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Abstract: This paper presents a novel online learning-based fault detection designed for underwater
robotic thruster health monitoring. In the fault detection algorithm, we build a mathematical model
between the control variable and the propeller speed by fitting collected online work status data
to the model. To improve the accuracy of online modeling, a multi-center PSO algorithm with
memory ability is utilized to optimize the modeling parameters. Additionally, a model online update
mechanism is designed to accommodate the model to the change of thruster work status and sea
environment. During the operation, propeller speed of the underwater robot is predicted through
the online learning-based model, and the model residuals are used for thruster health monitoring. To
avoid false alarm, an adaptive fault detection strategy is established based on model online update
mechanism. The proposed method has been extensively evaluated using different underwater
robotics, through a sea trial data simulation, a pool test fault detection experiment and a sea trial
fault detection experiment. Compared with fixed model-based method, speed prediction MAE of the
online learning model is at least 37.9% lower than that of the fixed model. The online learning-based
method show no misdiagnosis in experiments, while the fixed model-based method is misdiagnosed.
Experimental results show that the proposed method is competitive in terms of accuracy, adaptability,
and robustness.

Keywords: underwater robotic; thruster system; time delay estimation; particle swarm optimization;
online learning; adaptive fault detection

1. Introduction

Underwater robotics has come to play an increasingly important role in sea exploration.
A large number of studies on robotics safety have been performed, due to the complexity
of underwater operating conditions [1]. The thruster system is one of the most crucial
components of an underwater robotic vehicle. When an unexpected failure occurs, the
thruster breaks down and the underwater vehicle becomes incapable of completing its job,
causing huge losses for sea exploration. Thus, it is necessary to perform online monitoring
of the thruster system and to implement diagnostic operations in the presence of systematic
failures [2–4].

At present, a propeller thruster driven by a motor is still predominantly used in
underwater vehicles [5], compared with jet- or bionic-based propulsion thrusters. Thus,
motor-driven thrusters have become the main object of underwater vehicle fault detection.
The sensors deployed in underwater robotics to monitor system states are limited, due to
space and power limitations. Commonly the sensors include Doppler velocimeters (DVLs),
inertial measurement units (IMUs), digital compasses, barometers, satellite and underwater
acoustic positioning devices, current sensors, voltage sensors, pressure sensors, and rotation
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speed sensors [6–8]. Through the use of such sensing modalities, the underwater robot is
able to collect important measurements, such as body velocity and heading attitude. The
parameters related to robotics faults can be estimated, in an online manner, by analyzing
the thruster control variables. Unfortunately, the underwater robot moving states generally
deviate from the expected values in the presence of thruster faults. Some researchers have
found that thruster faults can be detected by comparing the residuals between the expected
values and the real measurements (i.e., a fault is determined to occur if the residuals exceed
specific thresholds). These are the basic principles of designing underwater robotics fault
detection systems. Representative methods can be categorized into three types: analytical
model-based [9,10], filtering-based [7,11,12], and data-driven approach-based [13–15].
These methods have been applied to several underwater fault detection scenarios, thus
promoting the development of underwater robotics.

Limited by the underwater conditions and applications, underwater robotics fault
detection still suffers from the following issues:

(1) Most fault detection methods are based on robotic moving state abnormality; how-
ever, other factors, such as sea current, also affect the robotic state. Thus, it is challenging to
distinguish faults from unexpected sea current disturbances, which makes these methods
prone to resulting in unsatisfactory estimates.

(2) The majority of fault detection methods require specific robotics models, which
need a complete set of data for model fitting. For instance, in the analytical modeling
approach an exact system model is needed for the process, involving data such as observer
design, Kalman filter gain update, and particle filter state transition probability distribution.
However, it is impractical to obtain a precise mathematical model of the underwater
circumstance. In data-driven approach-based fault detection methods, a large amount of
data is required for model training, in order to satisfy underwater application requirements.
Unfortunately, it is challenging to obtain data in relation to robotics faults, especially in the
initial stage of prototype design.

(3) The model parameters for state-of-the-art fault detection methods remain constant
and lack online adjustment. However, the model parameters can change due to com-
plicated underwater conditions and long-term operations [6,16–18], which may result in
unpredicted faults [19].

In order to address these issues, researchers have proposed a variety of solutions
from several perspectives. For example, Zhang et al. [20] developed an independent
component analysis method, together with wavelet packet decomposition and empirical
mode decomposition, to analyze the effects of sea currents and vehicle thruster faults
upon autonomous underwater vehicle (AUV) movement speed, which further determines
whether the sources of faults are from the thruster itself or the sea current.

A hidden Dirichlet distribution analysis model has been designed to detect the abnor-
mality of the AUV vertical surface [19]. The AUV movement information and operation
commands are coded into a string. The latent Dirichlet allocation (LDA) model is trained
using the AUV data. Several topics are extracted from the historical data independently,
in which there exists a topic with dominant probability at each moment. Afterwards, the
operation performed by the AUV corresponds to the instantaneous topic (e.g., floating
on the water, constant depth navigation, pitch navigation, and floating up). In practical
applications, the state and operation instruction information of the AUV are first encoded
into a state byte. Then, the topic most related to the current state in the LDA topic model
generated by training is searched for, as the topic of the current moment, according to the
nearest neighbor principle. This method no longer requires a systematic mathematical
model, but the learning model is unsatisfactory when the training data are of a relatively
small volume. For states that have never appeared in the training data, the LDA model
recognizes them as the unknown states or as a combination of several known states that
have appeared in the training data.

It has been found that the ocean current shows more obvious impacts on the motion
state of underwater vehicles in practical applications, while the impact on the state of the
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propeller itself is relatively smaller. As far as the fault detection of propulsion systems is
concerned, methods based on propeller models might overcome the current influence, to
a certain extent. In terms of modeling methods, propeller models include analytical and
data-driven models. In analytical models, specific parameter information relating to the
propulsion motor, transmission device, propeller, and so on, is required, which is generally
impractical to obtain [6]. In addition, it is difficult to adjust the information online once the
parameters of the analytical model have been determined. Therefore, it would be an ideal
choice to build a propeller model based on data-driven methods.

