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Abstract: We introduce the Python-based open-source library Energym, a building model library
to test and benchmark building controllers. The incorporated building models are presented with
a brief explanation of their function, location and technical equipment. Furthermore, the library
structure is described, highlighting the necessary features to provide the benchmarking and control
capabilities, i.e., standardized evaluation scenarios, key performance indicators (KPIs) and forecasts
of uncertain variables. We go on to characterize the evaluation scenarios for each of the models and
give formal definitions of the KPIs. We describe the calibration methodologies used for constructing
the models and illustrate their usage through examples.

Keywords: building control; simulation software; benchmarking

1. Introduction

Buildings play an important role in the total energy consumption and greenhouse gas
(GHG) emissions worldwide. According to [1], 36% of the global final energy is used in
buildings (30% in building operation) and buildings account for 39% of GHG emissions
(28% in operation, see also [2]). Alongside building renovations, smart control strategies
will be key technological enablers for reducing buildings’ GHG footprints and meeting the
Paris Agreement goals.

The current standard for controlling Heating Ventilation and Air-Conditioning (HVAC)
systems is formed by rule-based and proportional-integral (PI) controllers [3,4], but their
rather simple nature, combined with possible tuning errors, can lead to sub-optimal control
behavior [5]. Therefore, automated and efficient building control provides the chance
to significantly reduce energy consumption and emissions. Recent research approaches
cover the fields of (robust) model predictive control (MPC) (see e.g., [6–9]), adaptive or
learning-based MPC (see e.g., [10]), and reinforcement learning (RL); see e.g., [11–13]. A
comprehensive overview of MPC and data-driven approaches for building control can be
found in [14,15].

Yet many of the aforementioned studies suffer from the non-standardized evaluation
of their control performance. Some were demonstrated in simulations (e.g., [8]), others
in real sites (e.g., [7]), but most of them in a single building or simulated model, and for
a rather short period of time (e.g., one day and one week experiments for [8], and five
day experiments for [7]). Hence, a direct comparison of the performance of the control
methods is impossible. Moreover, for industrial purposes, it is desirable to create scalable
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controllers that can run without major modifications on different types of buildings and do
not necessitate fine-tuning by hand, as often practiced in research studies.

Tools that allow to easily run simulations on different, realistic building models, pro-
vide a way to alleviate these issues. We will restrict ourselves to discussing frameworks that
are able to handle the two most popular modeling languages for buildings, namely Ener-
gyPlus [16] and Modelica [17]. Tools that are capable of including, or including these types
of models are Modelicagym [18], an RL testbed for power consumption optimization [19],
BOPTEST [20], and CityLearn [21]. The former two provide interfaces to the API of the
popular RL benchmarking library Gym [22] for including Modelica (for the first package) or
EnergyPlus models (for the second package). Their focus does not lie on providing a broad
range of pre-compiled models or fixed evaluation metrics, which limits their practicality
for benchmarking. BOPTEST, on the other hand, follows an approach similar to Energym,
while concentrating purely on Modelica models. Of their 10 selected reference cases, two
are currently available, together with four additional prototypes. The models are launched
using Docker and the communication is done through a RESTful API, which differs from
the Energym approach of providing pre-compiled models or a Docker container and the
Gym API. Recently, the developers of BOPTEST also started to incorporate the Gym API
into their framework. CityLearn tackles the problem of demand response, the coordinated
control of multiple buildings to match the power demand to the provided power by the
distribution grid. Aiming also at providing a benchmark for RL controllers, their focus
does not lie on the assessment of single building control performance.

Contribution: We present Energym (available at https://github.com/bsl546/energym
(accessed on 14 April 2021)), a Python-based library, made for standardized comparison
and evaluation of controller performances, based on predefined evaluation scenarios, and
inspired by the RL benchmarking library Gym. The included building models to date
are based on EnergyPlus and Modelica, and are interfaced using the Functional Mock-
up Interface (FMI) standard [23] through compiling them as Functional Mock-up Units
(FMUs). We provide an overview of these models regarding their characteristics, location
and technical equipment.

Key performance indicators (KPIs) that relate to thermal comfort, energy consump-
tion, and emissions are defined and we lay out the standardized evaluation scenarios for
each model.

Four of the 11 models already present are entirely based on real buildings (envelope
and equipment were calibrated with recorded measurement data), whereas for the other
models, only parts of the equipment were calibrated. The calibration methodologies are
explained and supported by examples from the models.

