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Abstract: Data forecasting is very important for electrical analysis development, transport dimen-
sionality, marketing strategies, etc. Hence, low error levels are required. However, in some cases data
have dissimilar behaviors that can vary depending on such exogenous variables as the type of day,
weather conditions, and geographical area, among others. Commonly, computational intelligence
techniques (e.g., artificial neural networks) are used due to their generalization capabilities. In spite
of the above, they do not have a unique way to reach optimal performance. For this reason, it is
necessary to analyze the data’s behavior and their statistical features in order to identify those signifi-
cant factors in the training process to guarantee a better performance. In this paper is proposed an
experimental method for identifying those significant factors in the forecasting model for time series
data and measure their effects on the Akaike information criterion (AIC) and the Mean Absolute
Percentage Error (MAPE). Additionally, we seek to establish optimal parameters for the proper
selection of the artificial neural network model.

Keywords: neural networks design; parameter optimization; multivariate statistical analysis

1. Introduction

Neural network design requires the proper determination of the input variables, i.e.,
the appropriate selection of the factors that affect the variable behavior to be modeled.
However, this is not a trivial issue because there is no formal theory to ensure that the
selected network is the best for a particular application problem. There are no handled
performance metrics for unsupervised neural networks to ensure that the configuration
developed has reached the optimal performance [1]. In supervised neural networks, the
Mean Absolute Percentage Error (MAPE) is commonly used to evaluate the generalization
capability of the model. Likewise, the state-of-the-art reports that the Akaike information
criterion (AIC) is proposed as a measure of comparison to identify a suitable configura-
tion [2,3]. For these reasons, it is necessary to know which factors influence the behavior
of these two-performance metrics, so that it can be established whether it is possible to
determine an optimal operating point for AIC and an appropriate dispersion index level
for MAPE.

Next, this paper will show some examples of the neural network training process
design, applying different strategies.

The training process models based on Radial Basis Function (RBF) networks [4]
are the most efficient in the neural network models for achieving an effective, adaptive,
and versatile architecture with precise computational time results. A multi-level neural
architecture composed of RBF Serially Operating Multipliers (SOM) algorithms executed in
parallel in a programming mode known as Compute Unified Device Architecture (CUDA)
is proposed by [5] to improve the accuracy and timing of the RBF model with the same
amount of data. The validation for such a structure consists of estimating ecological
variables with information on the environment through the CUDA-RBF-SOM structure,
which shows an improvement in time and precision for the training process of 0.1154%
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compared with the RBF network for the same estimated variable. In conclusion, they
present a new training process (CUDA-RBF-SOM) that reduces the execution time by
99.8846% compared to an RBF-SOM model.

In some cases, the quantity of data for the training process can lead to a problem, so
the architecture must not be limited by data. The neural network model proposed by [6]
is focused on reducing the quantity of input data needed in the training process. An RBF
network is applied to regression problems; the new structure consists of a multi-stage
training process that matches the orthogonal least squares (OLS) with an optimization
gradient. The model validation tests are performed on the data for the prediction of stress
and force in the knee required to prevent injuries in different scenarios (tasks), in which the
results and estimated times are compared with other models, such as OLS and feed-forward
back-propagation network (FFN), with their real values. The proposed structure named
Opt-RBN shows, in some scenarios, favorable results in the training data. Although the
training process time is a little longer, the authors consider it a good time because it is less
than one minute.

The Stochastic Gradient Descent (SGD) model during the training process updates a
Convolutional Neural Network (CNN) with a noisy gradient calculated from a random
batch. Each batch uniformly updates the network every once in a while, which leads to
loss problems in the batches. A model to mitigate this problem is proposed in the form of
a stochastic process that automatically selects the batch with the largest loss to accelerate
its training. This is called Inconsistent Stochastic Gradient Descent (ISGD) by [7]. The key
concept is that the inconsistent training dynamically adjusts the training effort without loss.
ISGD gradually reduces the average lost batch and uses a dynamic upper control limit to
identify a large lost batch as it goes along. The ISGD remains in the identified batch to
speed up the training with additional gradient updates. The tests for validating the ISGD
are based on data such as those derived from ImageNet (A large-scale hierarchical image
database), MNIST (Modified National Institute of Standards and Technology database),
and CIFAR-10 (Canadian Institute For Advanced Research database). Those tests showed a
convergence of the ISGD that was 14.94% faster than the SGD using the ImageNet database.
ISGD showed a convergence that was 23.57% faster than the SGD in the CIFAR-10 test. It
also showed a convergence that was 28.57% faster than the SGD using the MNIST database.