In [6], a propeller fault detection method based on an energy consumption model is
proposed, using a data-driven strategy. First, the control variable (composed of a special
excitation signal) is applied to the propeller in order to obtain the corresponding propeller
current data. Then, a relationship model between the control voltage and the current of
the thruster is built by using the LWPR. In some practical applications, the short-term
energy consumption is calculated using both the current calculated by the model and the
measured current. Then, the residual index of energy consumption is calculated, and a
fault is detected when this exceeds the corresponding threshold. This method is able to
adjust the model online by introducing regularization in the model; however, it is unable
to optimize the amount of data used in online modeling. In practice, the change of an
environmental or system state is periodic, and the optimal amount of modeling data often
changes in different situations. Inappropriate modeling can introduce degraded system
information, which is related to other stages in the model and, thus, may affect the accuracy
of the model.

Similar to underwater robotics, the fault detection of unmanned aerial vehicle (UAV) is
susceptible to the influences of gusts and turbulence and model complexity. Considerable
researches have been conducted for UAV fault detection, which also can be divided into
model-based methods and data-driven methods.

In model-based approaches, relations between measurements and estimated states are
exploited to detect possible faults. The most common ways to implement a model-based
approach is to estimate the states, to estimate the model parameters, or parity-space. In
general, the model-based methods mainly integrate with Kalman filter, particle filter or
their variants by establishing a physical model as the state transition equation [21]. A
fault detection method based on the suboptimal fading unscented Kalman filter (SFUKF)
is designed in [22]. Liu et al. [23] introduced an adaptive estimation method based on a
bank of unscented Kalman filters (UKF) to monitor the actuator health in a UAV. In the
literature [24], Guo et al. utilized Extended Kalman Filter (EKF) and the UAV kinematics
model to realize analytical redundancy. Abbaspour et al. [25] developed a detection
strategy, in which the weighting parameters are updated by EKF, to find faults in sensors
and actuators. In [26], Yi and Zhang presented a model-based fault detection method based
on particle filter.

In data-driven approaches, historical flight data are utilized for training the models.
Once the new flight data are inconsistent with the pattern learned by the trained model, a
fault alarm is given. Amidst data driven approaches for the fault detection of UAV, machine
learning methods such as artificial neural networks [27] and support vector machines (SVM)
appear more recently in the literature [28–30]. Baskaya et al. [30] proposed a classification
method based on principal component analysis (PCA) and SVM to detect faults of UAV
control surfaces. Guo et al. [31] proposed an optimized one-class SVM method regulated by
local density to realize fault detection for UAV. A fault detection method based on a stacked
long short-term memory (LSTM) neural network is designed in literature [32], where the
LSTM model is used to realize accurate prediction of the monitored parameter, and fault
detection is achieved via a statistical threshold of the smoothed prediction residuals. In [33],
a data-driven multivariate regression approach based on long short-term memory with
residual filtering (LSTM-RF) is proposed to fulfill UAV fault detection and recovery.

In order to perform fault detection in the presence of ocean current interference and
real-time state changes, we propose an online learning-based fault detection method for
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underwater robotic thruster systems. First, a control-variable-speed model of the thruster
is built online, from which the propeller speed is predicted. Then, when the residual of the
model exceeds a threshold value due to sea current interference, the operation state will
change and the model will be changed by an online update mechanism. Eventually, the
fault detection model will be triggered.

In order to improve the accuracy of online modeling, the time delay between control
variables and speed is estimated using correlation analysis, such that the modeling data
are realigned in accordance with the time delay estimation results. Secondly, a multi-center
particle swarm optimization algorithm with short-term memory merit is designed, which
combines the prior knowledge and swarm intelligence to analyze the model in the modeling
process. Our fault detection method is based on the thruster control-variable-speed model.
Therefore, it has the ability to adapt to interference factors, such as the influence of the
ocean current and the change of robot operation states. Neither an accurate mathematical
model of the underwater vehicle nor complete training data are required in our method.

The rest of the paper is organized as follows. In Section 3, the online estimation
of time delay in relation to the thruster system is described. In Section 4, the online
modeling between control variables and rotation speed is introduced, and multi-center
particle swarm optimization is utilized to optimize the model parameters. In Section 5, the
online model update mechanism is introduced. In Section 6, the experimental platform is
described, and the sea trials and pool tests are analyzed. Section 7 concludes the work.

2. General Framework of Online Learning-Based Fault Detection

The general framework of the proposed underwater robotics thruster fault detection
method is illustrated in Figure 1.
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Figure 1. Structure of the online learning-based fault detection algorithm.

In the online learning-based fault detection algorithm, propeller speed of the un-
derwater robot thruster is predicted through an online learning model. Additionally, an
adaptive fault detection strategy is established based on model online update mechanism.
In order to achieve data alignment, the time delay between the control variable and the
measured propeller speed is estimated by analyzing the trend of the correlation changes.
The polynomial fitting is introduced to build a control variable–speed model based on
the aligned data. To improve the accuracy of online modeling, a multi-center particle
swarm optimization (PSO) algorithm with memory ability is utilized to optimize the model
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order and modeling data volume. In the proposed PSO algorithm, we designed an initial
optimization strategy based on prior knowledge, historical optimal solution and improved
tent mapping. Eventually, a multi-center collaborative search strategy is introduced to
reduce the odds of local minima.

3. Propulsion System Time Delay Online Estimation

Time delay is a widespread phenomenon in electromechanical systems. For systems
with complex structures such as underwater robots, multiple sampling cycles from the
controller output control to the propeller generating the corresponding actions are generally
required. When modeling and fault detection are based on data, the existence of a time
delay can have a serious impact. Therefore, it is necessary to estimate the time delay
between the control variable and the rotational speed measurement value, and to realign
the data accordingly.

Current commonly used delay estimation methods include the online measurement,
step response, relay feedback, and optimization-based parameter identification meth-
ods [34–37], among which the online measurement method requires special hardware to
measure the time delay. The step response and relay feedback methods need to apply
additional excitation signals to the system, while the optimization-based parameter iden-
tification method needs to determine the model structure of the system in advance. In
practice, the system delay is not always fixed [38], and may change with the operating
environment or the state of the system itself. Therefore, it is necessary to estimate the
system delay online. The above method was applied.

