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Abstract: Computer-aided diagnosis is a research area of increasing interest in third-level pediatric
hospital care. The effectiveness of surgical treatments improves with accurate and timely information,
and machine learning techniques have been employed to assist practitioners in making decisions.
In this context, the prediction of the discharge diagnosis of new incoming patients could make
a difference for successful treatments and optimal resource use. In this paper, a computer-aided
diagnosis system is proposed to provide statistical information on the discharge diagnosis of a new
incoming patient, based on the historical records from previously treated patients. The proposed
system was trained and tested using a dataset of 1196 records; the dataset was coded according
to the International Classification of Diseases, version 10 (ICD10). Among the processing steps,
relevant features for classification were selected using the sequential forward selection wrapper,
and outliers were removed using the density-based spatial clustering of applications with noise.
Ensembles of decision trees were trained with different strategies, and the highest classification
accuracy was obtained with the extreme Gradient boosting algorithm. A 10-fold cross-validation
strategy was employed for system evaluation, and performance comparison was performed in
terms of accuracy and F-measure. Experimental results showed an average accuracy of 84.62%, and
the resulting decision tree learned from the experience in samples allowed it to visualize suitable
treatments related to the historical record of patients. According to computer simulations, the
proposed classification approach using XGBoost provided higher classification performance than
other ensemble approaches; the resulting decision tree can be employed to inform possible paths and
risks according to previous experience learned by the system. Finally, the adaptive system may learn
from new cases to increase decisions’ accuracy through incremental learning.

Keywords: computer-aided diagnosis; pediatrics; support vector machines; decision trees; CART;
DBSCAN; XGBoost; AdaBoost; gradient boosting; voting ensemble; random bagging

1. Introduction

Computer-aided diagnosis systems have been proposed to solve medicine and biology
problems since the late 1950s [1]. In a variety of health institutions, current clinical prac-
tices include the use of computer-based tools daily. However, such systems still present
challenges either in the clinical, regulatory, and algorithmic aspects [2]. Regarding the
algorithmic aspects, recent trends exhibit that studies are focusing on the use of artifi-
cial intelligence and machine learning techniques to diagnose diseases based on patients’
historical records [1].
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Medical treatments are complex management problems in pediatric patients due to
limited historical information and the following two important factors. First, supplying
antibiotics or drugs without an adequate diagnosis can lengthen treatment times and
aggravate the condition of the patient. Secondly, surgical procedures in this type of
patient are hazardous due to the small size of their organs, generating problems such as
anastomosis [3]. From this perspective, as noted by Frongia et al. [4], a correct and timely
diagnostic may help practitioners to reduce the risk involved in these procedures.

According to Ozgediz et al. [5], more than fifty percent of pediatric cases attended in
hospitals correspond to readmission conditions, and many of these occurred in emergencies
with surgical procedures in a critical time. Whereas some conditions may require a single
intervention, in some cases, follow-up treatments are necessary due to unresolved patholo-
gies in previous treatments. These situations may result in patients with very delicate
conditions or death, which may provoke further sanctions to doctors and hospitals [5,6].
Additional complications may be caused by the lack of specialized medical equipment,
supplies, and trained professionals for specialized surgical procedures, either in adults or
children [5,7]. For a more accurate and prompt diagnosis, the clinical histories of patients
are used to find treatment and symptom patterns over the most complex diseases. In this
regard, Escobar and Caty [8] mentioned that 60 years of studies in neonatal physiology led
to the creation of specialized pediatric anesthesia, critical neonatal care, and the identifi-
cation of a significant part of the pathologies of the child. In that direction, the use of the
international statistical classification of diseases and related health problems (ICD10) drives the
diagnosis of complex cases, including infants; however, the diagnosis requires a subjective
analysis that is highly influenced by the expertise of the physician.

Nowadays, computer scientists and medical researchers have investigated the po-
tential of intelligent systems for computer-aided diagnosis and the planning of surgical
procedures. Data from the clinical histories enable the modeling of the relationship be-
tween patient conditions and discharge diagnosis when patients are submitted to surgical
procedures, using machine learning techniques [9]. An increasing tendency to use data
science in medicine has been noted to provide additional information in complex cases
or improve the diagnosis by reducing subjectivity [10]. Thus, Wong [11] suggested that
in 2050, medicine will evolve into precision medicine, involving customized therapies that
fit the biology of the patient and their metabolism, as well as genetically estimated drug
dosing. From that perspective, pediatric procedures are not excluded, and computational
models are fundamental for disease prediction and intervention, reducing time and effort
for specific treatments [6,12].