2. Buildings Overview

Energym includes 11 simulation models to date (three Modelica models and eight
EnergyPlus models). The EnergyPlus models are all updated to the current Energyplus
version 9.4. An overview of the installed technical equipment and their controllability
is given in Table 1. A description of each model’s inputs and outputs is provided in
Appendix B. The models differ in size, number of rooms, usage profile, technical equipment,
controllability, and climate zone. The seven buildings that are the base for the 11 models are
listed below. Four of them are available in two versions, either differing in the control (e.g.,
controlling thermostat setpoints vs. controlling the equipment directly) or the installed
equipment. The buildings have the following characteristics.

• Apartments: A residential building with four stories, each being one apartment, and
eight thermal zones (two per story). It is located in Spain and has a central geothermal
Heat Pump (HP) providing heat to all apartments. The building envelope is fictive,
based on typical Spanish construction materials, but the HP was calibrated with a real
HP located in the IREC laboratory (see Section 4.2).

• Apartments2: This building shares its envelope with the Apartments building, but
differs in the details of the technical equipment: each apartment possesses its own
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air-to-water HP and its own heating storage tank. In this building, the electrical
systems (solar panels, battery) were calibrated with real systems.

• Offices: This building consists of 25 thermal zones, 14 of which are controlled with
thermostats, and is located in the Attica region of Greece. Both the envelope and the
technical systems were calibrated with the corresponding test site data.

• MixedUse: A building with 13 thermal zones (eight controlled with thermostats) used
for residential and office spaces. It is also located in the Attica region of Greece. Both
the envelope and the technical systems were calibrated with the corresponding test
site data.

• Seminarcenter: This building encapsulates 27 thermal zones, belonging to 22 rooms
of which 18 are controlled with thermostats. It is located in the Region of Southern
Denmark. Both the envelope and the technical systems were calibrated with the
corresponding test site measurements.

• SimpleHouse: This building is a standard single room house with HP and sun
heating effects through glazing. Two versions exist, one with a standard radiator
(SimpleHouseRad) and the other one with floor heating (SimpleHouseSlab). The first
order envelope model is designed based on thermal peak power and minimal outdoor
temperature.

• SwissHouse: This building is a large-scale version of the SimpleHouse building
with radiators. It has been designed with parameters (thermal peak power, outdoor
temperature) from a real house. The heat pump control differs from the SimpleHouse
model, see Table A6.

The calibration methodology used for the models is explained in Section 4.

Table 1. Equipment of the different models in Energym. Th: Thermostat, HP: Heat Pump, Bat:
Battery, AHU: Air Handling Unit, EV: Electric Vehicle, PV: Photovoltaic. �: present and controllable,
#: present but not controllable, ×: absent. The last column refers to the section where the calibration
method used for each model is described.

Environment Th HP Bat AHU EV PV Soft. Loc. Calib.
ApartmentsThermal-v0 � � � × � # E+ ESP Section 4.2

ApartmentsGrid-v0 � # � × � # E+ ESP Section 4.2
Apartments2Thermal-v0 � � � × � # E+ ESP Section 4.2

Apartments2Grid-v0 � # � × � # E+ ESP Section 4.2
OfficesThermostat-v0 � × × × × # E+ GRC Section 4.1
MixedUseFanFCU-v0 � × × � × × E+ GRC Section 4.1

SeminarcenterThermostat-v0 � # × # × # E+ DNK Section 4.1
SeminarcenterFull-v0 � � × � × # E+ DNK Section 4.1
SimpleHouseRad-v0 × � × × × # Mod CHE Section 4.3
SimpleHouseSlab-v0 × � × × × # Mod CHE Section 4.3
SwissHouseRad-v0 × � × × × # Mod CHE Section 4.3

3. Library Design and Functionalities
3.1. Design Features

Energym is designed to work with different controller types including rule-based con-
trollers (RBC), MPC controllers and RL-based controllers. Hence the building environments
and their interface are provided but the controller structure is not prescribed and left free
to the user. Moreover, model performance evaluation is not based on fixed rewards (like in
Gym) but implemented via KPIs that can be computed by the user after an evaluation run.
The main features of the library are outlined below (A full documentation of the library,
describing usage and installation, is available at https://bsl546.github.io/energym-pages/
(accessed on 14 April 2021)).

3.1.1. Standardized Evaluation

For each model outlined in Table 1, a physical objective to be reached is predefined.
This objective might be, e.g., the minimization of the CO2 emissions related to the building
operation. The controllers also have to satisfy thermal constraints to guarantee occu-
pant comfort. These two quantities—objective and constraints—are tracked with the
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implemented KPIs; see Section 3.3, Table 2. For each building, the evaluation phase with
the predefined KPIs is run over a definite period of time and under predefined weather
conditions.

