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Abstract: Modern power systems are subject to waveform distortions that include spectral com-
ponents (supraharmonics) in the range of 2–150 kHz. Due to the lack of regulation in this range
and since supraharmonics may follow time-varying patterns, the operators can take advantage of
the statistical characterization of supraharmonics, e.g., for determining convenient power quality
limits or to analyze the residual capacity of networks toward further installations of power electronic
converters. This paper studies the statistical characterization of supraharmonics in low-voltage distri-
bution networks, considering both the overall supraharmonic distortion (through the characterization
of the total supraharmonic distortion index) and individual supraharmonic components. Several
probability distributions are proposed and compared, also considering multimodal distributions that
can fit more general scenarios in which the supraharmonic emissions follow regime patterns. The
outcome of numerical experiments based on publicly available data collected at actual low-voltage
distribution networks suggests that multimodal distributions are useful in characterizing supra-
harmonics in most cases, with acceptable goodness of fitting even in the presence of stair-shaped
empirical distributions. This paper can serve as a starting point for the development of probabilistic
power system analysis tools accounting for supraharmonic emissions and for the convergence toward
standardization in the 2–150 kHz range.

Keywords: multimodal distributions; probability distribution functions; statistical characteriza-
tion; supraharmonics

1. Introduction

Power systems are undergoing a smart transition toward more sustainability and
efficiency. This process passes through the widespread installation of distributed generation
(e.g., renewables and small-scale generators), energy storage systems (fixed installations or
mobile installations, such as electric vehicles), and high-efficiency loads [1–3]. These devices
are typically interfaced to low-voltage distribution networks through electronic converters
that introduce disturbances into voltage and current waveforms. The recent development
of high-performance control systems determines emissions of spectral components that are
beyond the classical 2 kHz milestone that individuates the low-frequency components, as
they can reach up to 150 kHz for the common switching frequencies of the converters. The
components in the range 2–150 kHz, typically labeled as supraharmonics in the relevant
literature, have been studied much less than their low-frequency counterparts [4,5].

This topic remains challenging since supraharmonics, especially in the context of
modern smart grids [6] and modern household devices [7], may be responsible for severe
malfunctioning and loss of efficiency [8]. They may: (i) bring disturbances affecting the
performance of control systems or the measurements taken by smart meters, (ii) interfere
with communication networks, (iii) add thermal stress to devices and equipment, reducing
their useful life [9,10]. Importantly, supraharmonics are not fully regulated yet [4,11,12],
although in the very next years, they are expected to undergo specific regulations that will
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fix limits on the quality of the power supplied to the customers, as it is already common in
the low-frequency range. Fixing these limits is still an ongoing process under discussion
among regulators.

Considering that supraharmonics are typically time-varying, the efficacy of steady-
state analysis to evaluate their impact on distribution networks is very limited. To cope
with the time variation, the IEC 61000-4-30 standard [12] suggests considering the min-
imum, average, and peak values of the rms voltage during each aggregation interval in
order to determine, e.g., typical emissions (through the average values) or worst-case
emissions (through the peak values). However, relying on point minimum, average and
maximum values is far from being exhaustive [11] since a complete characterization of the
supraharmonic emissions is preferable.

Probabilistic harmonic analysis in the range 2–150 kHz may help in creating and
studying scenarios to enable, e.g., taking precise actions for the most impactful compo-
nents, determining the remaining available capacity of the network in terms of sustainable
supraharmonic emissions (e.g., due to photovoltaics [13]), or compensation (e.g., through
summing effect [14,15]). In addition, since supraharmonics are detected from source as
primary or secondary emissions [16], the statistical characterization may be helpful to
individuate and characterize these two hidden regimes. The statistical characterization
of supraharmonics is handy in any of these frameworks, but it is still unexplored (it is
worth noting that the statistical characterization of the low-frequency harmonics has been
extensively treated instead [17–19]).