The adoption of computer-aided diagnosis systems to improve the diagnosis of breast
cancer [13] and lesions in organs [14] are examples of the numerous applications that are
becoming more usual. Figure 1 shows the four steps, followed by a generic structure of
a computer-aided diagnosis system, as suggested by Triantaphyllou [15] and Yanase and
Triantaphyllou [2]. The details of each step are determined by the input data structure and
the nature of the results required by the application scenario. Among the considerable
amount of supervised learning approaches, one of the most well-known classifiers in
computer-aided diagnosis systems is decision trees (DTs). Other classifiers commonly
employed in this area include support vector machines, artificial neural networks, and k-
nearest neighbors. Furthermore, it is well known that ensemble-based classifications tend to
reduce bias and variance, producing more stable classification results [16-18]. Examples of
general approaches include bagging and boosting, presenting a trade-off between accuracy
and sensitivity to outliers. Variants of these general approaches are random forests and
AdaBoost, which have been found to present comparable performance, and following the
principle of no-free-lunch, the selection should follow a careful experimental trial.
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Figure 1. The general structure of a computer-aided diagnosis system.

Table 1 presents a couple of publications that apply machine learning methods to
solve classification issues. Although the results in Table 1 cannot be fairly compared
due to differences in experimental settings and different classification problems, some
good results are shown by distinct approaches. Among the classifiers employed in CAD
systems, neural network approaches have been more often employed in medical imagery,
and other approaches are spread over different applications. A relevant result obtained
with AdaBoost reveals a significant reduction in the false-positive classification rate [19].
A decrease in the false detection of breast cancer is relevant to reduce the unnecessary costs
derived from supplementary exams. Another interesting result is the use of XGBoost to
predict the revisit, based on the historical records from patients [6]. A recent survey on the
computer-aided diagnosis confirms the no-free-lunch theorem in CAD systems (no single
algorithm can be applied to all aspects of CAD), and DTs are representative supervised
approaches employed for classification [1]. Deep learning approaches are also employed
for classification in CAD systems. With the drawback, these approaches require many
training data to build accurate models, which is problematic for pediatric patients with a
short clinical history. Despite the above, DTs’ low stability to small changes in the training
set makes this approach hard to tune, and the strategy employed to reduce such instability
consists of using ensemble learning [16].
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Table 1. Representative publications that report the use of machine learning approaches for medical diagnosis.

Problem Proposal Technique  Results Validation Reference
Classification of unhealthy The authors introduced a system for classifying unhealthy and healthy neonates in ANN Accuracy: 98.42% 10-fold cross Savasci et al. [20]
and healthy neonates neonatal intensive care units using medical thermography processing and artificial neural validation
networks (ANN).
. . . . . Accuracy: 96.05% - :
Disease diagnosis (tuberculo- The authors introduced a system based on convolutional neural networks (CNN) for CNN AUC * 0.99 Data splitting Simon et al. [21]
sis, malaria, and intestinal par- disease diagnosis from microscopic images. e
asites)
Detection of congenital abnor- The authors introduced a computer-aided diagnosis (CAD) system based on ultrasound CNN and AUCs > 0.88 10-fold Zheng et al. [22]
malities of the kidney and uri- imaging data, which consists of 3 components, namely: (1) kidney segmentation, (2) SVM cross-validation
nary tract in children feature extraction, and (3) A classification model based on the support vector machines
(SVM) technique.
Mortality prediction In this study, the authors developed a model based on the naive Bayes (NB) technique to NB AUC: 0.83 Data splitting Hernandez-
predict in-hospital mortality in patients undergoing transcatheter mitral valve repair. Suarez et al.
(23]
. . e . - Accuracy: 90.9% ;
Detection of hypertension The authors presented a CAD system to help clinicians in the hypertension prediction. = CNN and AUC: 0.9091 10-fold Kandil et al. [24]
bagging e cross-validation
Arrhythmia classification A system for monitoring cardiac patients using machine learning techniques like proba- PNN F-measure: 91.83 22-fold Rajagopal [25]
bilistic neural network (PNN) and multilayer perceptron neural network (MLPNN). cross-validation
Voice pathology detection The authors presented a method combining density clustering and support vector ma- SVM and Accuracy: 98.00% Cross validation ~ Amami and
chines for voice pathology detection. DBScan Smitib [26]
Disease diagnosis (heart dis- A hybrid system for diseases diagnostic is proposed, which is compounded by a new SVM and Accuracy: 98.95% 10-fold Peker [9]
ease, Parkinson’s disease, and method entitled k-medoids clustering-based attribute weighting (kmAW) as a data pre- kmAW cross-validation
BUPA liver disorder) processing method, and an SVM was preferred in the classification phase.
Predicting patient revisits This study focuses on the predictive identification of patients frequently revisiting the ~XGBoost AUC: 0.754 Data splitting Fowler et al. [6]
University of Virginia Health System Emergency Department. The authors proposed the
use of the XGBoost algorithm to predict the risk of revisit.
Identification of brain tumors  The detection of tumors is performed with the help of automatic computing technique. =~ CNN Accuracy: 99.1% Data splitting Samikannu et al.