Table 2. Fixed evaluation scenarios for the simulation models.

Model Simulation
Period

Temperature
Constraints (◦C)

Objective
KPI

ApartmentsThermal-v0 January–April 19–24 Grid exchange
ApartmentsGrid-v0 Entire year 19–24 Grid exchange

Apartments2Thermal-v0 January–April 19–24 Grid exchange
Apartments2Grid-v0 Entire year 19–24 Grid exchange
OfficesThermostat-v0 Entire year 19–24 Power demand
MixedUseFanFCU-v0 Entire year 19–24 Power demand

SeminarcenterThermostat-v0 January–May 21–24 CO2 emissions
SeminarcenterFull-v0 January–May 21–24 CO2 emissions
SimpleHouseRad-v0 January–April 19–24 Power demand
SimpleHouseSlab-v0 January–April 19–24 Power demand
SwissHouseRad-v0 January–April 19–24 Power demand

3.1.2. Wrappers

Wrappers are implemented to cope with different controller needs. In particular,
wrappers are provided to scale inputs and/or outputs between values in a min-max
fashion. The scaling can be beneficial for optimization-based controllers like MPC, due
to the used model and solver structure. For RL-controllers, an RL-wrapper is provided
to change the outputs of the step method and provide exactly the same outputs as in the
Gym library, i.e., outputs, reward, done, info. One slight change with respect to Gym,
however, is that the reward design is left free to the user and must be specified at wrapper
initialization. This design choice was made for users to be free in the reward design phase,
the main objective of any controller being to minimize the predefined KPIs. Similarly,
for controller speed-up (in particular for MPC), a downsampling wrapper is provided to
optimize computation time, making it possible to solve the problem less frequently than
what the standard step method would impose.

3.1.3. Forecasting Capabilities

For designing controllers such as MPC, it is important to have descriptions of external
disturbances. For this, we provide weather forecasts (including irradiance and temper-
atures), optionally given by the exact values in the used weather files or by stochastic
variations of those. Furthermore, we provide forecasts that are highly relevant for certain
models: EV usage schedules for the Apartments and Apartments2 buildings, and electricity
mix forecasts for the Seminarcenter. Random seeds to generate the forecasts are fixed in
evaluation mode to ensure reproducibility of the results.

3.2. Usage and Code Example
Basic Structure and Usage

After importing Energym, a model can be created by calling the make method and
specifying the name of the model and other optional parameters, i.e., the starting day
of the simulation, the number of simulated days, the used weather file, and the used
KPIs, all of which use default values if not specified upon initialization. The interaction
with the model, i.e., passing control inputs and receiving outputs, is done with the step
method. Control inputs are Python dictionaries, with the setpoint name as key and in-
put as value (possibly a list with multiple entries for multiple consecutive inputs), e.g.,
{"Z01_T_Thermostat_sp":[21]} (or {"Z01_T_Thermostat_sp":[21, 22, 21]}). Outputs
are also defined as dictionaries using the predefined output names as keys. The main
inputs and outputs for each model are given in Appendix B. A full list is available in
the online documentation. The Wrapper class is implemented to provide input-output
wrapper functionalities. Weather and stochastic disturbances forecasts are available with
the get_forecast method.
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For the tracking of the KPIs, a KPI object is initialized for each model, it automatically
records the necessary data. Calling the method get_kpi returns the evaluation for a
specified time interval (by default all the completed steps) as a dictionary. More details on
handling the KPIs and the default ones are discussed in Section 3.3.

A simple usage example is given in Appendix A.1.

3.3. Performance Evaluation

A pre-compiled FMU is provided for each building model and can be used with
different weather files. This allows the users to train their controllers (i.e., RL agents or
models for MPC) with different weather files, while the weather file for final evaluation is
fixed. These fixed weather conditions on a predefined period of time ensure comparability
of the control performances via the implemented KPIs. The characteristics of these fixed
evaluation scenarios are displayed in Table 2. The defined KPIs fall into the categories
of thermal comfort (related to temperature constraints) and objective KPI (related to the
objective to minimize).

KPI Definition

For the thermal comfort, a range of acceptable temperatures is defined. The tracked
KPIs are the average deviation from the target temperatures for each controlled thermal
zone and the total number of range violations. Let the desired temperature range be defined
by the interval I = [a, b]. Then the average deviation d(T, I) for temperature measurements
T = {ti : i = 1, . . . , N} is defined as

d(T, I) :=
1
N

N

∑
i=1
‖ti‖I (1)

where ‖t‖I =


a− t, if t < a
0, if t ∈ I
t− b, if t > b

.