There are certain limitations to the online estimation of the time delay of an underwater
vehicle propulsion system. For any two variables, the correlation refers to the follow-up
relationship between variables. The more consistent the follow-up changes of the variables,
the stronger the correlation. If there is no time delay between two correlated variables, their
changes are completely synchronized and the correlation is strongest at this time. If there
is a time delay, the follow-up change relationship will be destroyed and the correlation will
be weakened. Generally speaking, the greater the delay, the more obvious the decrease
in correlation. Therefore, by maximizing the correlation coefficient between two related
variables, an approximate estimation of the time delay can be achieved [39].

This paper analyzes the change trend of the correlation between the control variable
and the measured value of the thruster speed, in order to realize the online time delay
estimation. This method is completely based on data and does not require a systematic
model. In order to reduce the amount of calculation and facilitate online application, the
Pearson correlation coefficient is used to measure the correlation.

Let the control variable in a certain period of time be U = (u1, u2, · · · , uN) and the
measured value of the propeller speed in the same period of time be V = (v1, v2, · · · , vN).
Then, the Pearson correlation coefficient between the control variable and the speed in this
period of time is:

r(U, V) =

N
∑

i=1
(ui − u)(vi − v)√

N
∑

i=1
(ui − u)2 N

∑
i=1

(vi − v)2

(1)

where u, v are the average values of the control variable and speed, respectively, in the
time period.

Suppose that, in this time period, the time delay between the control variable and
the rotational speed measurement value has τ sampling periods, τ = 0, 1, · · · , τmax. Then,
we realign the control variable and the measured value of the rotational speed, according
to the assumed time delay. From the aligned data, take Uτ = (u1, u2, · · · , uN−τmax) and
Vτ = (vτ+1, vτ+2, · · · , vτ+N−τmax) to calculate the corresponding correlation coefficient:

rτ = r(Uτ , Vτ), τ = 0, 1, · · · , τmax (2)
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According to the above steps, the correlation coefficients of the realigned data under
different hypothetical time delays are sequentially calculated. When the correlation coef-
ficient has a maximum value, the corresponding time delay is the estimated result, τ̂, of
the time delay between the control variable and the rotational speed measurement value,
which is:

τ̂ = argmax
τ=0,1,··· ,τmax

rτ (3)

4. Propulsion System Online Modeling
4.1. Propeller Control Variable and Speed Model

The rotation speed is an important parameter that characterizes the operating status of
a propeller. For a properly designed propeller, interference from environmental factors (e.g.,
ocean currents) will not have a serious impact on the speed of the propeller. Therefore, the
detection of thruster faults based on abnormal changes in rotational speed can effectively
eliminate the interference of environmental factors, such as ocean currents. We first
establish a model of the relationship between the propeller’s “control variable-rotation
speed” and then predict the residual, based on the model’s speed, to achieve fault detection.

Limited by many factors, most current propellers operate in open-loop speed regu-
lation mode. Even those propellers working in closed-loop speed regulation mode have
a certain dynamic in the speed regulation process. Therefore, in practical applications,
the relationship between the control amount of the propeller and the rotational speed is
obviously non-linear and fluctuates with the change of the working state.

When detecting a fault of the thruster, the residual of the speed prediction will be
normal (and, thus, cause false detection) only when the “control variable–speed” model
can accurately describe the non-linear change of the speed. As the actual control variable–
speed model is non-linear and changes with the working state, it is difficult to accurately
describe the control variable–speed relationship through a fixed model established in
advance. Therefore, in this article, we establish a control variable–speed model through
online learning, and update the speed prediction model used in the online fault detection
process as needed.

Polynomial fitting [40] is a non-linear relationship learning method based on data,
which involves simple operations and is easy to realize online. In this paper, polynomial
fitting is used to conduct online learning of the non-linear relationship between the control
variable and speed.

For the realigned control variable sequence Uτ̂ and speed sequence Vτ̂ , the control
variable–speed model form obtained by polynomial fitting is:

vN = a0 + a1uN−τ̂ + · · ·+ aquq
N−τ̂ (4)

where vN is the current measured value of the propeller speed, uN−τ̂ is the corresponding
control variable after the data is aligned, and q is the order of the “control variable–speed”
model, which is a modeling parameter that needs to be determined before polynomial
fitting. The parameter A =

[
a0, a1, · · · , aq

]T in the control variable–speed model can be
obtained according to the following formula:

A =
(

XTX
)−1

XTY (5)

in which

X =


1

uN−w−τ̂+1
...

uq
N−w−τ̂+1

1
uN−w−τ̂+2

...
uq

N−w−τ̂+2

1
· · ·
. . .
· · ·

1
uN−τ̂

...
uq

N−τ̂

 (6)

Y = [vN−w+1, vN−w+2, · · · , vN ]
T (7)
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where w is the length of the control variable and speed sequence used when calculating the
control variable–speed model parameters; that is, the amount of data used for modeling.

When modeling the control variable–speed relationship by polynomial fitting, the
model order q and the modeling data volume w are modeling parameters that need to
be determined in advance. If the order of the model is too low, it will have difficulty in
reflecting the dynamic change information of the system; meanwhile, if the order is too high,
overfitting can easily occur. During the operation of the underwater robot, the environment
and its own state change over time, which will cause changes in the system model. These
changes are generally gradual, and the model can be approximated as unchanged in a short
time period. Therefore, during the entire operation process, the “control variable–rotation
speed” model has a phased nature, where different time periods of data correspond to
different models. Therefore, in order to improve the modeling accuracy, in addition to
selecting the appropriate model order, it is also necessary to select the appropriate amount
of modeling data.

In order to ensure the accuracy of the online modeling of the control variable–speed
model, we propose the use of an improved PSO algorithm, which is suitable for online
applications, for online optimization to achieve the appropriate selection of model order
and modeling data volume.

4.2. Multi-Center Particle Swarm Optimization Algorithm with Memory Ability

For optimization problems that cannot obtain a global model, the swarm intelligence
algorithm has obvious advantages over other methods. The PSO algorithm is one of
the most recognized achievements in the field of swarm intelligence. It has a simple
structure, is easy to implement, and does not rely on the characteristic information of the
problem [41]. It has been widely studied and applied. In this paper, the model order and
modeling data volume optimization problem cannot be described with a global model and
the optimization process needs to be performed online; therefore, the PSO algorithm is
used to solve the problem.