[27]
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Table 1. Cont.

Problem Proposal Technique  Results Validation Reference
Detection of breast cancer The proposed model is based on the SVM technique, which uses a radial basis function SVM Accuracy: 93.9% 10-fold cross- Rahmanetal. [28]
(RBF) kernel. validation
The proposed CAD system uses ensemble learning from CNN. CNN 258%%146925 77% Data splitting Moon et al. [29]
The CAD system is based on feature selection and ensemble learning. Compared with AdaBoost AUC: 0.9617 10-fold cross- Luetal. [19]
other methods [30], the proposed method significantly reduces the false-positive classifi- validation

cation rate.

* Receiver operating characteristics (ROC) is a probability curve and the area under the ROC curve (AUC) represents degree or measure of separability.
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Regarding the limitations of current systems, the works reported in Table 1 provide
information about the diagnosis of a given condition; some of them use images to describe
the characteristics of some pathologies, and others describe demographic data. However,
the works reported do not consider characteristics such as the complications that occurred
during treatment and relevant factors related to the patient’s comorbidities, which could
have led to poor patient outcomes.

This research paper is a retrospective study in which a computer-aided diagnostic sys-
tem is proposed to predict the discharge diagnosis of pediatric patients undergoing surgical
procedures in a third-level pediatric hospital in Peru. According to the hospital require-
ments, the system predicts one of three discharge diagnoses: (1) deceased; (2) unhealthy;
and (3) healthy. These three discharge diagnoses are those employed in the current input
analysis made to every new patient, based on the historical record and new observations.
Five modules are proposed to evaluate patients’ records. In the second module, missing
data are completed using the wrapper algorithm. In the third module, non-relevant records
(outliers) are filtered out to reduce noisy samples. In the fourth module, the ensembles of
decision trees are trained using XGBoost to classify and present the results. Finally, the
system is evaluated on a dataset composed of historical records from pediatric patients, fol-
lowing a 10-fold cross-validation process. The proposed approach is compared to distinct
classifier ensembles in terms of Accuracy and F-measure.

2. Materials and Methods

The context of the implementation is the Hospital Nacional San Bartolomé, in Lima,
Perd, which is a category III-1 hospital, that is part of the public health service [31]. Due to
the retrospective nature of the study, informed consent was waived. The sections below
describe the data from clinical records and the experimental methodology employed to
evaluate the performance and properties of the proposed computer-aided diagnosis system.

2.1. Data Acquisition

A database with 1205 medical records of pediatric patients is available, each patient
was diagnosed at the hospital entrance, and their condition was coded according to the
International Classification of Diseases, version 10 (ICD10) standard [32]. Additional
information in patients’ records includes a medical history and a detailed diagnostic before
and after hospitalization.

Table 2 presents the complete list of characteristics considered for classification.
Whereas ordinal features are suitable for thresholding, categorical data are restricted
to a number of categories that are represented with names or tags.

