incubator

The specific experimental incubator was required due to maintenance of the constant
temperature within the EMF exposure for in vitro cultivated human neural cells. The geo-
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metrical design of proposed incubator is shown on Figure 1, while it is seen that it considers
two chamber design (outer vacuum chamber and inner-temperature controlled chamber).

Figure 1. The scheme of thermo incubator (A)—top view, and its side view (B).

It is required that temperature during the tests is close to human temperature body.
Therefore, the heating system was implemented within the incubator, while regulation
of the temperature was within 35.5–37 ◦C. Material of the system is 15 mm acrylic glass,
whereby the outer chamber is reinforced by ribs with holes to outstand the vacuum. The
incubator has three air sealed apertures (air inlet/outlet and vacuum for outer chamber,
opening for power connections for WPT system and opening for biological samples manip-
ulation). All three apertures are fully reconfigurable as they are independent parts of the
incubator system. The inner chamber of the incubator has outlet air openings around the
upper part of the chamber and inlet air openings around the lower part of the chamber.
The incubator has the option to open the upper part “Lid” to allow the insertion of the
WPT system (this part is also air sealed). All air sealed parts are connected to the incubator
using 3D printed screws. In the future, it is expected also to add CO2 level control within
incubator environment.

Figure 2 is showing that the air heating is done in an external chamber for air condi-
tioning (50 cm from inner chamber of incubator to ensure that the air-conditioning system
as well as the measurement of the WPT influence on the samples are not affected). The
airflow within the air conditioning system is made by the 40 mm server at the inlet side
of the system. The air temperature is adapted by switching high current through the
power resistors at the outlet of the air conditioning system and then it is monitored in
small compartment at the end of the air-conditioning system. The temperature regulation
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algorithm was working in hysteretic mode to ensure that the temperature was within the
defined range, while µC Arduino Nano was used as main control system.

Figure 2. Block diagram of WPT measurement within the incubator with the air-conditioning system.

2.2. WPT System Operational Settings and Scaling of the EMF for Exposure

The configuration of the WPT system for the experimental purposes of the EMF
exposure is shown in Figure 3. It comprises a laboratory power supply unit, primary side
high-frequency inverter which supplies primary side transmitting coil with compensation
capacitor. The secondary side (receiving side) is composed of a receiver, compensation
capacitor, high-frequency rectifier, and programable electronic load. The intensity of
the EMF was modified through the PSU input voltage of the WPT system, while the
identification of the EMF intensities was identified through the use of finite element
method (FEM) model [24].

Figure 3. Block diagram of the configuration of the WPT system.

The operational settings of the proposed WPT system reflect the use of neural human
cells [25]. The system of the coupling coils was designed as a reconfigurable system
considering mutual power transfer distance and electromagnetic shielding. The coil’s
matrices were placed on the construction which can easily change mutual distance of the
coils within the range of 0.05–0.25 m (Figure 4). As was described earlier, the magnetic
intensity for the selected exposing component should be at the maximum level of 1.2 mT at
the frequency of EMF 87 kHz. To identify the distribution of the EMF around the designed
coupling coil system, FEM analysis was provided to identify Input/Output parameters
of the WPT system. The analysis was reconfigurable according to the use of a shielded,
or nonshielded coupling coil system. The use of the shielding is important to reduce
negative impacts of radiated EMF above the system of the coils. The proposed shielding
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system also enables investigation of the various geometrical arrangements on the EMF
distribution [24–26].

Figure 4. System of coupling coils with adjustable transfer distance (left) and reconfigurable magnetic shielding (right).

2.3. Simulation Analysis of the EMF Intensity and Distribution within Proposed WPT System

The need for the identification of the magnitudes of magnetic field is required before
experiments with EM exposure will be realized. There are several ways to identify EMF
intensities, while the first one can be done experimentally and the second through the
use of a verified simulation model. As the laboratory instrumentation for experimental
measurement of EMF radiation could be complex and expensive, we utilized the second
possibility, i.e., highly accurate simulation model of proposed WPT system [24].