Related research on the statistical analysis of supraharmonics is in [11,20,21]. In [11,20],
the empirical distributions of the supraharmonic emissions in low-voltage distribution
networks are evaluated, although without including characterization aspects. The correla-
tion between voltage and currents grouped components is evaluated using a time series
approach in [21].

This paper contributes to the state-of-the-art statistical characterization of supra-
harmonics in low-voltage distribution networks. The topic is tackled at a global level
(i.e., characterizing the overall emissions in the entire supraharmonic range) and at an
individual-component level (i.e., characterizing the magnitude of individual suprahar-
monic components). Several probabilistic distributions are considered for the charac-
terization, and they are compared in order to determine their performance in terms of
goodness of fitting (GOF). Data collected at actual low-voltage distribution networks and
publicly available at the PQube Live World Map database [22] are considered in the nu-
merical experiments to foster the reproducibility of the results and future contributions to
this topic.

In summary, the major contributions of this paper to the knowledge are:

- This is one of the very few contributions on the statistical characterization of supra-
harmonics, setting a starting point for the development of probabilistic power system
analysis tools accounting for supraharmonic emissions and for the convergence to-
ward standardization in the 2–150 kHz range;

- Several distributions are selected and compared to characterize both the overall
supraharmonic emissions and the individual supraharmonic components;

- The presentation of numerical experiments based on publicly available datasets that
include supraharmonic data collected at multiple actual low-voltage distribution
networks.

This paper is organized as follows. The methods for the statistical characterizations of
supraharmonics are shown in Section 2; these include the techniques for the evaluation of
the components from the measured waveforms, the definition of the power quality index
that accounts for the global overall supraharmonic emissions, the distributions considered
to characterize the supraharmonics and the GOF tests. Section 3 presents the results of the
extensive numerical experiments based on actual public data. A discussion of the results
and the conclusions are in Section 4.
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2. Materials and Methods

The statistical characterization of supraharmonics performed in this paper aims at
investigating the probability distributions that can effectively model the level of emissions
in the range 2–150 kHz within an actual low-voltage distribution network. The statisti-
cal characterization can be useful for regulation purposes (e.g., to define thresholds as
acceptable limits) and to predict the impact of the further installation of power electronic
converters within a studied network by simulating scenarios. In addition, since suprahar-
monics are detected from source as primary or secondary emissions [16], the statistical
characterization may be helpful to individuate and characterize the two hidden regimes.

This section discusses two approaches for the statistical characterization of the supra-
harmonics that are either based on the overall emissions within the entire 2–150 kHz range
or on the single components at a given frequency band. A brief recall of the supraharmonic
evaluation methods considered in the IEC 61000-4-30 standard [12] is presented as it is
used to assess the individual components, and the total supraharmonic distortion (TSHD)
index is introduced to provide the overall evaluation of the emissions within the entire
2–150 kHz range. Then, the probability distributions selected for the two approaches,
the corresponding parameter estimation problems, and the methods to evaluate the GOF
are described.

2.1. Supraharmonic Evaluation

The IEC 61000-4-30 standard [12] suggests three methods for the supraharmonic eval-
uation: (i) the CISPR 16-1-2 method [23], which is typically difficult to be applied by in-situ
measurement systems; (ii) the extension of the grouping methodology, presented in the IEC
61000-4-7 for the frequency range 2–9 kHz, to the entire 2–150 kHz supraharmonic range;
(iii) a method specifically presented in the standard [12], which considers measurements
taken through cascaded high-pass and low-pass filters processed by a Discrete Fourier
Transform (DFT).

The third method is recalled hereinafter, as it is the method considered by the in-situ
measurement systems that provide the data for the numerical experiments [24].