Table 2. Eleven data features employed to describe the present state of patient records.

Features Description Ordinal
Age Patient’s age Yes
Weight Patient’s weight Yes
Gender Patient’s gender No
DI Demographic information * No
Time_qgx Surgery time Yes
D_Hospital Days in hospital Yes
ICD10 Entry diagnosis No
Medicine Medicine supplied No
TT_ Medic Level of medical treatment No
Found Treatment findings No
Complications Treatment complications No

* Residence.



Appl. Sci. 2021, 11, 3529

7 of 17

2.2. Experimental Methodology

The process pursued to evaluate the system was summarized in the five phases shown
in Figure 2; this process was based on the general structure of a computer-aided diagnostic
system (see Figure 1). The first phase is the coding of the data by assigning categories to the
numerical labels. Then, the missing information in the medical records must be completed
using imputer methods. The third phase was to filter the data by removing noise from
the data and performing a feature selection process to classify the data. The fourth phase
was the classification of the data, which included optimizing the hyperparameters of the
selected classification methods and their subsequent training using the cross-validation
technique. Finally, an evaluation of the results was made using some performance metrics.
The five phases of the methodology are detailed in the following sections.

Begin

Data encoding

Assign categories to numerical labels

Data completion

1. Check profile

2. Impute missing data

Data filtering

1. Select features with wrapping

2. Remove noise from data

Classification

1. Hyperparameter optimization

2. Training of the classifiers using a 10-
fold cross-validation schema

Performance evaluation

Evaluation of the model performance using

Precision;, Recall;, Accuracy; and F-measure;

metrics for each class i:
Pr
Prec

ision; X Recall;
on; + Recall;

F — Measure; = 2 x

Figure 2. Experimental methodology employed to evaluate machine learning algorithms for the
proposed system.

2.2.1. Pre-Processing Data

The preprocessing phase is designed to prepare the medical records to be suitable
for the central processing of the proposed system by encoding data and completing
missing information.
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Data Encoding

The data coding process consists of two steps: (1) reading the input attributes and
categorizing their values; (2) creating a dictionary for each attribute by assigning nominal
data to the incoming categorical data. The first step consists of receiving input data in text
format from which the attribute values are extracted by eliminating repetitions. In the
next step, the attribute values are converted to numerical data so that the classification
algorithms can process them. For example, we have an input attribute called “Provenance”
with values (Piura, Tumbes, Tumbes, Piura, Comas); the result of applying the first step of
the encoding process is (Piura, Tumbes, Comas); finally, applying the second step of the
encoding results (Piura = 1, Tumbes = 2, Comas = 3).

Data Completion

As a consequence of manual data retrieval, several records were found to be incom-
plete. Data from medical records present 8.6% of missing values among the eight numerical
features and four categorical traits (see Table 2). In the pattern recognition literature, the in-
complete data problem is commonly addressed by deleting incomplete cases, using models
to estimate data distribution or classifier parameters, or evaluating missing data through
imputation methods.

In order to complete missing information from medical records, the following two
methods were selected:

1.  The K-nearest neighbors imputer employs the K-nearest neighbor (KNN) classifier
with Euclidean distance, as shown in Equation (1), to describe the similarity between

the incomplete record (x;) and other records nearby (x;) [33,34]:

1=

di,j = diSl’(Xj, X]) = (xl-,k — x]-,k)z, 1

k=1

where dist(x;, x;) is the Euclidean distance between the encoded medical records; and
n symbolizes the number of features. The estimate of the missing value at record i
compared to the record j is given by

P Taq Wi X
v 2115:1 Wi

where k is the number of samples selected from features; Xj is the input matrix for
the k' record; and W is the k! similarity weight defined by

, ()

Wi = — ()

where di € {dy,d,...,dx} is the k' rank distance of the neighbors.

2. The simple imputer method employed is based on mean, as described by Buuren and
Groothuis-Oudshoorn [35]. The simple imputer replaces the missing values with the
mean value of the missing feature, considering all records in training data, according to:

N
xi:ﬁlzzlxl/ (4)

where values in matrix X are the observations of each feature in the medical record;
and N is the amount of records used for training.