The Back Propagation Neural Network (BPNN) model is used in the training process
to determine the number of neurons needed in the two hidden layers of a neural network
to forecast the magnitude, on the Richter scale, of earthquakes in a region of the Philippine
Sea [8]. With the use of a data register for the earthquakes in the area from 1990 to 2014,
several series of BPNN models were built to forecast the magnitude of the earthquake and
compare them to the actual data. From the obtained data, it was concluded that a number
of 10 neurons per hidden layer is the ideal number for the forecasting model, since the
forecasting errors of the BPNN model with 10 neurons in each hidden layer were very
similar to those of the models that use more than 10 neurons per layer, which involves
a longer time of computation for similar results. The results were compared with the
actual values of the magnitudes of earthquakes that have already occurred, and the authors
concluded that the BPNN model forecasts a reliable Richter scale earthquake magnitude
result.

Neural network models are used to solve the text categorization problem. One of
the models is the Improved Back-Propagation Neural Network (IBPNN), proposed by [9],
that, with a parallel computational process, speeds up the neural network training for
text categorization. The BPNN algorithm uses a Sun Cluster with 34 nodes (processors).
The parallel IBPNN is integrated with the Singular Value Decomposition (SVD) technique,
wherein the neural network input is represented as a low dimensional feature vector. The
validation is performed using different databases wherein the number of processors is
modified from 1 to 32, which produces an improvement in the execution time without
diminishing the categorized text accuracy. The results show that the parallel IBPNN and
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the SVD technique achieve a faster, more adaptive, and more reliable training process in
the text categorization problem.

Table 1 shows a summary of techniques commonly used in the training of time series
models.

Table 1. Summary of techniques commonly used in the training of time series models.

Author
Training Techniques

ANN RBF OLS BPNN FFN SGD

[5] X X
[6] X X X
[7] X X
[8] X
[9] X X

[10] X X
[11] X X
[12] X X
[13] X X
[14] X X X
[15] X

According to Table 1, the data modeling process is not unique when evaluating
several different configurations’ performances to select one that best fits the variables to
be considered along with the data themselves. Depending on the configuration, it will
be necessary to define which process is more suitable for adjusting each parameter that
defines it. Since there is no formal theory for selecting the best model, in the case of neural
networks, it is common to find authors who base their selection on iterative processes in
which the training parameters change. The training process is supposed to be automatized,
and an experimental design wherein the most significant parameters are identified within
the modeling structure is proposed, in such a way that parameters change during the
iterative process for selection and comparison.

2. Experimental Planification

A design for experiments considering AIC and MAPE as performance metrics is pro-
posed to identify which factors are significant in the neural networks’ training process for
forecasting purposes. The historical energy demand data of an energy commercialization
market in Colombia, in the city of Barranquilla, were used to carry out this procedure [16].

In the training process, the validation and selection of the neural network can influence
the adaptability and generalization of the neural network. Factors related to the network
configuration are highlighted in the first instance, within which are (1) network type, (2)
number of layers, (3) the number of neurons in the hidden layer, and (4) activation function
type. Additionally, the factors defined in the training and validation stages are (5) initial
learning coefficient, (6) number of data to consider, (7) percentage of data for training,
validation, and testing, (8) training algorithm, (9) training epochs, (10) corresponding time,
and (11) presentation data order for training [17].

Factors 1, 4, 9, 10, and 11 are held constant. The activation functions used in pattern
recognition and classification are typically the input neurons’ identity function, and the
sigmoid function for the other layers (hidden layer and output layer). For the network
type, a Multilayer Perceptron (MLP) is used due to its better generalization capability; for
example, RBF for activities related to classification and pattern recognition applications.
The number of epochs is set at 100.

Factors 2, 3, and 5–9 will be the design factors manipulated to verify their significance
in the AIC index and the MAPE metric. Since the main goal is to identify which factors are
significant in designing a neural network for time series modeling, we decided to choose
two factor levels (low and high).
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According to the state-of-the-art, the ranges to be considered during the training and
validation processes shall be as follows:

1. Training algorithm—Levenberg–Marquardt or Resilient Backpropagation;
2. Number of hidden layers—1–5;
3. Number of neurons in the hidden layer—1–10;
4. Data number—60–120;
5. Validation percentage—10–30.

Table 2 shows the levels and ranges for the design factors.