The number of total violations v(T, I) is defined as

v(T, I) :=
N

∑
i=1

δ(ti, I) (2)

where δ(t, I) =

{
0, if t ∈ I
1, if t 6∈ I

.

The average energy exchanged with the grid is tracked for the models based on the
Apartments and Apartments2 buildings. Let Eprod = {eprod,i : i = 1, . . . , N} be the set of
N consecutive measurements of produced energy and Econ = {econ,i : i = 1, . . . , N} of
consumed energy. Then the average energy exchange e(Eprod, Econ) is defined as

e(Eprod, Econ) :=
1
N

N

∑
i=1
|eprod,i − econ,i|. (3)

In the evaluation scenario, the goal is to minimize this quantity and therefore maximize
the self-consumption of produced energy.

The objective for the Offices, MixedUse, SimpleHouse and SwissHouse buildings is
to minimize their power consumption. Let the mean power demand for N simulation
steps be given by D = {di : i = 1, . . . , N}. The minimization objective is again given by
averaging over the measurements, so the average power demand p(D) is defined as

p(D) :=
1
N

N

∑
i=1

di. (4)
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The environments based on the Seminarcenter building track the CO2 emissions for
the installed gas boiler and the varying electricity mix. A minimization of this emission
is the focus of their evaluation scenario. Let the emission values be given by C = {ci :
i = 1, . . . , N}. The computed KPI for those measurements is the average emission g(C)
defined as

g(C) :=
1
N

N

∑
i=1

ci. (5)

Instead of using predefined KPIs, it is also possible to define custom KPIs. An example
of this is given in Appendix A.2.

4. Calibration Methodology

Distinct methodologies (see Table 1) for calibration have been used, depending on
whether the entire building or just the technical systems were calibrated with real data sets.
After calibration and validation with standard metrics (see e.g., Section 4.1.2), the model
responses to control actions were further tested independently by team members to ensure
that physical expectations were met (setpoint responses, energy consumption patterns by
system activation, etc.).

4.1. Building Calibration

The Offices, MixedUse and Seminarcenter buildings have been calibrated using the
three-step methodology presented in [24]. A short overview of the method is explained in
the following.

4.1.1. Method

In the first step, data are collected from the test sites at a 15 min sampling rate.
Collected features include weather parameters (outside temperature, ground temperature,
relative humidity, irradiance, atmospheric pressure, wind speed), indoor climate (room
temperatures and relative humidity), as well as technical equipment parameters (water
temperature and flow, on/off status) and electric consumption disaggregated by sources.
Standard data pre-processing techniques are applied to the collected data to improve their
usability, namely: gap reconstruction (via interpolation), removal of sensor malfunction
periods, and on/off status reconstruction for technical systems for which this signal was
not made directly available.

In a second step, the buildings are modelled and their envelope calibrated using the
collected data. It uses free oscillation data, i.e., periods where the HVAC equipment is off to
eliminate HVAC interference. As described in depth in [24], envelope calibration is realized
through a parametric analysis, a sensitivity analysis and a genetic algorithm simulation
(using the NSGA-II genetic algorithm; see [25]) guided by an appropriate objective function
(based on normalized root mean square error (NRMSE), determination coefficient, and
normalized mean bias error (NMBE)).

In a third step, HVAC and technical equipment are introduced and configured to
supply the building demand. A detailed HVAC model is added to the previously calibrated
envelope model and simulated in EnergyPlus. Known HVAC equipment parameters are
set to technical specification values, different performance curves are determined for
each of the components, while unknown parameters are set either based on technical
information of similar equipment, or calculated based on test site data. This detailed
model undergoes a new calibration process similar to the one used for the envelope, i.e., a
parametric/sensitivity analysis followed by a genetic algorithm simulation guided by a new
objective function. This calibration is performed until the simulation model uncertainty
indices are acceptable within the expected KPIs; see Section 4.1.2.

4.1.2. Model Evaluation

Three metrics were used to assess the quality of building models: the NMBE, the
coefficient of variation of the RMSE (CVRMSE) and the coefficient of determination R2;
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see e.g., [26]. Model acceptance is based on the threshold values recommended by the
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
and the International Performance Measurement and Verification Protocol (IPMVP); see
e.g., [26].

4.1.3. Example: The MixedUse Building

Calibration of the envelope parameters for the MixedUse building has been performed
with free oscillation data as described in Section 4.1.1. The HVAC system of the MixedUse
building is made of two independent main technical systems: a Variable Refrigerant
Volume Unit (VRV) and an air-to-water HP. The initial performance curves of these two
systems have been fitted with linear estimations to reproduce the suppliers’ technical
documentation with the performance equations of the corresponding EnergyPlus objects.
For the MixedUse VRV system a total of 14 different curves were required, from cooling
and heating capacity for low/high outdoor conditions including its boundary curves to
piping length correction and defrosting; see Figures A5 and A6 in Appendix C.1.