The equivalent circuit used for the identification of the EMF intensities is shown in
Figure 5. The model considers the electrical and magnetic domain, while the electrical
circuit settings are given in Table 1. Figure 6 represents arrangement and location of the
measuring points within the set-up.

Table 1. Settings of the electronic circuit simulation model.

Circuit Element Value Point (+) Point (−)

Ground GND 0 0
Voltage source VMAX*sin(ωt) 0 1

Capacitor 1 1/(ωˆ2*comp1.mf.LCoil_1) [F] 1 2
Resistor 1 RCoil1 [Ω] 2 3

External I vs. V1 Coil voltage (mf3/coil1) 3 0
External I vs. V2 Coil voltage (mf3/coil2) 0 6

Resistor 2 RCoil2 [Ω] 6 7
Capacitor 2 1/(ωˆ2*comp2.mf2.LCoil_1) [F] 7 8

Load RLOAD [Ω] 8 0

Figure 5. Electrical circuit definition within the electrical domain of the FEM simulation model.
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Figure 6. The scheme of the biological samples location in the WPT system during exposure.

Magnetic flux was identified within the area, where neural cells (sample) were located,
while three cutting lines per sample were evaluated. It was defined that samples were
located within the area between the transmitter and receiver (28 mm from transmitter),
and within the area above the receiver (28 mm from the secondary coil).

To identify magnetic field intensities, which are required for the exposure of neural
cells, the parametric simulation analyses were performed to identify the target value of
magnetic induction. The example of the simulation result is shown in Figure 7. As can be
seen in Figure 7, approximately 1.2 mT was achieved on the bottom exposure sample, and
approximately 0.3 mT was exposed on the top sample, while Input/Output parameters of
WPT system for experiments are identified as follows: Input DC voltage 249.5 V; Resistive
load 48.9 Ω; Main Resonant Frequency 85 kHz—switching frequency of high-frequency
inverter; Higher Resonant Frequency 87 kHz.

Figure 7. Simulation results of the distribution of magnetic induction within a system of coils
(operating frequency, 87 kHz; transmitting power, 1450 W).
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Investigating the frequency characteristic for the above parameters, Figure 8 represents
dependency of the transmitted power on the switching frequency of the inverter. The value
of power transfer for the investigated EMF exposure is approximately 1.5 kW.

Figure 8. Frequency characteristic of the WPT system for the EMF distribution from Figure 6.

It must be noted that the above parameters of the WPT system represent scaled
exposure because of the use of neural human cells. If different exposure samples are
considered, i.e., human tissues, or larger biological structures, the EMF intensities should
be higher and can be modified in the way of variation of Input/Output parameters of the
WPT system.

2.4. Cell Cultures and Cultivation Conditions

Three commercially available human neural cell lines were used in the present study.
Human astrocytes HA (ScienCell, Carlsbad, CA, USA) were grown in astrocyte medium
(AM, ScienCell) supplemented by 2% fetal bovine serum (FBS, ScienCell), 1× astrocyte
growth supplements (AGS, ScienCell) and 100 I.U./mL of penicillin and 0.1 mg/mL of
streptomycin (P/S, ScienCell). The neuroblastoma cell line (SH-SY5Y, ECACC, Salisbury,
UK) was grown in Dulbecco’s modified Eagle’s medium/Ham’s nutrient mixture F12
(DMEM/F12 = 1:1, Sigma-Aldrich, Darmstadt, Germany) supplemented by 10% fetal
bovine serum (FBS, Sigma Aldrich) and 100 I.U./mL of penicillin and 0.1 mg/mL of strep-
tomycin (P/S, Biosera). Glioblastoma cell line (T98G, ECACC) was grown in DMEM high
glucose (Sigma-Aldrich) supplemented by 10% fetal bovine serum (FBS, Sigma-Aldrich)
and 100 I.U./mL of penicillin and 0.1 mg/mL of streptomycin (P/S, Biosera, Nuaille,
France). Cells were cultivated at standard conditions (5% CO2, 37 ◦C, humidified atmo-
sphere). HA and T98G were plated at the density of 5 × 103 cells/cm2, SH-SY5Y was plated
at the density of 1 × 104 cells/cm2. Cell morphology was analyzed by light microscope
under an inverted phase contrast (Optika XDS-2, Ponteranica, Italy), magnification 100×.