2.2.2. Main Processing

The central processing phase was designed to produce discharge diagnosis predictions
from numerical samples prepared in the preprocessing stage.
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Data Filtering

Data filtering is a two-step process that includes selecting relevant features for classi-
fication and removing noisy data. Feature selection techniques can be divided into three
categories: filter, wrapper, and embedded methods. From these three categories, wrapper
methods have the advantages of using feature dependencies and are developed with classi-
fier performance [36]. Additionally, as a difference from embedded methods, the classifier
can be replaced by any other available once the most relevant features are found.

In the proposed system, the sequential forward selection (SFS) wrapper method was
employed to select the most relevant features evaluated [37,38]. In order to remove noisy
records that are likely to affect classification performance negatively, medical records were
filtered out using the Density-based spatial clustering of applications with noise (DBSCAN)
clustering. The DBSCAN algorithm aimed to find the essential samples with higher density
in order to expand clusters from them, finding clusters of similar density [26].

Classification with XGBoost

XGBoost was employed to train the ensemble of decision trees for discharge diagnosis
prediction. Ensembles of classifiers take advantage of the diversity of opinions between
weak classifiers to produce accurate and commonly with more stable classification per-
formance. A decision tree (DT) is a predictive model commonly used as a weak classifier
in ensembles, in which the conjunctions of features are represented in the branches, and
conclusions or decisions are represented in the leaves (class labels). XGBoost is commonly
employed for training decision trees, where an objective function is defined for the super-
vised learning of a model [39]. Training consists of searching for the best parameters 6 that
fit the training data x; and the labels y;, see Equation (5):

Obj(6) = L(6) +(6), )

where L = is the training loss; and () is the regularization term. L measures how predictive
the model is regarding the training data, and its equation is given by Equation (6):

LO) =Y (vi— 9" ©6)

i

On the other hand, the regularization term controls the complexity of the model and
is given by
1, & o
'y*T—i—E/\*ij, )
j=1
where T is the number of end nodes of the tree, and w is the vector of scores on end nodes.
The solution is provided by trees that are constructed sequentially and learn from
each tree’s predecessors. The learning scheme is called additive training: the functions f;
contain the structure of the tree and the end nodes’ scores. The learning structure of the
tree is complex because it cannot be learned from all the trees at once, and a prediction
value is obtained at each step t as §' according to Equation (8):

0
1

< <

0,
=h

= 9"+ fu(X), ®)
9 =Y filxi) = 9+ f1(X5).

Optimizing performance in decision trees includes finding the maximum depth to prune
the trees backward, eliminating losses, and optimizing learning. Other parameters to be
considered are the number of trees, the learning rate to prevent overfitting, the percentage of
samples used per tree, and the percentage of features used per tree [6,40]. The GridSearch
algorithm was employed to automatically optimize each classifier’s hyperparameters on a
validation set [41]. The GridSearch algorithm starts by defining a limited number of values
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for the hyperparameters, then the Cartesian product of these sets is evaluated through a
sequential combination. Additionally, a 10-fold cross-validation process was applied for the
statistical comparison of performance [42].

2.3. Performance Evaluation

A 10-fold cross-validation strategy was followed to obtain an average performance
and standard deviation. Performance measures derived from confusion matrices were
employed to represent real and predicted classes. The main metrics used were: Accuracy,
Recall, Precision, and F-measure; for a detailed description of the metrics used, please refer
to the work of Castro et al. [43].

3. Experimental Results

The proposed system was implemented using Python v3.6.8, and the libraries joblib,
numpy, pandas, date, pytz, scikit-learn, scipy, and xlrd. The server employed to
execute the comparison of the system using distinct algorithms included a virtual machine
running on Linux Centos 7.0 with 32 processor chips (Intel Xeon (R) CPU 2.60 GHz),
and 20 MB of RAM.

3.1. Pre-Processing Results

The result of the encoding phase was the assignment of an integer to each categorical
feature value. After the imputation of the lost data with the KNN imputer and simple im-
puter, the dataset was normalized to validate the most accurate methods. The distributions
of age after data completion with both methods are shown in Figure 3.