Key parameters were then estimated in the next step (nominal power, design airflow,
design supply temperature, efficiency, ...) via the optimization process with the NSGA-II
genetic algorithm in order to find the combination of parameter values that results in the
best fit of energy consumption while maintaining the indoor climate of the building. The
results for the VRV system are displayed in Table A7 and the results for the HP system in
Table A8 in Appendix C.1.

Finally, the evaluation period took place during Summer 2020, between the months
of June and August (i.e., on data not used for identification). Results are displayed in
Table 3. It should be noted that during the evaluation period the HP underwent a series
of malfunctions and had to be repaired. This is why evaluation results for the HP are not
presented here.

Table 3. Results of Variable Refrigerant Volume (VRV) and Air Handling Unit (AHU) system
evaluation for cooling period, June to August 2020.

Index ASHRAE Cooling Average Cooling TZ-05
Enrgy Indoor Supply Indoor

(Hourly) Consumption Temperature Air Temperature
(VRV) (Main Building) (AHU) (Atrium)

Date — June–August June–August May–July May–July
2020 2020 2020 2020

NMBE (%) within 10% 6.40% 0.33% 1.43% 0.42%
CV(RMSE) (%) ≤30% 29.26% 1.16% 3.62% 1.69%

R2 (%) ≥75% 75.23% 92.73% 85.57% 86.98%

4.2. Heat Pump Calibration

For the Apartments building, heating is covered by means of a centralized water-to-
water geothermal HP system that provides hot water for the indoor fan coil units and the
Domestic Hot Water (DHW) tanks. This HP model has been calibrated using real data from
a test bench facility installed at the IREC laboratory. The method used is based on the work
presented in [27] for HP identification and the water-to-water HP model developed in [28].
Equations (6) and (7) from [28] displayed below represent the fitting of the heating thermal
power and of the electric power consumed by the HP. The experimental data used to fit the
equations have been obtained by operating the HP at full load in heating mode (control of
return temperature to the condenser of the HP).

Qh
Qhre f

= D1 + D2

[
TLin

Tre f

]
+ D3

[
TSin

Tre f

]
+ D4

[
V̇L

V̇Lre f

]
+ D5

[
V̇S

V̇Sre f

]
(6)

Ph
Phre f

= E1 + E2

[
TLin

Tre f

]
+ E3

[
TSin

Tre f

]
+ E4

[
V̇L

V̇Lre f

]
+ E5

[
V̇S

V̇Sre f

]
(7)
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where:

• D1–D5, E1–E5: Fitting coefficients for heating mode
• Tre f = 283.15: Reference temperature, [K]
• TLin : Temperature of water entering the load side, [K]
• TSin : Temperature of water entering the source side, [K]
• V̇L: Load side volumetric flow rate, [m3/s]
• V̇Lre f : Reference load side volumetric flow rate, [m3/s]
• V̇S: Source side volumetric flow rate, [m3/s]
• V̇Sre f : Reference source side volumetric flow rate, [m3/s]
• Ph: Power consumption [kW]
• Phre f

= 3.89: Rated heating power consumption [kW]

• Qh: Condenser heating rate [kW]
• Qhre f

= 42.49: Rated condenser heating rate [kW]

A constant volumetric flow rate was used in the experiment as the pump was operating
with a constant flow, hence V̇L = V̇Lre f and V̇S = V̇Sre f . Coefficients were fitted to the data
using ordinary least squares. The Qh calculation residuals range from 0.01–3.94% of the Qh
value (max. deviation of 1.45 kW for a nominal consumption of 36.8 kW heating power)
and are displayed in Figure 1a. The corresponding R2 value for the heating power fitting is
0.985. Ph residuals range from 0.02–4.78% of the electric power consumption value (max.
deviation of 0.29 kW for an electrical power consumption of 6.24 kW). The R2 value for the
electric power fitting is 0.988. The residuals are depicted in Figure 1b.
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(b) Electrical power consumption residuals.

Figure 1. Residuals from the Heat Pump (HP) calibration.