The signal y(t) passes through cascaded high-pass and low-pass filters having proper
poles to damp low-frequency components. A sliding window with an assigned width
(multiple of the fundamental period, typically 10 cycles in 50-Hz power systems and
12 cycles in 60-Hz power systems) is applied to the filtered signal to obtain G equally-
spaced measurement sets, determining the analysis intervals. Each measurement set
consists of L discrete points that are processed through the DFT as:

Yk∆ f = ∑L−1
n=0 y(n)e−j2π k

L n, (1)

where y(n) is the nth sample of the signal, k = 0, 1, . . . , L− 1, and ∆ f = 1/LTs with Ts
as the sampling time. With proper settings, this is sufficient to estimate supraharmonic
emissions and also to obtain some statistics upon them. For example, if L = 512 and
Ts = 1/1, 024, 000 s, the DFT spectrum has a frequency resolution ∆ f = 2 kHz, and 256
frequency bins can be evaluated; the first seventy-five of these bins include the entirety
of the supraharmonic range. Since G analysis intervals are considered, G spectra can be
estimated. The minimum, average, and peak values of the spectral components across the
G spectra can be calculated and recorded for statistical assessment purposes.

2.2. TSHD Index

The supraharmonic components evaluated through the methodology presented above
can be characterized individually (i.e., considering the emissions related to a given band
of frequency) or globally (i.e., considering an index that overall evaluates the emissions
within the entire supraharmonic range 2–150 kHz). In this paper, the TSHD is the index
that provides an overall evaluation of the emissions in the supraharmonic range.
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The TSHD is defined as an extension of the total harmonic distortion (THD) for the
supraharmonic range. Given the set Y〈s〉 =

{
Yk∆ f , k ∈ Ω : {2 kHz ≤ k∆ f ≤ 150 kHz}

}
of components in the supraharmonic range, the TSHD is defined as [11,25]:

TSHD =

√
∑k∈Ω Y2

k∆ f

Yfr

·100%, (2)

where fr is the rated (fundamental) frequency of the power system.

2.3. Probability Distributions for the Statistical Characterization of Supraharmonics

The supraharmonics are assessed in this paper through two approaches. The first
approach is a comprehensive one in which the TSHD is characterized through a considered
probability distribution. The second approach is instead developed to characterize a single
component within the supraharmonic range in order to suit the needs of the operator that
focus on a specific frequency band for filtering, compensation, or capacity assessment pur-
poses. In both approaches, the random variable object of the characterization is indicated
with x, which may stand for the TSHD (first approach) or for the ith component Yi (second
approach).

The probability distributions considered for the characterization are briefly recalled
below, with details on the maximum likelihood estimation (MLE) procedure used to
estimate their parameters [26]. MLE makes statistical inference on a given dataset of
observed samples in order to determine the estimates of the parameters of a distribution
that maximize the probability of the observed data. Assuming that the generic distribution
has probability distribution function (PDF) f (x|θ) , where θ is the parameter vector, the
likelihood function L(θ|x) is defined for a given dataset x = {x1, . . . , xN} of observed
samples as the product of probabilities for the sample data x:

L(θ|x) = ∏N
n=1 f ( xn|θ). (3)

The likelihood function depends only on the parameters of the distribution and, under
the MLE approach, it is maximized to find the estimates θ̂ of parameters θ. The generic
optimization problem to be solved is:

θ̂ = argmax
θ

∏N
n=1 f (xn|θ). (4)

Most of the distributions considered in this paper are unimodal, but due to the
particularity of the supraharmonics (which can be time-varying and can have different
source regimes), also a multimodal distribution, i.e., the mixture of normal distributions, is
analyzed in this paper.