The standard PSO algorithm has the disadvantage of easily falling into local optima.
To solve this problem, researchers have proposed a variety of improved algorithms. The
strategies adopted include optimizing the initial population, changing parameter values,
changing the topology, introducing mutation operations, second search optimization,
joint optimization with other swarm intelligence algorithms, and so on. Among these,
optimizing the initial value can increase the possibility that the initial value falls into the
global optimal interval. Changing the parameter value can speed up the convergence speed
and optimize the search behavior. Both of these strategies can improve the performance of
the algorithm without significantly increasing its complexity. Changing the topological
structure can limit the particle’s perception of the optimal value of the current group.
Although it can avoid the particles falling into local optima, to a certain extent, it may
also seriously affect the search efficiency. Introducing a mutation operation is equivalent
to replacing some of the particles trapped in local optima with new particles, and then
searching again. At this time, a large number of searches are generally required and the
results of the new search are uncertain. Second search optimization assumes that the
particles have a known evaluation function—that is, the global model—which violates
the original intention of the algorithm. The joint optimization algorithm requires multiple
searches, and the algorithm complexity is significantly higher than the original algorithm.

The online optimization problem in this article requires the optimization algorithm
to be as simple and easy to implement as possible, as well as to obtain better results in a
shorter computing time. Based on the existing research results, we propose a multi-center
PSO algorithm with memory capabilities. Its main strategies include initial population
optimization based on historical optimal solutions and improved chaotic mapping, and
the use of a multi-center collaborative search.
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4.2.1. Initial Population Optimization Based on Historical Optimal Solution and Improved
Chaotic Map

In the PSO algorithm, the initial population is usually generated by randomly selecting
values in the search space. For the online optimization problem in this article, it is necessary
to optimize the model order and the amount of modeling data many times during the oper-
ations of the underwater robot. After each optimization, an optimal solution is obtained. In
the next optimization, the previously obtained optimal solution may be close to the optimal
solution of this optimization problem. If these optimal solutions are stored as part of the
initial population in the next optimization, it can help to optimize the initial population,
thus improving the performance of the algorithm. In addition, by introducing the prior
knowledge of the control variable–speed model into the historical optimal solution library,
the optimization of the joint drive of knowledge and data can be realized.

The PSO algorithm attempts to distribute the initial population as evenly as possible
in the search space, in order to improve the probability of finding the optimal solution.
Therefore, we first take a small amount of the initial population as the historical optimal
solution, and then randomly select a historical optimal solution to map to the entire search
space, as the remaining initial population.

Tent mapping is a commonly used chaotic map with good ergodicity [42]. Thus, we
use tent mapping to map the randomly selected historical optimal solution to the search
space. The mathematical expression of tent mapping is:

tk+1 =

{
2tk 0 ≤ tk ≤ 0.5
2(1− tk) 0.5 ≤ tk ≤ 1

(8)

Tent mapping can be problematic as the value can fall into a fixed point or a small
period. In response to this problem, Nie et al. [43] proposed a method to multiply the
mapping value by a number in [0,1] when the mapping value falls into a fixed point or a
small period. An improved method of random numbers between.

When optimizing the initial population through tent mapping, the initial value is first
mapped from the search space to the [0,1] space. In practical applications, it has been found
that the initial value of the mapping into [0,1] may be an approximation of an infinite loop
decimal. In this case, although the tent mapping does not fall into a fixed point or a small
period, there will be a large number of values within a very close distance, thus affecting
the mapping effect. We address this problem by limiting the minimum distance between
two adjacent value points. If |tk+1 − tk| ≤ 0.02, then we take:

tk+1 =

{
tk+1 + 0.4rand tk+1 ≤ 0.5

tk+1 − 0.4rand tk+1 > 0.5
(9)

Figure 2 shows the distribution of value points obtained by 60 iterations in two-
dimensional space, using the method in this paper and the method of [43], when the initial
value is (0.833333, 0.666667). It can be seen that the too-close value points became more
evenly distributed in space. A large number of value points obtained by the method of [43]
can be seen to be gathered in a small area.

4.2.2. Multi-Center Collaborative Search

During the search process of the PSO algorithm, all particles learn from the particle
with the best current fitness, which has a larger weight. If the particles with the best fitness
currently fall into a local optimum, this may cause the entire population to gather in the
local optimum area. At this time, even if strategies such as mutation and second search are
used in order to try to jump out of the local optimal area, many search iterations are wasted.
In addition, judging whether the population has fallen into a local optimum is difficult.
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To improve this problem, we propose a multi-center collaborative search strategy. The
basic idea is to allow the independent exploration of particles, which are far away from
the current optimal particle with better fitness during the search process, guiding some
particles to search collaboratively in the outer area of the current optimal particle. In other
words, there are multiple search centers in the entire population. Among them, there is
a main center with the best fitness, which guides most particles to search around it. In
addition, there are multiple sub-centers with good fitness, thus guiding some particles to
search in other areas.

The multi-center collaborative search strategy mainly affects the speed update process
of the PSO algorithm. After determining the optimal particle fitness, before the particle
position update, the algorithm mainly includes three processes: calculating the weighted
fitness, selecting the learning center, and speed update. It is agreed, in this article, that the
closer the particle is to the optimal position, the smaller its fitness. Note that during the kth
iteration of the PSO algorithm, the current position of particle i, the individual’s optimal
position, and the individual’s optimal fitness are xk

i , pk
ibest and f k

ibest, respectively. Assuming
that the particle with the optimal fitness of the optimal individual in the population at this
time is particle c, then c is called the central particle in the iteration process. At this time,
the optimal position and optimal fitness of the entire population are pk

gbest = pk
cbest and

f k
gbest = f k

cbest, respectively. Based on the above agreement, the specific implementation
process of the multi-center collaborative search strategy is as follows.

Step 1: Sort each particle i in the population in ascending order, according to the
optimal fitness of the individual, and mark the set of particles with the top 50% of optimal
fitness f k

ibest of the individual as Xk
top.