4.3. Modelica Models

Modelica models are developed with components from the LBNL Modelica Buildings
Library [29]. While one of the strengths of EnergyPlus is the ease at which large and
realistic envelope models can be built, Modelica models with large and complex envelopes
are harder to design: The strength of Modelica is the realism and flexibility at disposal for
modeling and controlling technical systems like HPs, storage tanks, and AHUs. This is the
reason why the currently included models come with very simple envelopes, but complex
and realistic technical systems, the other case being covered by the EnergyPlus models at
disposal. Future Modelica models with more complex envelopes are in preparation and
will be integrated to the library. The authors also do not exclude incorporating models
using Modelica for the control systems and Energyplus envelopes.

The envelope model used for SimpleHouse and SwissHouse is a simple first order
model calibrated with the thermal peak power, minimum outdoor temperatures and the
building free oscillation time constant. The indoor temperature is averaged over the house
geometry and modeled by a scalar T(t) obeying Equation (8).

C
dT
dt

(t) = Qflow(t)− G(T(t)− Tout(t)) (8)
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Assuming equilibrium at very cold temperatures, the thermal conductance G [W/K]
is deduced by setting the left-hand side equal to zero in these conditions. G [W/K] is
then inferred to be equal to the ratio of the thermal peak power over the indoor-outdoor
temperature difference for the four coldest consecutive days on the last 20 years (see
SIA norm CT 2028:2010 [30]). Knowing the thermal conductance G and inferring the
time constant τ of the envelope from the available building data, we derive the heat
capacity C [J/K] = Gτ.

For SwissHouse models, these G and C correspond to an overall U-value of 0.5 [W/m2K]
and to a heat capacity per surface unit of 0.2 [MJ/m2K], resulting in a time constant τ
of >4 days, for this type of low energy building with a heat demand of 15 [W/m2]. For
air-to-water HP, the typical seasonal coefficient of performance (COP) is 3, which gives a
nominal electric power of 5 [W/m2].

5. Conclusions and Future Directions

The library Energym presented in this paper aims at providing building models and
standardized evaluation scenarios and metrics to develop, test, and benchmark controllers.
With diverse equipment configurations calibrated with real measurement data, Energym
has been designed to ease the development and deployment of “swiss knife” data-driven
controllers for buildings. The used calibration methods and results have been outlined.

Two main axes of research are foreseen for future works: The extension of the library
itself and the development of data-driven control methods tested on the library.

For the former, Energym is aimed at growing by gaining new building models. We
are currently developing new models (both Energyplus and Modelica models) that will be
incorporated into the library in the near future. Moreover, through releasing Energym as
open-source, we encourage model contributions from the building simulation community
(To add a new model, please contact the authors.) and the authors welcome such efforts.

For the latter, MPC and RL-based control strategies will be extensively tested on many
buildings of the library to showcase its benchmarking capabilities. Furthermore, since
running models in parallel is possible with Energym, we aim to investigate scenarios with
multiple models in a district setting and related control problems. Finally, an additional
goal of Energym is to increase engagement within the Machine Learning community, in
particular the RL community, to problems related to reducing energy consumption and
CO2 emissions.
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Appendix A. Code Examples

Appendix A.1. Basic Usage Example

A simple example of the usage of the library is given below. It demonstrates the
interaction with the simulation model for 100 timesteps, assuming a function get_input()
has been implemented, that computes the control input for the current measured state of
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the model and a forecast for the next 10 timesteps. The chosen parameters are arbitrary
and just fulfill demonstrative purposes.

import energym

env = energym.make("Apartments2Grid−v0")
out = env.get_output()

for i in range(100):
forecast = env.get_forecast(forecast_length=10)

inp = get_input(out, forecast)

out = env.step(inp)

kpis = env.get_kpi()

env.close()

Appendix A.2. KPI Example

Default KPIs are defined for each model, but the user can also define custom KPIs to
be tracked. This is done by specifying a Python dictionary containing the information of
the variables of interest and KPI computation method. An example dictionary for the KPIs
looks as follows.

kpi_dict = {"kpi1": {"name": "Fa_Pw_All", "type": "avg"},

"kpi2": {

"name": "Z01_T",

"type": "tot_viol",

"target": [19,24],

}

}

For more information on the KPI implementation, we refer to the documentation.

Appendix B. Building Descriptions

In this part, we give a short description of the buildings, and the inputs and the
outputs of the simulation models that are related to the KPIs (other outputs not entering in
KPIs calculation, like flow rate and flow temperature, are not listed). The common output
variables for all EnergyPlus based models are given in Table A1. Complete input/output
references and in-depth explanations of the buildings can be found in online documentation.
The bounds given in the tables are not used to cut-off values (unless the specific cut-off
wrapper is used), but are used by default by the inputs/outputs scaling wrappers to scale
the signals in values close to/within the [0,1] interval.