2.5. Exposure of Cell Cultures

Before exposure, cells were grown up to 30–40% confluence at standard cultivation
conditions. Then, cells were divided into four groups, (i) control (unexposed) group;
(ii) exposed and located on coil, (iii) exposed and located between coils, and (iv) exposed
and placed on shielding. The cells were exposed to one-time continuous radiation of 87 kHz
EMF for 30 min at 0.3–1.2 mT in the preheated cell incubator of 35.5–37 ◦C. The cells in
culture flask/microtiter plate were located as in mentioned in Figures 6 and 7. The control
group of each cell line, unexposed cells, were during this 30 min period cultivated at 37 ◦C
out of any artificial exposure of EMF. These parameters were set up based on the range
limits of the prototype. After the exposure period, cells were cultivated for another 44 h at
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standard conditions prior to further analysis. This prolonged cultivation assesses the late
effects of EMF exposure on cells. Moreover, during this period at least one new generation
of cells is obtained and then, a potential damaged effect of EMF could be more noticeable.

2.6. MTT Cell Viability Assay

To analyze the possible cytotoxic impact of EMF on cell viability, MTT assay was
performed. It is a simple biochemical analysis based on enzymatic reduction of yellow
MTT to purple formazan [27]. Briefly, cells were seeded in 96-well microtiter plates as
12 replicates for each cell line. After the time of regeneration (44 h), cells were rinsed
by DPBS (Biosera) and further incubated in fresh cultivation medium containing MTT
(Sigma-Aldrich) for another 5 h at 37 ◦C in the humidified atmosphere. Then, 5% SDS
(w/v; Sigma Aldrich) was added to dissolve formazan salt. After 18 h of incubation,
colorful changes were measured spectrophotometrically at 540 nm using Synergy™ H4
Microplate Reader (BioTek, Bad Friedrichshall, Germany). The relative viability of cells
was determined as the ratio of O.D. value of formazan produced by treated cells to O.D.
value of formazan produced in control group and expressed as the percentage of control.
The O.D. of control cells was considered as 100%. All experiments were performed at least
three times. The results of MTT assay were expressed as mean ± standard deviation (SD)
of 12 replicates as indicated. Statistical analysis was performed using one-way analysis of
variance (ANOVA) and significance of difference between means with p < 0.05 considered
statistically significant.

2.7. Annexin V Assay and Flow Cytometry Analysis

To identify apoptotic and necrotic cells after EMF exposure, Annexin V conjugated
with FITC fluorescent label was used. By binding of Annexin V to phosphatidylserine (PS),
which is strictly located in the inner part of the plasma membrane, apoptotic cells could
be identified. To help to distinguish between live, necrotic and apoptotic cells, 7-amino-
actinomycin D (7-AAD) dye was used. 7-AAD is excluded by live and intact cells. Therefore,
the ratio of live, early apoptotic, late apoptotic, and dead cells could be determined. Briefly,
cells after 44 h of regeneration were passed through a cell strainer (Corning, Durham, NC,
USA) to prepare a single cell suspension. Then, cells were resuspended in Annexin V
Binding buffer (BioLegend®, San Diego, CA, USA) and incubated with Annexin V dye
followed by addition of 7-AAD viability staining solution for 15 min in the dark. After
addition of Annexin V Binding buffer, labeled cells were analyzed by flow cytometry (FACS
Aria™ Cell Sorter, BD Bioscience, San Jose, CA, USA).