Step 2: For particle i in Xk
top, calculate the Euclidean distance between its individual

optimal position pk
ibest and the population optimal position pk

gbest:

dk
ipg = d(pk

ibest, pk
gbest) =

√√√√ D

∑
j=1

(pk
ibest,j − pk

gbest,j)
2 (10)
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Step 3: For particle i in Xk
top, calculate its weighted fitness as follows:

f k
iw =

dk
ipg

f k
ibest

(11)

The larger the weighted fitness, the more suitable the particle is as the auxiliary center.
Step 4: Calculate the weighted fitness of all particles in Xk

top, and sort the particles in
descending order of weighted fitness. According to the number of auxiliary centers set in
advance, the sorted particles are sequentially selected as auxiliary center particles, where
the individual optimal position of the auxiliary center particles is used as the auxiliary
center. In this paper, the number of auxiliary centers is set to 2. Assuming that the auxiliary
center particles are particle m and particle n, the corresponding auxiliary centers are pk

mbest
and pk

nbest, respectively.
Step 5: For the central particle c and auxiliary central particles m and n, set their

learning centers to their individual optimal positions. For other particles in the population
(e.g., particle i), calculate the distance between its current position xk

i and the population
center and auxiliary center: 

dk
ixg = d(xk

i , pk
gbest)

dk
ixm = d(xk

i , pk
mbest)

dk
ixn = d(xk

i , pk
nbest)

(12)

If dk
ixg ≤ min(dk

ixm, dk
ixn)—that is, the distance between particle i and the center of

the population is not greater than the distance from the auxiliary center—set the learning
center of particle i to Lk

i = pk
gbest. Otherwise, determine which auxiliary center particle i is

closest to (here, it is assumed to be closest to pk
mbest), and determine the learning center of

particle i, according to the following rules:

If rand ≤ 3
4

f k
gbest

f k
mbest

, then Lk
i = pk

mbest, otherwise Lk
i = pk

gbest.

Step 6: Select the learning center for all particles in the population, according to the
above method. Then, update the speed of each particle as follows:

vk+1
i,j = ωvk

i,j + c1r1(pk
ibest,j − xk

i,j) + c1r1(Lk
i,j − xk

i,j) (13)

After the speed update is completed, the position update and subsequent operations
can be performed, according to the standard PSO algorithm. The complete process of
the multi-center PSO algorithm with memory capability proposed in this paper is shown
in Figure 3.

Figure 4 shows the position of each particle and the distribution of learning centers in
the mid-, late-, and end-stage populations during a certain optimization process. There was
a total of 20 particles in the population, with 1 center and 2 auxiliary centers. The left side of
the arrow in the figure shows the number of the particle, while the right side is the learning
center of the particle during this iteration. Figure 4a shows the mid-search stage. At this
time, particle 7 is the global center of the population, and particles 13 and 14 are auxiliary
centers. There are 13, 3, and 4 particles in the population learning from particles 7, 13, and
14, respectively. Under the effect of the collaborative search strategy, the particles search
extensively in the better area, in order to avoid falling into local optima too quickly. In the
late search stage, shown in Figure 4b, the population has roughly converged to a better
area and, under the guidance of the population center and the auxiliary center, they search
within a smaller range. At the end of the search, shown in Figure 4c, the population is close
to convergence and the particles are gathered in the population and auxiliary centers for
fine searching. Thanks to the rules for determining the learning center in the collaborative
search strategy presented in this article, there may still be particles located in the auxiliary
center that leave the auxiliary center to learn from the population center, searching the
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area between the auxiliary center and the population center, and further reducing the final
population center. It is possible for these to become stuck in local optimal positions.
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4.3. Propulsion System Online Modeling Process

The implementation process of online modeling of the underwater robot propulsion
system proposed in this paper is as follows.

Step 1: During the operation of the underwater robot, obtain online propeller control
and speed data. In order to improve the accuracy of modeling, the data to be acquired
include a certain amount of change in thruster control.
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Step 2: Estimate the time delay of the propulsion system in the current state, according
to the acquired control variable and speed data.

Step 3: According to the estimated time delay τ̂, realign the propeller control variable
and speed data: {

Uτ̂ = (u1, u2, · · · , uN−τ̂)
Vτ̂ = (vτ̂+1, vτ̂+2, · · · , vN)

(14)

Step 4: Use the multi-center PSO algorithm with memory capability to optimize
the thruster model order q and data volume w used for modeling, where 1 ≤ q ≤ qmax,
wmin ≤ w ≤ wmax. When evaluating the fitness of particles, use the following data sets:{

Uτ̂,w = (uN−τ̂−w+1, uN−τ̂−w+2, · · · , uN−τ̂)
Vτ̂,w = (vN−w+1, vN−w+2, · · · , vN)

(15)

Establish the rotational speed model v̂ = Fq,w(u) through polynomial fitting and
evaluate the model using the mean absolute percentage error (MAPE):

f MAPE
q,w (Uτ̂,w, Vτ̂,w) =

1
Nτ̂,w

Nτ̂,w

∑
i=1

∣∣∣∣vi − v̂i
vi

∣∣∣∣ (16)

Then, the fitness value of the particle whose current position is in (q, w) is:

fq,w = max( f MAPE
q,w (Uτ̂,w, Vτ̂,w), f MAPE

q,w (Utest, Vtest)) (17)

Among them, (Utest, Vtest) are the public test data taken from (Uτ̂ , Vτ̂).
Step 5: According to the optimal modeling parameter (q∗, w∗) obtained under the

current data set through polynomial fitting, a control variable—speed model v̂ = Fq∗ ,w∗(u)
is established.

Through the above-mentioned steps, a control variable–rotation speed model, which
can describe the propeller in the current operating state, can be established, in an online
manner, for subsequent speed prediction and fault detection.

5. Adaptive Fault Detection Based on Online Model Update
5.1. Propulsion System Model Online Update

After building the propeller “control variable–rotation speed” model online, in the
next operation process, the propeller control variable is input into the model to obtain the
speed prediction value. Comparing the measured value of the propeller speed at time t
with the corresponding predicted speed value, the model residual of the propulsion system
can be obtained as follows:

et = vt − Fq∗ ,w∗(ut−τ̂) (18)

During the operation of the underwater robot, the operating environment and the
system itself will change over time, which causes changes in the control variable–speed
model. This can cause discrepancies between the previously established model and the
actual model which, in turn, will cause the model prediction residuals to gradually increase.