Table A1. Common outputs for the EnergyPlus based models.

Variable Name Description Bounds Units

Ext_T Current outdoor temperature [−25,40] ◦C
Ext_RH Current outdoor relative humidity [0,100] %RH
Ext_Irr Current direct normal irradiance [0,1000] W·m−2

Appendix B.1. Apartments and Apartments2 Buildings

The envelope is the same for both Apartments and Apartments2 buildings; see
Figure A1. The envelope is made of building elements used in the periods from 1991
to 2007 in Spain. The building model consists of four identical apartments split in two ther-
mal zones (Figure A1). The active surface area of the PV panels is 58m2 with an inclination
of 40◦ and south oriented. The PV EnergyPlus component has a rated electric power output
of 10.75 kW and the inverter efficiency is 0.95. In addition, occupancy, appliances and
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lighting consumptions follow stochastic profiles that differentiate each dwelling behavior,
resulting in different energy demands. The DHW profiles are based on the European
standard (EN16147, 2011).

Figure A1. Envelope visualization for the Apartments and Apartments2 buildings.

The difference between Apartments and Apartments2 lies in their thermal systems.
Apartments has a central geothermal HP, directly connected to hot water tanks (1 per
Apartment) used only for DHW consumption, and to a heating loop providing heat to the
entire building. Apartments2 does not have this central heating system, but possesses four
storage tanks (supplying heating and DHW to each apartment), each being alimented by a
dedicated air-to-water HP.

Both buildings possess a stationary battery with a capacity of 10 kWh, maximum
power for charging and discharging of 4 kW. In apartments, there is one electric vehicle
with a capacity of 20 kWh and a maximum power for charging of 3.7 kW. For Apartments2,
two EVs with the same characteristics are present. Usage schedules are stochastic and
forecasts are provided via the forecast API.

The evaluation weather file used for Apartments and Apartments2 is given by the
identifier ESP_CT_Barcelona_ElPratAP1 and should not be used in the training process.
Control inputs and the most relevant outputs for the Apartments and Apartments2 models
are listed in Table A2.



Appl. Sci. 2021, 11, 3518 12 of 19

Table A2. Inputs and outputs for the models ApartmentsThermal-v0 (1), ApartmentsGrid-v0 (2),
Apartments2Thermal-v0 (3) and Apartments2Grid-v0 (4).

Variable Name Description Bounds Units Model
Inputs

P1_T_Thermostat_sp
· · ·
P4_T_Thermostat_sp

Temperature setpoint
per appartment [16,26] ◦C 1/2/3/4

Bd_T_HP_sp Heat pump supply
temperature setpoint [35,55] ◦C 1/2

P1_T_Tank_sp
· · ·
P4_T_Tank_sp

Bottom water tank
temperature setpoint [30,70] ◦C 1/2

Bd_Pw_Bat_sp Battery charging/discharging
setpoint [−1,1] - 1/2/3/4

Bd_Ch_EVBat_sp EV battery charging setpoint [0,1] - 1/2

Bd_Ch_EV1Bat_sp EV battery charging setpoint [0,1] - 3/4

Bd_Ch_EV2Bat_sp EV battery charging setpoint [0,1] - 3/4

HVAC_onoff_HP_sp Heat pump on/off setpoint {0,1} - 1

P1_onoff_HP_sp
· · ·
P4_onoff_HP_sp

Heat pump on/off setpoint {0,1} - 3

Outputs

Fa_E_self Energy exchanged with grid for
timestep [−2000,2000] Wh 1/2/3/4

Z01_T
· · ·
Z08_T

Current zone temperature [10,40] ◦C 1/2/3/4

Appendix B.2. Offices Building

The Offices building is located in Greece and includes 25 conditioned rooms with
a total area of 643.73m2 (see Figure A2). Of those 25 rooms, 14 are controllable with
thermostats (2 storage rooms, 2 lobbies, 4 seminar rooms, 1 meeting room, and 5 offices).
Water-to-air fan coil units are used to condition the spaces, where either water heating is
provided by an oil boiler or water cooling by an electrical air-to-water chiller.

Figure A2. Envelope of the Offices building.
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The evaluation weather file for the Offices building is given by the identifier
GRC_TC_Lamia1 and should not be used in the training process. The inputs and some
outputs are described in Table A3.

Table A3. Inputs and outputs for the model OfficesThermostat-v0.