2.8. Immunocytochemistry

Using specific antibodies, Phalloidin, which selectively binds to actin filaments of
cellular cytoskeleton the cell motility, cell division, cytokinesis, and organelle movement
as well as cell shape could be analyzed. Neural cells after exposure and regeneration
were washed by DPBS and fixed by 4% Paraformaldehyde (Cell Signaling Technologies,
Danvers, MA, USA) for 30 min at room temperature. After washing, cells were incubated
with Alexa Fluor®488 Phalloidin (Cell Signaling Technologies; 1:1000 in solution of 1% BSA
in DPBS) for 80 min followed by another labeling by DAPI (Sigma Aldrich) for 10 min
at room temperature in dark condition. Cells were washed three times by DPBS and
analyzed by fluorescent microscope (WiScan®, Hermes IDEA Bio-Medical, Rehovot, Israel),
magnification 100×.

3. Results

Based on the simulation analyses, we adjusted operational parameters (Input/Output)
of the physical sample according to previously received results. The coupling coils system
were placed within a thermo incubator and the biological samples (as was mentioned
in Figures 6 and 7) were placed between the coils, as well as above the receiving coil
(Figure 9). The operational frequency of WPT system as well as the frequency of EMF



Appl. Sci. 2021, 11, 3611 9 of 17

was equal to 87 kHz, transmitted power was 1.5 kW and the value of magnetic induction
within individual cells varied from 0.3 to 1.2 mT based on the location. Compared to the
standards issued by ICNIRP 2010 (the limit is 27 µT), the experimental settings exceed
the limit in range 11–44 times. These increased values of induction were set to test more
extreme conditions, compared to the limit ones. We compared the effect of EMF exposure
on normal (astrocytes, HA) as well as on cancer (neural SH-SY5Y and glial T98G) cells.

Figure 9. Experimental set-up of the wireless power transfer system (left) and detail of location of biological samples within
the coils coupling system (right).

3.1. The Effect of EMF on Cell Morphology and Viability

To evaluate changes in cell morphology and density, we analyzed neural cells by
light microscopy immediately after EMF exposure as well as after 44 h of regeneration
(Figure 10). We did not observe any changes in cell morphology or affection of cell adher-
ence, neither any dead cells presence.

Normal healthy astrocytes (HA) retained their elongated shape, the cells were mi-
totically active even after 44 h of regeneration (2.1 × 105 cells in control; 2.0 × 105 cells
in exposed sample). Similar observations were found in samples with cancer cells. T98G
and SH-SY5Y did not have their proliferative activity negatively affected after 44 h of
regeneration compared to the control group of cells (5.5 × 105 cells in control; 5.3 × 105

cells in exposed sample).
Subsequently, we analyzed the impact of EMF on cell viability and basal energy

metabolism using the MTT assay (Figure 11). In normal astrocytes (HA), we observed a
slightly increased metabolic activity up to 12%, depending to location in EMF. Moreover,
there were no significant differences in cell proliferation between exposed and control
samples. Cancer cells (T98G as well as SH-SY5Y) were exposed along healthy cells. There-
fore, we could compare the obtained results between different cell types. There was an
increase in cell viability in cancer cells (6–10% in T98G, 2–9% in SH-SY5Y), but the increase
was not statistically significant. These results may suggest that exposure of neural cells
to 87 kHz, 1.2 mT for 30 min could not trigger any cytotoxic responses and is likely not
harmful to cells.
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Figure 10. Cell morphology of human neural cells (HA, T98G, SH-SY5Y) analyzed by light microscopy. Cells before EMF
exposure (first row), cells directly after exposure (87 kHz EMF for 30 min; second row) and cells after 44 h of regeneration in
standard conditions (third row). Representative photomicrographs were taken at phase contrast at magnification 100×.

Figure 11. Effect of EMF on cell viability of HA, T98G and SH-SY5Y analyzed by MTT assay. Cells
were exposed to 87 kHz for 30 min and then regenerated for another 44 h at standard cultivation
conditions. The control group represents 100% viability. Data are mean ± SD. Data are representative
of three independent experiments with 12 replicates each.
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3.2. The Effect of EMF on Cell Death and Inner Cellular Organization

To analyze the ratio between live and apoptotic cells, flow cytometry analysis was
used. We compared control group with exposed groups located as mentioned in Figure 6.
The observed results are summarized in Table 2.