2.3.1. Normal Distribution

The normal (Norm) distribution is introduced as a benchmark for the statistical
characterization due to its interpretability and since it assumes a regular and symmetric
behavior of the random variable. The PDF is:

fNorm(x|µ, σ) =
1

σ
√

2π
·e−

(x−µ)2

2σ2 , (5)

where x ∈ R, µ is the mean (i.e., a location parameter) and σ is the standard deviation (i.e.,
a scale parameter). The MLE of the parameters on a dataset x = {x1, . . . , xN} of observed
samples is: {

µ̂ = 1
N ∑N

n=1 xn

σ̂ =
√

1
N ∑N

n=1(xn − µ̂)2 (6)
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2.3.2. Lognormal Distribution

For the analyzed phenomena, either the TSHD or individual supraharmonics can be
zero or positive values; then, it is appropriate to include distributions having positive-real-
valued support. The lognormal (LogN) distribution is among them, and it assumes that
the logarithm of the random variable is normally distributed. The PDF is:

fLogN(x|m, s) =
1

xs
√

2π
·e−

[ln (x)−m]2

2s2 , (7)

where m is the mean of the logarithm of the random variable (i.e., a location parameter)
and s is the standard deviation of the random variable (i.e., a scale parameter). The MLE of
the parameters on a dataset x = {x1, . . . , xN} of observed samples is:{

m̂ = 1
N ∑N

n=1 ln(xn)

ŝ =
√

1
N ∑N

n=1[ln(xn)− m̂]2
(8)

2.3.3. Weibull Distribution

The PDF of the Weibull (Weib) distribution is:

fWeib(x|λ, k) =
k
λ

( x
λ

)k−1
e−(

x
λ )

k
, (9)

where x ≥ 0, λ is a scale parameter and k is a shape parameter. The MLE of the parameters
on a dataset x = {x1, . . . , xN} of observed samples has no explicit formulation, thus the
implicit optimization problem (to be solved numerically) is reported:

λ̂, k̂ = argmax
λ,k

N
∏

n=1

k
λ

( xn
λ

)k−1e−(
xn
λ )k

s.t. λ > 0, k > 0.
(10)

2.3.4. Burr Distribution

The Burr distribution includes multiple distribution subfamily types and can fit a
wider range of sampled data. It has three parameters, and its PDF is:

fBurr(x|α, β, γ) =
γβ

α

( x
α

)β−1
[

1 +
( x

α

)β
]−γ−1

, (11)

where x > 0, α is a scale parameter and β, γ are shape parameters. The MLE of the
parameters on a dataset x = {x1, . . . , xN} of observed samples has no explicit formulation;
thus, the implicit optimization problem (to be solved numerically) is reported:

α̂, β̂, γ̂ = argmax
α,β,γ

N
∏

n=1

γβ
α

( xn
α

)β−1
[
1 +

( xn
α

)β
]−γ−1

s.t. α > 0, β > 0, γ > 0.
(12)

2.3.5. Mixture of Normal Distributions

The mixture of normal distributions (MixN) is considered in this paper for the statisti-
cal characterization of supraharmonics due to its ability to model a multimodal behavior
of the random variable. This may occur at low-voltage nodes that are subject to primary
and secondary emission and/or to different operation regimes.

The C-component MixN PDF is:

fMixN(x|µ1, σ1, µ2, σ2, . . . , µC, σC, w1, w2, . . . , wC) =

= w1
1

σ1
√

2π
·e
− (x−µ1)

2

2σ2
1 + w2

1
σ2
√

2π
·e
− (x−µ2)

2

2σ2
2 + . . . + wC

1
σC
√

2π
·e
− (x−µC)2

2σ2
C ,

(13)
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where x ∈ R, µ1, . . . , µC are the mean of the mixture components, σ1, . . . , σC are the standard
deviations of the mixture components, and w1, . . . , wC are the weights assigned to each
component that satisfy:

C

∑
i=1

wi = 1, wi ≥ 0 ∀i = 1, . . . , C. (14)

The MLE of the parameters on a dataset x = {x1, . . . , xN} of observed samples has no
explicit formulation; thus, the implicit optimization problem (to be solved numerically)
is reported:

µ̂1, σ̂1, µ̂2, σ̂2, . . . , µ̂C, σ̂C, ŵ1, ŵ2, . . . , ŵC =

= argmax
µ1,σ1,µ2,σ2,...,µC ,σC ,w1,w2,...,wC

N
∏

n=1
fMixN(xn|µ1, σ1, µ2, σ2, . . . , µC, σC, w1, w2, . . . , wC)

s.t. σ1, . . . , σC > 0
w1, . . . , wC > 0

∑C
i=1 wi = 1.