Distribution of Ages Distribution of Ages

Initial Distribution_KNN Initial Distribution_mean
After Imputation_KNN After Imputation_mean

01 /\ os

-5 0 5 10 15 20 bl s 0 5 10 15 20 Pl
(@) (b)

Figure 3. (a) Distribution of the age data using the K-nearest neighbor (KNN) imputer; and (b) the
distribution of age data using simple imputer.

By comparing both distributions, it can be seen that the KNN imputer provides a
distribution that complies with the principle of the central theorem, where a higher area is
close to zero. In other words, errors are normally distributed, and meaningful samples can
be parameterized. Similar results were observed with the rest of the features, and the rest
of the preprocessing was conducted on KNN imputed data.

3.2. Main Processing

With sample records meeting the new distribution of data provided by the KNN
imputer, a subset of six features was selected through the SFS wrapper. The features
included DI, ICD10, Medicine, TT_Medic, Complications, and D_Hospital, producing
a precision up to 82.4%. For data filtering, the best hyperparameters of the DBSCAN
were explored on validation data using a search strategy based on random candidate
combinations (provided by the ParameterSampler function). The hyperparameters found
include eps = 4.5285, minsamples = 9, p = 1, and a cohesion of cluster of 87%; as a result,
nine records were deleted from the original dataset. For a fair comparison, the GridSearch
algorithm was applied to all classifiers with partitions of data following 70% for training
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and 30% of samples for test. The resulting hyperparameters for each classifier are shown in
Table 3.

Table 3. List of hyperparameters for each algorithm.

min_samples_leaf

1,2,3,4,5,6,7,8,9,10,11}

Technique Hyperparameter Values
max_depth {4,5,6,7}
learning_rate {0.001, 0.01, 0.1, 0.2, 0,3}
subsample {0.5,0.6,0.7,0.8,0.9, 1.0}
colsample_bytree {0.4,0.5,0.6,0.7,0.8,0.9, 1.0}
XGBoost colsample_bylevel {0.4,0.5,0.6,0.7,0.8,0.9, 1.0}
min_child_weight {0.4,05,0.6,0.7,0.8,0.9, 1.0}
gamma {0, 0.25, 0.5, 1.0}
reg_lambda {0.1, 1.0, 5.0, 10.0, 50.0, 100.0}
base_estimator_criterion {gini, entropy}
base_estimator_splitter {best, random}
AdaBoost algorithm {SAMME.R, SAMME}
n_estimators {10, 100, 200, 250}
learning_rate {.05,0.5, 1.5, 2.5}
loss {deviance}
learning_rate {0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2}
min_samples_split {0.1,0.5,12}
min_samples_leaf {0.1,0.5,12}
Gradient boosting max_depth {3,5,8}
max_features {log2,sqrt}
criterion {friedman_mse,mae}
subsample {0.5,0.618, 0.8, 0.85, 0.9, 0.95, 1.0}
n_estimators {10}
criterion {gini, entropy}
learning_rate {0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2}
min_samples_split {3,4,5,6,7)
Random bagging min_samples_leaf {1,2,3}
random_state {123}
n_jobs {-1}
n_estimators {10,15,20,25,30}
max_features {auto, sqrt, log2}
CART min_samples_split 12 ,3,4,5,6,789,10,11,12,13,14,15}
{
{
{

random_state 123}
. Ir C 1.0, 100.0}
Voting ensemble svm_C 23,4}

The average performance of each classifier after a 10-fold cross-validation strategy
for classifier evaluation and comparison is presented in Table 4, where the numbers in
parenthesis represent the standard deviation for ten replications of the experiment. Bold
numbers highlight the highest performance. Results in Table 4 reveal that the proposed
XGBoost algorithm achieves the best performance in terms of both accuracy and F-measure.
These results are consistent with those presented in the literature for different applications.
For instance, Nguyen et al. [44] mentions the XGBoost model as a robust algorithm to build
predictive models when applied to predict the environmental effects around a mine.
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Table 4. The performance of the proposed system with XGBoost, and compared to other decision
tree (DT) ensemble algorithms.