In order to avoid false detection caused by an increase of model prediction residuals,
we designed an online model update mechanism. When the model residual exceeds the
threshold, the online modeling process is restarted, and the latest data are used to establish
a new control variable–speed model.

5.2. Propulsion System Failure Detection

During the operation of the underwater robot, it is assumed that the control variable–
speed model obtained by the kth online modeling is currently being used to monitor the
state of the propeller. If, at time t, the model predicts the residual:

ek
t = vt − Fk

q∗k ,w∗k
(ut−τ̂k ) (19)
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to exceed the threshold, at this point, the online model update starts and a new model
Fk+1

q∗k+1,w∗k+1
(ut−τ̂k+1) is obtained. Then, the residual of the new model at time t is calculated:

ek+1
t = vt − Fk+1

q∗k+1,w∗k+1
(ut−τ̂k+1) (20)

In the online update process of the model, due to the optimization of the modeling pa-
rameters, the new model obtained can better fit the modeling data than the original model.

In the absence of failure, it can be considered that the actual model of the propulsion
system is approximately unchanged in the short-term; in other words, it can be consid-
ered that the data (ut−τ̂k+1 , vt) corresponding to time t and other modeling data acquired
recently are from the same actual system, where both can be described by the new model
Fk+1

q∗k+1,w∗k+1
(ut−τ̂k+1). Therefore, for the data at time t, the prediction residual of the new

model should not exceed the threshold.
Based on the above analysis, if it is detected that the residual of the model exceeds

the threshold at time t and, after updating the model online, the residual of the new
model obtained at time t does not exceed the threshold—indicating that the residual of the
original model exceeded the threshold due to gradual system change or noise—the system
is determined not to have malfunctioned.

If the propulsion system fails at time t, the actual system model will change signif-
icantly, causing the data generated in the fault state at time t and the data obtained in
the recent normal state to come from different systems. As shown in Figure 5, when the
model is updated, as the algorithm sets the minimum amount of modeling data, wmin, in
the k + 1th online modeling, most of the modeling data used are the data generated in the
normal state; only an extremely small part comes from the data generated in the fault state.
Therefore, the new model obtained has a better fitting effect on the data generated in the
normal state, and has a poor fitting effect on the data generated in the fault state. In this
case, the residual of the new model at time t will still exceed the threshold. The algorithm
will continuously update the model multiple times until the data generated in the fault
state in the modeling data account for the majority, and the residual of the model becomes
lower than the threshold again.
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Combining the above analysis, the thruster fault detection rules are as follows:
(1) If the model residual is less than the threshold, there is no fault;
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(2) If the residual of the model at time t exceeds the threshold, the online model update
mechanism is activated; if the residual of the new model at time t is less than the threshold,
no fault occurs;

(3) If the residual of the model at time t exceeds the threshold and, after the model
is updated online the residual of the new model at time t also exceeds the threshold, the
model will continue to be updated online after the data at time t + 1 is collected. If the
residual still exceeds the threshold, it is judged that the thruster has failed since time t.

6. Experimental Results and Analysis
6.1. Implementation of the Fault Detection Algorithm

The pipeline of the underwater robotics thruster fault detection implementation is
illustrated in Figure 6. Before fault detection, the historical best solution library was
initialized based on prior knowledge of the thruster model. During operation of the
underwater robot, the system monitoring information was collected, which was fed into
the online learning-based fault detection algorithm.
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Whenever a set of runtime work status data is collected, the fault detection algorithm
first checks whether there is currently a control variable–speed model available. If there
already exists a control variable–speed model, the predicted propeller speed is calculated
and the model prediction residual will be evaluated by the residual threshold. If the model
prediction residual is within the threshold, it means that the thruster is not malfunctioning.
If the model prediction residual exceeds the threshold, or there is no control variable–speed
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model available, the online modeling procedure will start. It consists of online time delay
estimation, data alignment and online optimization based polynomial fitting modeling.

When a new control variable–speed model is built through online modeling, the fault
detection algorithm will check whether there is an existing enabled model. If no enabled
model exists before, then enable the new-built model and calculate the model residual, the
followed process is the same as previously described. If there already exists an enabled
model before the new model is established, the new-built model will replace the enabled
model. Afterwards, propeller speed prediction residual of the new-built model will be
calculated. If the residual is within the predefined range, the thruster system is determined
to work smoothly. Otherwise, the fault detection algorithm will check if the model has been
updated in the previous round. When the work status data of the next sampling period
is collected, the model online update process will be started, and the following process is
the same as previously described. If the model has been updated in the previous step, a
thruster fault occurs.

Compared with existing methodologies, main feature of the online learning-based
fault detection algorithm is the dynamic model based on online modeling and the adap-
tive fault detection strategy based on online model update. To better demonstrate the
performance of the proposed method, we designed a comparison method that uses a fixed
model and performs fault detection based only on fixed thresholds. In the fixed-model
based method, when a set of runtime work status data is collected, a control variable–speed
model will be created in the same way as the proposed online modeling method. After that,
the control variable–speed model will be used for propeller speed prediction in the whole
fault detection process. If the speed prediction residual of the fixed model exceeds the
predefined threshold, a thruster fault was determined to have occurred. For comparison,
the predefined threshold and range of the modeling data is the same as that uses in the
proposed online learning model-based method.

6.2. Sea trial Data Simulation and Analysis

Firstly, the proposed online learning-based fault detection method was tested using
data collected from a sea trial of a human occupied vehicle (HOV). The HOV was named
‘SHEN HAI YONG SHI’, as shown in Figure 7, specifications of the HOV and its thruster
studied in the sea trial are described in Table 1.
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Table 1. Specifications of the HOV.