(15)

Note that the MLE of the MixN parameters is complicated by the fact that the transition
to the log-likelihood has no positive impact since the PDF is a weighted sum of exponentials
in x. Therefore, in this paper, we apply the expectation-maximization algorithm [27,28] to
obtain the estimations of the parameters. Note eventually that C is a hyper-parameter of
the distribution; for the supraharmonic data considered in this paper, good characterization
performance is achieved by picking between C = 2 and C = 3.

2.4. GOF Evaluation: Adjusted Determination Coefficient and Q-Q Plots

The adjusted determination coefficient (ADC) is calculated to quantitatively assess the
GOF of each distribution [28–30], and it is the metric used to select the most appropriate
distribution for each data sample.

The ADC is defined from the determination coefficient (DC); if the domain of the
random variable is divided in B bins for GOF assessment purposes, the DC is:

DC = 1−
∑B

i=1

(Nbi
N − pbi

)2

∑B
i=1

(Nbi
N − Nb

)2 , (16)

where pbi
is the theoretical cumulative probability (calculated from the estimated distribu-

tion) of the random variable to belong to the ith bin bi, Nbi
is the number of data samples

that are observed and lie in the ith bin bi, and:

Nbi
=

1
B ∑B

i=1 Nbi
. (17)

The ADC is introduced to calibrate the DC by the number of parameters involved in
the estimated distributions, as more parameters typically tend to better capture the shape
of the empirical data in characterization purposes but may be less useful out-of-sample as
they tend to overfit the data. The ADC is defined as:

ADC = 1− (1− DC)
N − 1

N − np
, (18)

where np is the number of parameters of the distribution.
The DC and ADC maximum value is 1; the closer they are to 1, the better is the fit. In

this paper, the ADC is considered for GOF purposes in order to discern also by the number
of parameters involved in the distribution.

The quantile-quantile (Q-Q) plots are further used for a graphical interpretation of
the GOF. Q-Q plots illustrate the empirical data quantiles versus the theoretical quantiles
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determined by the estimated distribution. Q-Q plots that resemble a straight line (i.e., the
bisector of the first quadrant) are more prone to identify an acceptable GOF.

3. Results

The statistical characterization of supraharmonics in low-voltage networks is per-
formed considering actual data available from the PQube Live World Map of Power
Quality [22]. The overall supraharmonic emission (through the TSHD) and individual
supraharmonic components are characterized at several local locations across the world
and through several weeks. Many case studies and scenarios have been developed; several
of them are presented in this section.

3.1. Data Description: PQube Live World Map of Power Quality

The PQube Live World Map of Power Quality [22] is a publicly available database
that includes data and variables of many PQ events across the world. The database
is maintained by a manufacturer of PQ measurement systems, with the support and
availability of facilities and academic institutions that host the measurement systems and
distribute the data on the cloud platform.

For the purpose of this paper, the voltage data coming from PQube3 measurement
systems are picked; these systems are indeed the ones able to monitor supraharmonics
according to the IEC 61000-4-30 standard in the considered PQube database; therefore,
the analysis reported below considers only locations at which a PQube3 measurement
system is installed. To provide diversity, four locations—Austin (TX), Delray Beach (FL),
Murphys (CA), Alameda (CA)—are selected from the USA, and four locations—Wohlen
(Switzerland), Rochford (UK), Amsterdam (The Netherlands), Skelleftea (Sweden)—are
selected from Europe.

The supraharmonic data is collected at each location for 14 days at a 1-minute time
resolution. The data is directly provided by the form of voltage supraharmonic compo-
nents grouped at 2 kHz; thus, 75 individual components are available. For each voltage
supraharmonic component, the average (avg) and the peak value are provided for each
minute, according to the specifications of the IEC 61000-4-30 standard. The case studies
presented below will include both the avg and the peak data, either through the TSHDavg
and TSHDpeak or the individual avg and peak components. Note that for the Austin and
the Delray Beach dataset, only the avg components are provided.