Technique Accuracy F-Measure
XGBoost 84.62% 73.99
AdaBoost 82.83% 46.95
Gradient boosting 78.44% 44.96
Random bagging 84.82% 49.77
CART 77.63% 46.79
Voting ensemble 74.05% 46.35

Further performance analysis can be retrieved by analyzing the confusion matrices
for each classifier. Confusion matrices in Figure 4 summarize the predictability of each
model: the dark gray colors represent high values, whereas light gray colors represent low
values. Comparing Figure 4a—f, the highest level of correctly classified samples is provided
by XGBoost: Figure 4b. Here, most of the errors occur when class 1 (deceased patients) are
confused with class 2 (unhealthy patients).

1 2 3

00

2 00

Tue label
Tue label
Tue label

02 i)

Predicted |abel Predicted |abel

(a) (b) (0)

1 2 3 1 2 3 1 2 3

Tue label
Tue label
Tue label

Predicted label Predicted label Predicted label
(d) (e) ()

Figure 4. Confusion matrices for classifier comparison and performance analysis. (a) AdaBoost,
(b) XGBoost, (c) Gradient boosting, (d) Random bagging, (e) CART, and (f) Voting ensemble.

Although the overlap between classes 1 and 2 in Figure 4b is close to one-third of the
decisions, it might be considered that pathologies and complications may appear after the
patient is discharged. Similarly, the highest precision presented in all cases corresponds
to class 2, and the particular situation for discharging unhealthy patients should require
further analysis by practitioners. A higher level of errors is presented between classes
1 (deceased patient) and 2, and close attention must be paid to every particular case.
Although approaches in Figure 4a,b,e present a dark diagonal (correct class predictions),
the diagonal values for XGBoost are consistently higher than those of other approaches.

Finally, Figure 5 presents the receiver operating characteristics (ROC) curves per
class computed for the proposed system designed with XGBoost. In order to construct
the ROC curves, the output probabilities from each class were computed, and the area
under the ROC curve (AUC) was estimated for each curve using the approximation by
rectangles. The lowest AUC was achieved by the blue solid ROC curve, which represents
the performance of the system for class 3 (deceased patients), and the operational point
closest to the upper-left corner corresponds to tpr = 0.85 and fpr = 0.1. Furthermore,
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selecting the correct operational point is relevant to tune the system and reduce errors for
specific classes.

0.81

o
o)

True Positive Rate

—— ROC curve (AUC = 0.88) for class deceased
ROC curve (AUC = 0.90) for class unhealthy
—-— ROC curve (AUC = 0.91) for class healthy

0.0 : 0.4 0.6 08 1.0
False Positive Rate

Figure 5. ROC curves that show the system performance for each class (e.g., discharge diagnosis:
deceased, unhealthy, and healthy). The diagonal dashed line represents a random classifier that does
not consider any information to make decisions.

3.3. Decision Trees for Computer-Aided Diagnosis

According to Chen and Guestrin [39], the resulting probabilities of decision trees can
be computed using the logistic function. As shown in Figure 6, the resulting decision tree
allowed identifying malformations of the digestive tract, firstly the atresia of the esophagus.
This was identified in the node (ICD10 < 141), where it makes the code Q39 (ICD10).

According to Stoll et al. [45], this treatment with reserved diagnosis was that the child
cannot feed or pass the saliva. The latter causes the same to pass to the lungs, and the
other problem that complicates the treatment is that if the distal segment of the atrial
(malformed) esophagus attached to the trachea causes the gastric juice to also pass to
the lung, the child will develop pneumonia. Currently, this pathology’s complexity is
often associated with premature heart problems and other associated malformations such
as rectal anus malformations, which makes the reserved prognosis of the child and the
urgency of the solution: the subsequent three days are crucial in the treatment.

The nodes (TT_Medic < 506 and TT_Medic < 140) refer to the correct treatment that
has been successful in the historical data. The correct treatment is described: since the
patient cannot be fed, it must be hydrated with a good intravenous route with prophylactic
antibiotics, hydration, and feeding (total parenteral nutrition). The catheter designed
for this does not go to a peripheral or superficial vein because it does not hold the NPT;
it must go to a more prominent or central vein. If a peripheral vein is used, the solution’s
osmolarity will inflame and affect it.
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Figure 6. Exemplar of the resulting DT that provides treatment and diagnosis information retrieved
from training samples.