Table 2. The effect of EMF (87 kHz, 30 min) on neural cell death analyzed by flow cytometry. After
exposure, cells were regenerated for another 44 h and analyzed by Annexin assay.

Location Living
Cells

Early
Apoptotic

Late
Apoptotic

Dead
Cells

HA
Control 87.3% 4.7% 6.2% 1.8%

Coil 88.5% 4.6% 4.5% 2.3%
Shielded 89.9% 3.5% 3.5% 3.0%

T98G
Control 86.2% 4.1% 6.5% 3.2%

Coil 86.1% 4.0% 6.5% 3.3%
Shielded 87.3% 4.0% 5.7% 3.0%

SH-SY5Y
Control 84.9% 4.3% 7.1% 3.7%

Coil 83.7% 4.8% 8.5% 3.0%
Shielded 87.8% 3.0% 5.1% 4.1%

Considering normal HA cells, we found that the highest percentage of viable cells
(89.9%) was presented for the group located on the receiving coil equipped by magnetic
shielding. In contrast, the control group had the lowest percentage of viable cells (87.3%).
However, the number of dead cells was the lowest considering the control group (1.9%)
compared to the group located on shielded receiver (3.0%). However, these differences are
minimal and such variability is accepted from a biological point of view. In addition, cells
that are metabolically and mitotically active also have a certain minimum percentage of
dead or apoptotic cells. We obtained very similar values in the case of cancer cells (T98G,
SH-SY5Y). The percentage distribution of cells in followed processes (apoptosis, necrosis
or viable cells) is comparable and independent of type of cell line. Overall, SH-SY5Y
cells showed slightly lower values at percentage of viable cells, which may be due to
their biological nature, or the fact that after 44 h of regeneration, the cells were slightly
overgrown and some of them could naturally activate cell death. Based on the results it
could be concluded that the group of dead cells represents the lowest percentage within
each group, thus supporting the fact that the test conditions did not result in increased
death of cells.

We evaluated the effect of EMF on cytoskeletal organization of neural cells (87 kHz,
1.5 kW, 30 min) and followed by 44 h of regeneration under standard conditions (Figure 12).
The control group of healthy HA cells had normal structures that exhibit sharply rounded
nuclei with noncondensed chromatin. The impact of EMF did not result in the visualization
of fragmentation of nuclei into small apoptotic bodies, as evidence of the negative effect of
radiation on cells. The actin fibers of the cytoskeleton of the cells were dense, distinct and
organized in parallel bundles. Moreover, the structure of the cytoskeleton is very compact
and markedly limited, no loosened or disassembled fibers were observed.

The cancer cells (T98G, SH-SY5Y) after exposure had preserved similar inner cellular
structures compared to control groups. We did not observe any changes in cytoskeletal
structures and organization, which is location independent within the WPT system, neither
between normal and cancer cells.
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Figure 12. Fluorescent analysis of human neural cells (HA, T98G, SH-SY5Y) after exposure to EMF (87 kHz, 1.5 kW for
30 min) followed by 44 h regeneration. Cytoskeleton of cells was visualized by Phalloidin dye (green) and nuclei were
stained by DAPI (blue). Representative photomicrographs were taken by WiScan® Hermes System at magnification 100×.

4. Discussion

The use of various electrical devices in daily human life has grown rapidly. It is due
to a technological progress in the last two decades. Wireless communication technologies,
such as smartphones, have become a necessity for modern people. Nowadays, EMF
generated by mobile cell phones, radio, satellites communication systems, Wi-Fi systems
or TV increase the level of electromagnetic smog noticeably. Each person is potentially
exposed to various sources of EMF at the same time. The International Agency for Research
on Cancer (IARC) classifies the RF-EMF as Group 2B, it means possibly carcinogenic to
human [28]. Moreover, it has been hypothesized that neurological problems could occur as
a consequence of RF-EMF exposure due to the small distance of the cranial nervous system
and the location where the smartphones are predominantly used. These neurological
disorders include changes in sleep habits [29], headache [30], and changes in EEG [31,32].
However, there are several studies indicating more harmful nonthermal effects on human
health [33–38].