3.2. TSHD Characterization

The TSHDavg and TSHDpeak evaluated at the eight locations are characterized through
the Norm, LogN, Weib, Burr, and MixN distributions.

As an example of the obtained results, the estimated cumulative distribution functions
(CDFs) of the TSHDavg and TSHDpeak for two locations (Alameda and Wohlen) are illustrated
in Figure 1. The empirical CDF shapes of the TSHD data at Alameda clearly demonstrate
the presence of regimes, which can be adequately modeled only through the multimodal
MixN distribution. Particularly, the TSHDavg is captured only through a MixN with C = 3
components. This behavior, however, is not generalizable, as, for example, the TSHDpeak at
Wohlen has a cleaner behavior which can also be captured by the unimodal distributions.

The quantitative assessment of the GOF is reported in Table 1 through the ADC. Bold
values indicate the best fit. The MixN distribution with C = 3 components is always the
best pick as it returns the greatest ADC in all the considered locations and scenarios.



Appl. Sci. 2021, 11, 3574 8 of 15Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15 
 

  

(a) (b) 

  
(c) (d) 

Figure 1. Estimated and empirical CDFs of the: (a) TSHDavg at Alameda (CA); (b) TSHDpeak at Alameda (CA); (c) TSHDavg 
at Wohlen (Swizterland); (d) TSHDpeak at Wohlen (Swizterland). 

The quantitative assessment of the GOF is reported in Table 1 through the ADC. Bold 
values indicate the best fit. The MixN distribution with ܥ = 3 components is always the 
best pick as it returns the greatest ADC in all the considered locations and scenarios. 

Table 1. Adjusted determination coefficient of the TSHD distributions. Bold values indicate the best fit. 

Location Index 
TSHD Distribution 
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Delray Beach ADC (avg) 0.9326 0.8770 0.9556 0.9556 0.9971 0.9998 

Murphys 
ADC (avg) 0.8469 0.8944 0.7542 0.9933 0.9971 0.9971 

ADC (peak) 0.8409 0.9174 0.7812 0.9957 0.9837 0.9987 

Alameda 
ADC (avg) 0.9329 0.9357 0.9402 0.9411 0.9880 0.9965 

ADC (peak) 0.4299 0.7281 0.6613 0.8820 0.9140 0.9140 

Wohlen 
ADC (avg) 0.9174 0.9418 0.9172 0.9792 0.9955 0.9999 

ADC (peak) 0.8794 0.9402 0.8694 0.9919 0.9854 0.9991 

Rochford 
ADC (avg) 0.7626 0.8643 0.8495 0.9082 0.9640 0.9958 

ADC (peak) 0.8037 0.8900 0.8789 0.9088 0.9707 0.9963 

Amsterdam 
ADC (avg) 0.9857 0.9640 0.9878 0.9878 0.9896 0.9988 

ADC (peak) 0.9873 0.9430 0.9532 0.9846 0.9929 0.9945 

Skelleftea 
ADC (avg) 0.9894 0.9949 0.9331 0.9988 0.9999 0.9999 

ADC (peak) 0.5604 0.9127 0.4604 0.9944 0.9982 0.9995 

Figure 1. Estimated and empirical CDFs of the: (a) TSHDavg at Alameda (CA); (b) TSHDpeak at Alameda (CA); (c) TSHDavg

at Wohlen (Swizterland); (d) TSHDpeak at Wohlen (Swizterland).

Table 1. Adjusted determination coefficient of the TSHD distributions. Bold values indicate the best fit.