Table 2. Factors design.

Factors
Levels

Low High

Training algorithm Levenberg–Marquardt Resilient Backpropagation
Number of hidden layers 1 5
Number of neurons in the

hidden layer 1 10

Data number 60 120
Validation percentage 10 30

Since the objective of this study is to identify the significant factors in the performance
of a neural network for forecasting purposes, we chose to select as response variables the
AIC and the MAPE.

3. Experimental Design

The 2k factorial design is selected to evaluate each factor’s effect on the neural net-
work’s training and validation processes. This experiment is adequate when the goal is
to analyze the significance of the factors with a minimum number of runs [18]. In this
case, only two levels (low and high) are considered. This can be viewed as a weakness
when the factors have significant interaction and a curvature in the experimental zone.
When the curvature is detected, it is necessary to aggregate central and axial points in
the experimental design. Another aspect to consider is the null quantity of the degree
of freedom of the error. Thus, it is recommended to apply the following two strategies:
(1) to identify the significant effects through a normal probability plot, i.e., remove from
the analysis those factors fitted to the normal probability plot because their behaviors are
similar to the residues. In this case, the degree of freedom of each excluded effect is added
to the error. (2) To aggregate central points to the 2k experiment; these points are added
in the center of the experimental zone, at points xi = 0 (i = 1, 2, 3, . . . , k). This strategy
allows for adding a degree of freedom to the error and measuring the response variable
experimental zone curvature.

The experimental design carried out in this paper is a 25 with six central points. Three
of these will be developed with a qualitative factor in the low level (Levenberg–Marquardt
algorithm) and the other three in the high level (Resilient Backpropagation algorithm). If
the linear model does not fit the data, adding an axial point located at the central point will
be necessary.

4. Experimental Results

ANOVA multifactorial analysis of variance is used to identify which factors are
relevant. In this sense, a normal probability plot is constructed to determine which factors
are relevant, as shown in Figure 1 for the AIC index.

Figure 1 and Table 3 show the CE effect as the most relevant. The AIC response is only
affected by the CE effect, because the p-value is less than 0.05. It is necessary to verify that
the model fulfills the normality, homoscedasticity, and independent conditions to validate
the result reached through the ANOVA analysis.
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Figure 1. Normal probability plot for Akaike information criterion (AIC).

Table 3 shows the results reached through the ANOVA analysis for AIC.

Table 3. ANOVA for AIC.

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-Ratio p-Value

A: Train_Alg 24.1165 1 24.1165 0.00 0.9507
B: Hidd_Num 10,937.1 1 10,937.1 1.77 0.1968
C: Neu_Num 6739.35 1 6739.35 1.09 0.3074
D: Data_Num 1338.51 1 1338.51 0.22 0.6460

E: Val_Per 240.395 1 240.395 0.04 0.8454
AB 13,455.4 1 13,455.4 2.18 0.1540
AC 366.218 1 366.218 0.06 0.8098
AD 266.442 1 266.442 0.04 0.8373
AE 350.781 1 350.781 0.06 0.8138
BC 1048.89 1 1048.89 0.17 0.6842
BD 12,865.9 1 12,865.9 2.08 0.1629
BE 4542.03 1 4542.03 0.74 0.4003
CD 10,783.0 1 10,783.0 1.75 0.1999
CE 31,620.4 1 31,620.4 5.12 0.0338
DE 237.081 1 237.081 0.04 0.8464

Total error 135,813 22 6173.34
Total (corrected error) 230,629 37

Chi-square is used to validate the normality condition as is shown in Table 4.

Because the Chi-square test has a p-value greater than 0.05, it is not possible to reject
the null hypothesis; hence, the residuals fit into a normality plot.

To verify the homoscedasticity condition, we used the Levene’s test, as shown in
Table 5.

According to the results in Table 5, four factors fulfill the homoscedasticity condition
because their p-values are greater than 0.05.

The third and last condition is lag 1 autocorrelation, and the results are as follows:
Durbin–Watson = 2.3533 (p-value = 0.5515), Lag 1 autocorrelation = −0.057753. The Durbin–
Watson statistic is equal to 2 approximately; hence, residuals are independent.

Table 4. Normality test for AIC.

Test p-Value

Chi-square 0.1319
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Table 5. Homoscedasticity test for AIC.