The aim of our study was to analyze the biological effect of EMF, which is generated
by a newly constructed prototype for a wireless power charging system. Neural cells are
one of the most frequently exposed cells using the contactless charging system. In addition
to that, neural cells are very sensitive to environmental pollution (“electromagnetic smog”),
because they participate in the transmission of excitation within the nervous system and
their regenerative ability is low. We used three different cell lines. One of them is healthy
normal cells, the other two are cancer cell lines. We used the biological variety of cells to
get more complex results about the effect of EMF on cellular level. We also investigated if
our set of parameters for EMF generation could have a selective inhibition influence on cell
growth of cancer cells while normal cells would be not affected. Human Astrocytes (HA)
were used as a model to study the function of the central nervous system and interaction
between neural cells. Astrocytes are glial cells found in the brain and spinal cord. They
are responsible for maintaining, supporting and repairing nervous tissue. In laboratory,
HA are used as model to study neurotoxicity, drug development and various neurological
diseases (Parkinson’s or Alzheimer’s diseases) [39,40]. The neuronal properties of SH-SY5Y,
human neuroblastoma cells, makes these types of cells as a valuable model to study various
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pathological processes and mechanisms at molecular and morphological level [41]. The
last one, T98G cells are derived from human glioblastoma multiform tumors. This cell line
is used as a model for testing drug cytotoxicity and new drug development, which can be
applied for brain cancer research [42,43].

WHO defined the range from 300 Hz to 1MHz as IF-EMF as a nonionizing radia-
tion [44]. We applied 87 kHz during all experiments, which is defined within allowed
operational range by relevant normative ICNIRP 2010. The Amplitude/Intensity of expo-
sure field was in the range of 0.3–1.2 mT and exposure time was 30 min. These experimental
values were set based on the maximal range limits of the constructed prototype along with
the evident proof of the impact of EMF generated by the WPT system on human cells.
The magnetic flux density, which was used in present work, is approximately 11–44 times
higher comparing to reference level (27 µT), which is recommended by ICNIRP guide-
lines [17].

We analyzed cell morphology, viability and cytoskeletal integrity in three cell lines in
exposed cells comparing to unexposed control cells. After exposure, cells were regenerated
for another 44 h at standard cultivation condition to see the possible cumulative negative
impact of EMF on cells. Based on our set conditions, we were not able to detect any
diverse effect on cell morphology, viability, or cytoskeletal disintegration at 87 kHz, 1.2 mT
for 30 min. Several studies have analyzed electric, magnetic and EMF exposure effect,
obtaining the most diverse outcomes [1,15]. Most of the studies were performed using
cell or animal models. They have provided basic information on the possible biological
effects of EMF exposure to living systems. There are few studies focused on the acute or
chronic EMF exposure in IF range and its consequence on human health at cellular level
in vitro [45–47]. Therefore, the investigation of potential adverse or cumulative EMF effect
is quite challenging and precise epidemiological studies are needed to confirm the possible
negative effects of EMF exposure to humans [15]. Moreover, the technology of the WTP
system (85 kHz) was studied on human body models [48]. They evaluated the induced
electric field in the human body models for a magnetic field leaked from a WPT system
in an electrical vehicle. The induced electric fields in three anatomically based human
body models were weaker than the basic restriction, although the external magnetic field
exceeded the reference level. Even though these observations are supporting, it is necessary
to verify their impact on living systems.

During our analysis, we did not observe any changes in cell morphology as well as in
number of cells (Figure 10). The tested conditions did not have any negative impact on cell
division on healthy normal cells, HA. We even did not find any dead cells accumulated in
cancer cell lines and did not prove the apoptosis activated after exposure. Some papers
observed altered cell metabolism or cell adhesion associated with changes in cell morphol-
ogy [49,50]. Even though, the effect on calcium efflux and cell differentiation were also
proved [51,52]. On the other hand, several in vitro studies did not find any significant effect
of EMF exposure on cell differentiation, neither on phagocytosis or chemotaxis [53,54].