Location Index
TSHD Distribution

Norm LogN Weib Burr MixN C = 2 MixN C = 3

Austin ADC (avg) 0.9913 0.9847 0.9787 0.9974 0.9999 0.9999

Delray Beach ADC (avg) 0.9326 0.8770 0.9556 0.9556 0.9971 0.9998

Murphys ADC (avg) 0.8469 0.8944 0.7542 0.9933 0.9971 0.9971
ADC (peak) 0.8409 0.9174 0.7812 0.9957 0.9837 0.9987

Alameda
ADC (avg) 0.9329 0.9357 0.9402 0.9411 0.9880 0.9965

ADC (peak) 0.4299 0.7281 0.6613 0.8820 0.9140 0.9140

Wohlen
ADC (avg) 0.9174 0.9418 0.9172 0.9792 0.9955 0.9999

ADC (peak) 0.8794 0.9402 0.8694 0.9919 0.9854 0.9991

Rochford
ADC (avg) 0.7626 0.8643 0.8495 0.9082 0.9640 0.9958

ADC (peak) 0.8037 0.8900 0.8789 0.9088 0.9707 0.9963

Amsterdam
ADC (avg) 0.9857 0.9640 0.9878 0.9878 0.9896 0.9988

ADC (peak) 0.9873 0.9430 0.9532 0.9846 0.9929 0.9945

Skelleftea
ADC (avg) 0.9894 0.9949 0.9331 0.9988 0.9999 0.9999

ADC (peak) 0.5604 0.9127 0.4604 0.9944 0.9982 0.9995
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In four case studies, the MixN with C = 2 components has equal performance, denot-
ing that a bimodal distribution is, however, effective when two regimes can be individuated.
Restricting the analysis to the unimodal distributions, only the Burr distribution has overall
the best characterization skill; in two case studies, i.e., TSHDpeak at Murphys and Wohlen,
the Burr performs also better than the MixN with C = 2 components. It is worth noting
that the most common distributions, such as the Norm and the Weib, perform very poorly,
especially in characterizing the TSHDpeak.

The Q-Q plot of the TSHDavg and TSHDpeak for Alameda and Wohlen is illustrated in
Figure 2; for the sake of clarity, only the Burr distribution and the MixN distribution with
C = 3 components are considered in the Q-Q plots. The Q-Q plots of the MixN distribution
with C = 3 components are closer to resemble the bisector line, compared to the Q-Q plots
of the Burr distribution, which cannot even be assimilated to a straight line. Only in the
Alameda TSHDpeak case study, which is challenging as it is characterized by a pruned right
tail of upper quantiles at high TSHD value, the Q-Q plot of the MixN distribution with
C = 3 components is less close to the ideal bisector line.
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3.3. Individual Supraharmonic Component Characterization

The individual components evaluated at the eight locations are characterized through
the Norm, LogN, Weib, Burr, and MixN distributions. Only for the sake of conciseness, the
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results presented below refer to four individual components (6, 26, 50, and 120 kHz) at
Alameda; similar considerations arise from the analysis performed at the other locations.
The 6-, 26-, 50-, and 120-kHz components are investigated as they are representative of
the ranges 2–9, 9–30, 30–90, and 90–150 kHz, which are typically the object of interest
in supraharmonic analysis [11]. Both the avg and the peak values are considered in
the experiments.

The estimated CDFs of the four avg individual components and of the four peak
individual components are illustrated in Figures 3 and 4, respectively. The empirical
CDF shapes of the avg individual components strongly differ from the empirical CDF
shapes of the peak individual components: at a higher frequency, the CDFs of the avg
components appear to follow a stepwise pattern, denoting regions of quasi-continuous
avg supraharmonic emissions, whereas CDFs of the peak components appear to follow a
continuous, slightly oscillating pattern, with distributed regions of peak supraharmonic
emissions. The regimes identified for the peak individual components can be adequately
modeled only through the multimodal MixN distribution. It appears instead that the
benefit of applying the multimodal MixN distribution is reduced while considering the
avg individual components at a higher frequency.
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The quantitative assessment of the GOF is reported in Table 2 through the ADC.
Bold values indicate the best fit. The MixN distribution with C = 3 components is the
best pick in all the considered scenarios, as the ADC values are the greatest ones. As
guessed by the graphical inspection, the use of a multimodal distribution has the most
impact in characterizing the peak individual components as the unimodal components are
particularly poor, whereas the gap between unimodal and multimodal distribution is more
reduced in characterizing the avg individual components.