Levene’s Test p-Value

B 1.38557 0.263
C 1.54509 0.22749
D 1.61809 0.2127
E 1.73115 0.1919

For MAPE analysis the same procedure is carried out. As is seen in Figure 2 and
Table 6, the CE effect is the most relevant. The MAPE response is only affected by the CE
effect, because the p-value is less than 0.05. It is necessary to verify that the model fulfills
the normality, homoscedasticity, and independent conditions to validate the result reached
through the ANOVA analysis for MAPE.

Figure 2. Normal probability plot for Mean Absolute Percentage Error (MAPE).

Table 6. ANOVA for MAPE.

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-Ratio p-Value

A: Train_Alg 0.871079 1 0.871079 2.78 0.1096

B: Hidd_Num 0.0182764 1 0.0182764 0.06 0.8114

C: Neu_Num 0.0201734 1 0.0201734 0.06 0.8020

D: Data_Num 0.00900434 1 0.00900434 0.03 0.8669

E: Val_Per 0.331972 1 0.331972 1.06 0.3145

AB 0.0507545 1 0.0507545 0.16 0.6912

AC 0.00168203 1 0.00168203 0.01 0.9422

AD 0.0519588 1 0.0519588 0.17 0.6877

AE 0.446753 1 0.446753 1.43 0.2451

BC 0.567389 1 0.567389 1.81 0.1921

BD 0.0440187 1 0.0440187 0.14 0.7114

BE 0.412097 1 0.412097 1.32 0.2637

CD 0.048383 1 0.048383 0.15 0.6981

CE 1.75907 1 1.75907 5.62 0.0270

DE 0.00784171 1 0.00784171 0.03 0.8757

Error total 6.89167 22 0.313258

Total (corrected error) 11.5321 37
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Chi-square is used to validate the normality condition. The result is shown in Table 7.

Table 7. Normality test for MAPE.

Test p-Value

Chi-square 0.0269

There are no data results for this stage with the normality test. Since the factors have
similar effects compared to the AIC response, it is considered acceptable to continue the
optimization stage with only the last response variable.

According to the results of Table 8, four factors fulfill the homoscedasticity condition
because the p-values are greater than 0.05.

Table 8. Homoscedasticity test for MAPE.

Factor Levene’s Test p-Value

B 0.327 0.722
C 0.305 0.738
D 0.366 0.685
E 0.876 0.425

Durbin–Watson statistic = 2.13134 (p-value = 0.6651), and Lag 1 residual autocorrela-
tion = −0.158786.

Due to the fact that the Durbin–Watson statistic has a p-value greater than 0.05, the
null hypothesis is rejected; hence, the residuals have no linear correlation.

5. Regression Model

According to the ANOVA analysis, the interaction of two factors (C: Neurons number
and E: Validation percentage) is related significantly to the AIC behavior. Now, it is
necessary to set an ideal configuration through an optimization process. To carry out this
stage, the experimental design to be used is two factors with one replicate.

The results of the experiment are shown in Table 9.

Table 9. Levels of model analysis.

Neu_Num (C) Val_Per (E) AIC

1 10 18.2656065
5.5 20 2.35135344
10 20 165.831393
5.5 10 53.4919072
1 20 7.9016126
10 10 200.675933
1 10 19.8895334

5.5 20 105.424653
10 20 175.661213
5.5 10 121.928836
1 20 29.8195033
10 10 159.069137

Equation (1) shows the fitted equation of the regression model for the AIC response.
The coefficient test is conducted according to the result shown in Table 10.

y1 = 16.46C (1)
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Table 10. Coefficients test.

Coefficient Typical Error t-Statistic p-Value

Number of neurons 16.46 1.44 11.38 1.9 × 10−7

Table 11 shows the grouped regression statistics of the adjusted model. The R2 is the
achieved correlation coefficient.

Table 11. Grouped regression statistics of the model analysis.

Regression Statistics

R_pearson 0.96010775
R2 0.92180688

Adjusted R2 0.83089779
Typical error 33.1356306
Observations 12

Table 12 shows that the p-value (4.7736 × 10−7) is less than the α used in the experi-
ment; hence, the null hypothesis is rejected, demonstrating that the model fits to the actual
data.

Table 12. ANOVA for model analysis.

Source Degrees of
Freedom

Sum of
Squares

Mean
Square F-Ratio p-Value

Regression 1 142,381.8 142,381.8 129.677347 4.7736 × 10−7

Residues 11 12,077.6 1097.97
Total 12 154,459.5

Figure 3 shows only the residuals for the relevant factor (number of neurons) discov-
ered in the fitting curve for the AIC response. It has no clear structure in the residuals
data.