No. Specifications Value

1 Main dimensions of the HOV 9.3 ∗ 3 ∗ 4 m
2 Weight of the HOV 20 t
3 Thruster control variable type Voltage
4 Thruster control variable range −5 V~+5 V
5 Maximum propeller speed 700 r/min
6 Propeller speed sensor Integrated Hall sensor
7 Feedback signal of propeller speed sensor Voltage pulse

Thruster control variable and propeller speed during sea trial of the HOV is shown in
Figure 8, in which the model residual over a certain period of time in the process of fault
detection was obtained, as shown in Figure 9. As there were several interfering factors
in the sea trial, the model residual fluctuated violently. In order to reduce the number of
online model updates and computational burden, the model residual threshold was set
to |et| ≤ 80. The range of the modeling data was set as wmin = 50, wmax = 500. After
500 groups of collection, the thruster fault detection started.
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As can be seen in Figure 9, the model residual exceeded the threshold by a large margin
in the 847th and 868th sampling periods. However, false alarms were avoided by using
the adaptive fault detection strategy based on online model update mechanism. Similarly,
the detected model residual exceeded the threshold in the 1357th sample. Comparably,
the residual was below the threshold after online model update in the 1358th sample.
Successive residuals of the model updated in the 1358th sample keep below the threshold
for a longer period of time, which could verify the superiority of the proposed method.
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Figure 9. Model residuals of the online learning-based fault detection method during sea trial of the HOV.

It was found that, in the process of fault detection using sea trial data of the HOV,
although the model residual fluctuated violently due to various factors, there was no false
detection alarm when using the proposed online learning-based method.

Model residuals of the fixed model-based fault detection method during sea trial of
the HOV is shown in Figure 10. As mentioned before, in the fixed-model based method,
when a set of runtime work status data is collected, a control variable–speed model will be
created in the same way as the proposed online modeling method. After that, the model
will be used for propeller speed prediction in the whole fault detection process. If the speed
prediction residual of the fixed model exceeds the predefined threshold, a thruster fault was
determined to have occurred. For comparison, the predefined threshold and range of the
modeling data is the same as that uses in the proposed online learning model-based method.
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As can be seen in Figure 10, residuals of the fixed model are similar to the online
learning-based model after the fixed model has just been established, this is mainly because
that the two models are built with the same method and the same data. After the 850th
sampling period, due to the change of thruster work status and environmental factors,
residuals of the fixed model become large and exceeds the threshold multiple times,
resulting in a series of misdiagnosis.

6.3. Pool Test Fault Detection Results and Analysis

After the Sea trial data simulation, the proposed online learning-based thruster fault
detection algorithm was verified in a pool test, considering the fact that a manual thruster
fault is risky and sea trial faults are challenging to capture. A saucer-shape AUV is used for
the pool test, as shown in Figure 11, specifications of the saucer-shape AUV and its thruster
studied in the pool test is described in Table 2.
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Table 2. Specifications of the saucer-shape AUV.

No. Specifications Value

1 Main dimensions of the AUV 1.6 ∗ 1.2 ∗ 0.6 m
2 Weight of the AUV 438 kg
3 Thruster control variable type Voltage
4 Thruster control variable range −5 V~+5 V
5 Maximum propeller speed 1200 r/min
6 Propeller speed sensor Integrated Hall sensor
7 Feedback signal of propeller speed sensor Voltage pulse

In the pool test, the motion state change was simulated by randomly dragging the
saucer-shape AUV. The influence of environmental factors such as ocean currents was
simulated by water injection and the formation of a turbulent flow by reflecting the pro-
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peller wake on the pool wall. Furthermore, we threw cloth strips into the pool, in order to
simulate the thruster intaking unexpected marine debris such as fishing nets or seaweed.

Thruster control variable and propeller speed during pool test of the saucer-shape
AUV is shown in Figure 12, the model residual data obtained by the proposed fault
detection method is shown in Figure 13. In the tests, the model residual threshold was set
to |et| ≤ 8 and the modeling range was set as wmin = 50, wmax = 500. Initially, the thruster
system worked in a fault-free state. Near the 1280th sampling period, the thruster inhaled
the first cloth strips and the thruster is malfunctioning. Near the 1380th sampling period,
the thruster inhaled a second cloth strips, and another failure state occurred. Thruster of
the saucer-shape AUV entangled with cloth strips is shown in Figure 14.
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As can be seen in Figure 13, the residual exceeded the threshold in the 698th and
1096th sampling periods. After model updating online, the residual of the new-built model
had fallen within the threshold, and the system triggered no false alarm for fault detection.
There were obvious trends in the variation of model residuals in the 500–700 sampling
periods and 700–900 sampling periods. Combined with the change of control variable
and propeller speed in the test process, the model residual change was mainly caused by
a change of thruster operation status. In the previous analysis, we mentioned that the
gradual changes in the working environment and the system status will lead to a change in
the system model. The phenomenon was observed in the experiment, consistent with the
analysis, which demonstrates that it is reasonable to use a data-driven approach to build
and update the system model online.
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As mentioned before, near the 1280th sampling period, the thruster inhaled the first
cloth strips and became entangled. It can be seen from Figure 8 that the model residual
exceeded the threshold in the 1282nd sampling period. At that time, the fault detection
algorithm started the online model update mechanism, however, the residual of the new-
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built model still exceeded the threshold. Therefore, the algorithm updated the model online
for the second time after collecting a new set of work status data in the 1283rd sampling
period. It can be seen from Figure 13 that after the second model update, the model residual
still exceeds the threshold. Therefore, the algorithm detected that a thruster fault occurred
in the 1282nd sampling period.

After the thruster fault was detected, the algorithm continuously updated the model
online, as the residual of the model continued to exceed the threshold. When the model
was updated after the failure, more and more data were generated in the fault state in
the modelling data, and the new-built model came closer to the real fault state model.
Then, the model residual gradually reduced. By observing the new-built model residuals,
corresponding to the 1283–1324 sampling periods in Figure 13, it was found that the
model residual trend was consistent with the above analysis. The above-mentioned online
modelling process ended at the 1324th sampling period, and so lasted about 43 sampling
periods, which was close to the minimum modelling data set size wmin = 50 in the
proposed algorithm. At this point, the algorithm had built a fault state model through
online learning.