For this reason, we reference a tunneled CVC (TT_Medic < 140) and a probe (TT_Medic
< 506) to aspirate the saliva until it is operated. After surgery, the procedure consists of
placing a drain in the thorax to confirm if the surgery points (anastomosis) have a saliva
leak. In this sense, it is corrected until everything is well. The probability of dying with
these recommendations is 54.5% since these cases are extremely critical and even more so
if not in newborns. The complexity of the treatment of these malformations lies in the fact
that there are other added affectations. Likewise, pathologies associated with the digestive
tract’s malformations are of the genitourinary category belonging to the N category of ICD10,
especially rectal atresia. For this reason, the tree places (ICD10 < 100) [46].

Other malformations that interrupt the communication between the mouth and the
anus would be intestinal atresia and rectal atresia. Supposing these atresias are not treated
on time, we consider the three days referred to at the tree. In this situation, the case
will present an increase in the probability of complications such as sepsis (generalized
infection), multi-organ failure, coagulation disorders, shortness of breath, and the acidotic
state will be high. The probability of death increases from 54.5% to 59.4%, being that in
previous lines, and the proposal of natural treatment of atresias was explained within three
days. Therefore, time is vital, and as happens in third-level hospitals, patients arrive from
other cities where they had previously had unsuccessful treatments and therefore are very
delicate cases.

Another example is shown in the tree (TT_Medic < 20). This reveals that a treatment
such as an ostomy (removing the proximal part of the intestine to the skin in order to let it
drain) involves drainage and complicated infection control. Therefore, it is vital to consider
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the days of treatment if it is more significant than three triggers in a perforation of the
intestine and the chances of death increase.

4. Conclusions

In this paper, a computer-aided diagnosis system was proposed to be employed
as a tool for accurate and timely diagnosis in a third-level hospital. Based on decision
trees, the system considers the historical records of input pediatric patients to predict
an estimated discharge diagnosis and possible treatments. The proposed CAD system
predicts three categories of patient discharge: (1) deceased, (2) unhealthy, and (3) healthy.
The CAD learns from the previous diagnoses, the treatment applied, and the patient’s
discharge condition in order to assist the pediatric surgeon’s decision-making so that the
best treatment can be offered. If the patient is discharged with pathology, this condition
is due to the fact that the patient requires management or surgical treatment in stages
due to the complexity of the pathology or the need for its correction at a later age. For
example, there is the case of high anorectal malformations, in which at the neonatal stage,
a procedure is performed that allows the child to have a bowel movement through an
artificial orifice, and then, at a later age, the definitive correction is performed. Let us
suppose that the patient dies later, before completing the entire treatment. In that case,
the factors that led to the patient’s poor evolution would have to be recorded, and the
system would have to be fed back. Therefore, the system must have continuous feedback
to improve medical decision support.

The main advantages that are foreseen with using a prediction system to support
the making decision process include the following. First, a graphical representation of
the possible paths from admission to output diagnosis can provide the means for better
decisions. Second, the resulting decision tree can be employed to inform possible paths
and risks to the patients’ parents, according to previous system experience. Third, statistics
on previous cases may provide experience-based evidence in the case of legal conflicts.
Finally, an adaptive system may learn from new cases to make more accurate decisions as
the knowledge is improved with experience.

Future work could further improve the results by using XGBoost with ensemble learning
(Boosting and Bagging) methods, which consists of selecting the samples that obtained the
least error during the learning of sequentially constructed trees. This distributed learning
environment can solve problems beyond billions of examples, making it much more versatile
when it comes to treatments as delicate as pediatric, and hyperparameters for ensemble
learning can be optimized considering a trade-off between accuracy and stability [47]. Addi-
tionally, given the continuous entry of novel cases, the system might be adapted to incorporate
new information on the new sample records. Ensemble learning methodologies have been
proven to provide good performance after incremental learning and fusion adaptation. Finally,
although the use of the ICD10 standard provides a helpful framework, within the next few
years, the system should consider the recent ICD11 codification to include a more accurate
diagnosis [48]. Backward compatibility may be resolved by adding a module to translate
medical records from ICD10 to ICD11.
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