The Q-Q plot of the peak individual components at Alameda and Wohlen are il-
lustrated in Figure 5; for the sake of clarity, only the Burr distribution and the MixN
distribution with C = 3 components are considered in the Q-Q plots. The Q-Q plots of
the MixN distribution with C = 3 components are closer to resemble the bisector line,
compared to the Q-Q plots of the Burr distribution, which cannot even be assimilated to a
straight line.
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Table 2. Adjusted determination coefficient of the individual component distributions at Alameda. Bold values indicate the
best fit.

Component Frequency Index
Individual Component Distribution

Norm LogN Weib Burr MixN C = 2 MixN C = 3

6 kHz
ADC (avg) 0.9147 0.9692 0.9154 0.9707 0.9723 0.9985

ADC (peak) 0.4665 0.7893 0.7141 0.9426 0.9448 0.9448

26 kHz
ADC (avg) 0.9243 0.9591 0.9074 0.9863 0.9789 0.9910

ADC (peak) 0.4409 0.6195 0.5927 0.7643 0.9720 0.9720

50 kHz
ADC (avg) 0.9141 0.9416 0.8997 0.9660 0.9849 0.9930

ADC (peak) 0.4530 0.5984 0.5834 0.7192 0.9840 0.9840

120 kHz
ADC (avg) 0.9379 0.9364 0.9409 0.9408 0.9629 0.9636

ADC (peak) 0.5683 0.8110 0.7380 0.9557 0.9560 0.9560
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4. Discussion and Conclusions

The statistical characterization of supraharmonics is tackled in this paper to enable the
generation of scenarios and to foster the probabilistic analysis of power systems accounting
for emissions in the range 2–150 kHz. Several probability distribution families are consid-
ered to characterize supraharmonics within a detailed comparative scheme developed to
generalize the approach and to suit different conditions and case studies. The numerical ex-
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periments performed on public data collected at actual low-voltage distribution networks
confirm that the time-varying nature of supraharmonics is prone to be analyzed within a
probabilistic framework; moreover, the characterization is conveniently optimized using
multimodal distributions that are able to catch and model different operation regimes
that determine a different entity of supraharmonic components. Among the considered
distributions, the MixN shows the best fitting results in characterizing both the overall
supraharmonic content (through the TSHD) and individual supraharmonic components.
Notably, the estimated quantiles of the MixN maintain statistical consistency with the
empirical data quantiles even at low and high nominal coverages, as confirmed by the Q-Q
plot inspection at left and right tails.

Future research on this topic may follow several paths, such as the development of
more appropriate probability distributions to model supraharmonics and the exploitation of
the statistical characterization to generate scenarios and to implement probabilistic analysis
with a specific focus on supraharmonic emissions (e.g., within probabilistic harmonic power
flow studies). In perspective, this may also enable to take precise actions for the most
impactful power system components, to determine the available remaining capacity of the
network in terms of sustainable supraharmonic emissions, and to analyze the compensation
(summing effects). The availability of wider datasets that are not burdened by the 2 kHz
grouping may allow refining these procedures, accounting for a finer frequency resolution.
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Abbreviations

ADC Adjusted determination coefficient
CDF Cumulative distribution function
DC Determination coefficient
DFT Discrete fourier transform
GOF Goodness of fitting
LogN LogNormal distribution
MixN Mixture of normal distributions
MLE Maximum likelihood estimation
Norm Normal distribution
PDF Probability density function
Q-Q Quantile-Quantile
THD Total harmonic distortion
TSHD Total supraharmonic distortion
Weib Weibull distribution
argmax Argument of the maximum
avg Average value
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