Figure 3. Residuals for the C factor.

6. Optimization Results

According to the regression model analysis, only the C factor is required for fitting the
data to the AIC response. It is proposed to evaluate the means of observing whether there
is any statistical difference between levels. The results are shown in Table 13. In this case,
we propose minimizing the AIC response with a minimum number of neurons.
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Table 13. ANOVA for C Factor (number of neurons).

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-Ratio p-Value

Between groups 50,734.7 2 25,367.4 22.75 0.0003

Within groups 10,036.5 9 1115.17

Total (corrected error) 60,771.3 11

Tables 13 and 14 show the results of LSD (Least Significant Difference) analysis. The
results show that there is no statistical difference between 1 and 5.5 levels. However, the
change when the number of neurons jumps to 10 is notable.

The optimal point where the system reaches a minimum AIC with a low number of
neurons is less than five for one neuron in the hidden layer.

Table 14. Fisher LSD test.

Neu_Number Cases Mean Homogenous Group

1 4 18.9691 X
5.5 4 70.7992 X
10 4 175.309 X

7. Forecasting Model Testing

The historical energy demand data of an electricity market in Colombia (State of
Atlántico) were taken in the period from 1 January 2016 to 30 September 2019 (see Figure 4)
to evaluate the performance of this proposal. Here, 70% of the data are taken for training,
15% for validation, and 15% for testing the time series. The models’ performance is
validated by using one of the rolling windows with a step k that depends on the number
of models for each subset. For the validation process, the separation of data into small
subsets has been proposed to avoid data overlap during the training process. This ensures
that the models are unaware of all the validation data. Once the model training process is
done, the test data are used to evaluate the model performance. The training data selection
will be made randomly and following a uniform distribution. Weather data were acquired
through the website www.accuweather.com (accessed on 30 September 2019).

Figure 4. Actual data for the energy demand of Atlántico electricity market.

www.accuweather.com
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Time series data of Figure 4 are used as a reference to evaluate the results from
Section 7. Figures 5 and 6 show that an increase in the C factor only increases the model
complexity, without guaranteeing better performance in terms mainly of MAPE.

Figure 5. Multi-comparison test: AIC vs. number of neurons.

Figure 6. Multi-comparison test: MAPE vs. number of neurons.

Additionally, we show how it is possible to obtain better performance by varying the
number of neurons, allowing a lower computational cost due to a training process with a
lower time requirement. Table 15 shows the relationship between the number of neurons
and the training time for data from the 24 periods of energy demand according to the
considerations addressed in [19].

Table 15. Relationship between number of neurons and training time.

Number of Neurons Training Sime (s)

1 0.285186
10 0.284743
20 0.466448
50 7.847768
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Table 15 shows that a higher number of neurons in the training process implies an
exponentially higher computational cost. Therefore, the proposed approach is key when
defining an experimentation zone that reduces the time required for the training process,
searching for an optimal performance value of the forecasting model.

The results in the implementation of an energy demand prediction model are shown
in Figure 7, using the same methodology in the training process of the models as is used
in [16].

Figure 7. Forecast and actual data for the energy demand of the Atlántico electricity market.

Figure 8 shows the MAPE performance of the proposed approach for the forecasting
process of the Atlántico electricity market, considering the testing data from 1 April 2019 to
30 September 2019.

Figure 8. Performance comparison of the model used by the Atlántico electricity market operator
and the proposed approach.

The forecasting models obtained through the proposed methodology evidence a better
performance due to this method’s radar chart area being less than that of the Atlántico
electricity market operator.

8. Conclusions

The results of this experimental design allowed us to identify that factors such as the
number of hidden layers, the quantity of training data, and the validation percentage are
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not relevant in the network performance in terms of AIC and MAPE performance. Through
the ANOVA analysis and the normal probability plot, it was possible to show initially
which interaction had more relevance. In both cases, the response variable depended only
on the interaction between the number of neurons and the validation percentage.

After selecting the relevant effects, a 3k design was used to detect curvature and
determine the best model. In this case, only a linear model is necessary to describe the
relationship between AIC and the number of neurons. There are defined as constraints a
maximum of five (5) neurons and an AIC of less than 10 to optimize the regression model.
An Excel solver makes it possible to find this optimal point.

Finally, multi-comparison tests showed a high difference between levels 1 and 3. A
significant difference in terms of better performance was only demonstrated for a low
number of neurons.
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