In the 1380th sample, the thruster inhaled the second cloth strips and the fault state of
the thruster changed, which meant the occurrence of a new fault. The proposed method
also successfully detected the new fault by the adaptive fault detection strategy based
on online model update, which partly proves the online learning ability of the online
learning-based modeling algorithm in the presence of work status changes.

Model residuals of the fixed model-based fault detection method during pool test
of the saucer-shape AUV is shown in Figure 15. As mentioned before, parameters in the
fixed model-based fault detection are the same as that uses in the proposed online learning
model-based method.
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As can be seen in Figure 15, after the 700th sampling period, due to the change of
thruster work status, residuals of the fixed model become large and exceeds the threshold
multiple times, resulting in a series of misdiagnosis. In contrast, as shown in Figure 13,
when residual exceeds the threshold at the 700th sampling period, the model online update
process starts and thus avoid misdiagnosis.

6.4. Sea Trial Fault Detection Results and Analysis

To better demonstrate performance of the proposed method, a sea trial fault detection
experiment was conducted. A portable AUV is used for sea trial, as shown in Figure 16,
specifications of the portable AUV and its thruster studied in the sea trial is described
in Table 3.
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Table 3. Specifications of the portable AUV.

No. Specifications Value

1 Main dimensions of the AUV Φ0.2 ∗ 1.6 m
2 Weight of the AUV 46 kg
3 Thruster control variable type PWM signal
4 Thruster control variable range 0~100
5 Maximum propeller speed 500 r/min
6 Propeller speed sensor Integrated Hall sensor
7 Feedback signal of propeller speed sensor CAN bus data

Thruster control variable and propeller speed during sea trial of the portable AUV is
shown in Figure 17. In the sea trial, the model residual threshold was also set to |et| ≤ 8
and the modeling range was set as wmin = 50, wmax = 500.
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Figure 17. Thruster control variable and propeller speed of the portable AUV.

During the sea trial, the thruster system worked in a fault-free state initially, the
portable AUV sailing in shallow sea water. Near the 2400th sampling period, the AUV
encounters weeds, some weeds are caught in the propeller, causing minor failures of
the thruster. Then, control variable of the portable AUV reduced to zero to protect the
propulsion system. When the thruster restarts, more weeds are entangled in the propeller.
The thruster was blocked and caused a serious malfunction, as shown in Figure 18.
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Model residuals obtained by the proposed fault detection method during sea trial of
the portable AUV is shown in Figure 19. As described above, thruster of the portable AUV
worked in a fault-free state before the 2400th sampling period, and the online learning-
based fault detection algorithm did not make any false alarms. When the portable AUV
encounters weeds near the 2400th sampling period and causes a minor failure of the
thruster, the online learning-based fault detection algorithm detected the occurrence of
fault in the 2427th sampling period. When the thruster was blocked near the 2870th
sampling period, the proposed algorithm detected a severe fault in the thruster.
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Figure 19. Model residuals of the online learning-based fault detection method during sea trial of the portable AUV.

Model residuals of the fixed model-based fault detection method during sea trial of
the portable AUV is shown in Figure 20. As mentioned before, parameters in the fixed
model-based fault detection are the same as that uses in the proposed online learning
model-based method. As can be seen in Figure 20, residuals of the fixed model are similar
to the online learning-based model after the fixed model has just been established. After
the 580th sampling period, due to the change of thruster work status and the influence
of environment, residuals of the fixed model exceed the threshold, resulting in a series
of misdiagnosis.

6.5. Quantitative Analysis of Experimental Results

In order to quantitatively analyze performance of the proposed method, Mean Ab-
solute Error (MAE) of the propeller speed prediction model was calculated. As shown in
Table 4, MAE of the proposed online learning-based model is 10.54, 1.70 and 2.91 in the
sea trial data simulation, pool test fault detection experiment and sea trial fault detection
experiment, respectively. By contrast, MAE of the fixed model is 16.98, 5.53 and 258.23
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respectively. MAE of the proposed online learning-based model is at least 37.9% lower
than the fixed model.
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Table 4. MAE of the propeller speed prediction model.

MAE of the Online
Learning-Based Model

MAE of the New-Built Online
Learning-Based Model

MAE of the
Fixed Model

Sea trial data
simulation 10.54 0.25 16.98

Pool test fault
detection 1.70 0.44 5.53

Sea trial fault
detection 2.91 0.24 258.23

It is worth noting that MAE of the new-built online learning-based model is 0.25, 0.44
and 0.24 in the sea trial data simulation, pool test fault detection experiment and sea trial
fault detection experiment respectively, which illustrates the effectiveness of the proposed
online modeling algorithm.

7. Conclusions

In this paper, we presented an online learning based underwater robotics thruster
fault detection method, which is able to robustly detect faults in the presence of sea current
disturbances and time-varying conditions during the operation of the underwater robot.
The main contributions include the following.

(1) A fault detection framework based on online learning was proposed, which mainly
includes online modeling using a data-driven strategy and modified PSO optimization,
with fault detection based on an online updating mechanism. This fault detection frame-
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work has impressive generalizability and is suitable for fault detection based on other state
parameters, such as the current.

(2) A multi-center particle swarm optimization algorithm with memory ability was
proposed, in order to solve the online optimization problem in the process of modeling.
We designed an initial optimization strategy based on prior knowledge, historical optimal
solution and improved tent mapping, as well as a multi-center collaborative search strategy,
which can effectively reduce the odds of becoming stuck in local minima.

The possible future improvements of the proposed online learning-based fault detec-
tion method are as follows.

(1) To facilitate implementation, the proposed method uses polynomial fitting as the
basis for establishing the control variable–speed model. However, polynomial fitting is
not necessarily the most suitable method in this application. Some other mathematical
modeling [44] or machine learning-based [45] methods that can achieve small sample
learning [46] or adaptive online learning [47] can be tried. The literature [48] proposes a
promising optimal learning method based on deterministic artificial intelligence, which is
worthy of further study.

(2) In the implementation of the proposed method, residual threshold needs to be
determined in advance based on prior knowledge. If the residual error threshold can be
automatically generated online during the fault detection process, the adaptiveness of
the fault detection algorithm could be further improved. In previous research [49], we
proposed an interval prediction method of oscillating time series based on grey system
modelling, which may provide some ideas for the estimation of residual threshold.
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