Alteration of proliferation is a sensitive indication that could be used to identify any
cytotoxic impact. The effect of EMF on cell viability was analyzed spectrophotometrically
by MTT test (Figure 11). Considering our results, cell viability after exposure to 87 kHz at
0.3–1.2 mT of EMF for 30 min did not appear to have an adverse effect on HA, SH-SY5Y or
T98G cell lines. HA showed a little increase in cell viability, however, these changes were
not statistically significant. Some in vitro studies were focused on the effect of MF on cell
proliferation and viability. However, the outcomes were different, as these studies detected
reduced or increased cell growth and viability, as well [23,41,45].

It has been shown that external EMF can induce a variety of molecular and cellular
responses, including microfilament reorganization, changes in calcium dynamics, neuronal
growth cone guidance or enhanced stem cell differentiation [55]. Even though electrother-
apy has been successfully used for nerve fiber repair, bone fracture treatment or cancer
chemotherapy, little information is known about the effect of IF-EMF on the cell mechan-
ical properties [56]. The cytoskeleton is one of the most significant cellular mechanical
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structures that allow elasticity and stability of the cell undergoing multiple deformations
without losing its integrity. In addition, the important role of the cytoskeleton has been
established in complex intracellular signaling pathways. It mediates cell responses, as
changes in cell adhesion or in gene expression and secretion of extracellular matrix by
itself structural rearrangement alterations [57]. Our results did not show any changes in
actin filaments organization in normal human astrocytes. Even though, there was not any
detrimental effect of 87 kHz EMF on cytoskeletal structures of cancer cells. This observation
is in conformity with [58]. Most experiments were focused on the effect of EMF on tubular
structures [59,60]. However, the results were discussable, mostly depending on EMF. Low
frequency of EMF caused actin filaments reorganization from continuous, aligned structure
to discontinuous globular patches. On the other hand, cells exposed to a higher range of
EMF were not visibly affected [60].

Many studies oriented on MF or EMF exposure observed the most diverse outcomes,
only a negligible amount of them consider acute or chronic EMF exposure in intermediated
frequency and its influence on human health at cellular level in vitro [45]. We proved that
IF-EMF at 87 kHz is well tolerated and without relevant response on cellular metabolism
or morphology in various types of human neural cells. To get a more complex view about
the effect of wireless charging power systems on human tissue, other molecular processes
such as activity of oxidative stress enzymes, oxygen and nitrogen radical production as
well as cell cycle should be analyzed.

From the technical point of view, other aspects need to be clarified and studied on
human cells, e.g., the differences either in the effect or in the magnitude of the effect, in
respect to the use of continuous and intermittent EMF. Innovative WPT technologies could
find a place in various areas of human life. There is high potential to be applied in medicine.
Boutry et al. constructed a pressure sensor, which was made from biodegradable materials
to measure the arterial blood flow [61]. The technology, which worked wirelessly, could be
used in post-operative monitoring of blood flow after reconstructive surgery.

5. Conclusions

So far, only a few in vitro studies have been focused on the impact of wireless power
transfer systems within charging of the electric vehicles on human health. Therefore, we
recently analyzed the effect of electromagnetic radiation of a WPT system prototype on
cell morphology, viability and internal structures of human neural cells and highlighted
the biosafety of using a de novo-generated prototype. On the other hand, if we could
identify the conditions under which EMF has a possible negative effect on cancer cells,
whether it is the induction of apoptosis or DNA disruption, as well as the breakdown and
dysfunction of essential proteins, then it could be used as a supportive treatment during
oncological treatment.

Based on our preliminary results, we can assume that the EMF generated by the
optimized WPT systems under the tested conditions does not have a negative effect on the
metabolic, mitotic and regenerative activity of human neural cells. In order to optimize and
develop the system, further studies are needed to confirm the potential negative effects of
radiation on living systems. Therefore, it is necessary to perform another set of experiments,
which could conclude pulse and longer exposure, and more complex molecular analyses
focused on protein expression during oxidative stress or compactness of DNA molecules.
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