Variable Name Description Bounds Units

Inputs

Z01_T_Thermostat_sp
· · ·
Z07_T_Thermostat_sp
Z15_T_Thermostat_sp
· · ·
Z20_T_Thermostat_sp
Z25_T_Thermostat_sp

Zone temperature setpoint [16,26] ◦C

Bd_Cooling_onoff_sp Chiller on/off {0,1} -

Bd_Heating_onoff_sp Boiler on/off {0,1} -

Outputs

Fa_Pw_All Current power demand of whole facility [0,10, 000] W

Fa_Pw_PV Current produced power [0,2000] W

Z01_T
· · ·
Z07_T
Z15_T
· · ·
Z20_T
Z25_T

Current zone temperature [10,40] ◦C

Appendix B.3. MixedUse Building

The MixedUse building is a 566.38m2 building located in Greece with 13 thermal
zones, of which eight are controllable with thermostats (see Figure A3). The HVAC system
installed consists of two AHUs, one dedicated exclusively to thermal zones 5, 6 and 7 and
a second one serving to the remaining thermal zones.

The first system dedicated to TZ-5, 6 and 7, is composed of an air loop, an AHU that
includes water coils and two supply water loops: one with a Heat Pump Water Heater
(HPWH) and the other with a chiller for cooling.

The second system serving the entire facility, consists of an air loop with an AHU that
has direct expansion “DX” coils. In addition, the zones that are affected under this system
have variable refrigerant flow (VRF) terminal units as part of the air-conditioning system.

Figure A3. Envelope of the MixedUse building.
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The evaluation weather file for the MixedUse building is given by the identifier
GRC_TC_Lamia1 and should not be used in the training process. The control inputs and KPI
related outputs are displayed in Table A4.

Table A4. Inputs and outputs for the model MixedUseFanFCU-v0.

Variable Name Description Bounds Units

Inputs

Z02_T_Thermostat_sp
· · ·
Z05_T_Thermostat_sp
Z08_T_Thermostat_sp
· · ·
Z11_T_Thermostat_sp

Zone temperature setpoint [16,26] ◦C

Bd_T_AHU1_sp
Bd_T_AHU2_sp AHU temperature setpoint [10,30] ◦C

Bd_Fl_AHU1_sp
Bd_Fl_AHU2_sp AHU flow rate setpoint [0,1] -

Outputs

Fa_Pw_All Current power demand of whole facility [0,50, 000] W

Z02_T
· · ·
Z05_T
Z08_T
· · ·
Z11_T

Current zone temperature [10,40] ◦C

Appendix B.4. Seminarcenter Building

The Seminarcenter building is a one story building located in Denmark and includes
22 conditioned rooms on 1278.94m2 (see Figure A4). Five of the 22 rooms are divided into
two thermal zones and 18 rooms are controllable with thermostats.

Figure A4. Envelope of the Seminarcenter building.

Heating of the rooms is provided by water convectors with hot water from a buffer
tank. For the buffer tank and the DHW, air-to-water HPs are used to supply the heat-
ing demand and an additional gas boiler is available in case the HPs can not provide
enough heating.

The evaluation weather file for the Seminarcenter buildings is given by the identifier
DNK_MJ_Horsens2 and should not be used in the training process. The control inputs to
both simulation models and some outputs are described in Table A5.
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Table A5. Inputs and outputs for the models SeminarcenterThermostat-v0 (1) and SeminarcenterFull-
v0 (2).

Variable Name Description Bounds Units Model

Inputs

Z01_T_Thermostat_sp
· · ·
Z06_T_Thermostat_sp
Z08_T_Thermostat_sp
· · ·
Z11_T_Thermostat_sp
Z13_T_Thermostat_sp
· · ·
Z15_T_Thermostat_sp
Z18_T_Thermostat_sp
· · ·
Z22_T_Thermostat_sp

Zone temperature setpoint [16,26] ◦C 1/2

Bd_onoff_HP1_sp
· · ·
Bd_onoff_HP4_sp

Heat pump on/off setpoint {0,1} - 2

Bd_T_HP1_sp
· · ·
Bd_T_HP4_sp

Heat pump temperature setpoint [30,65] ◦C 2

Bd_T_AHU_coil_sp AHU water coil temperature setpoint [15,40] ◦C 2

Bd_T_buffer_sp Buffer tank temperature setpoint [15,70] ◦C 2

Bd_T_mixer_sp HPs water loop supply temperature setpoint [20,60] ◦C 2

Bd_T_HVAC_sp AHU air supply temperature setpoint [10,26] ◦C 2

Outputs

Bd_CO2 Timestep equivalent CO2 emission mass [0,10] kg 1/2

Fa_Pw_All Current power demand of whole facility [0,100, 000] W 1/2

Z01_T
· · ·
Z06_T
Z08_T
· · ·
Z11_T
Z13_T
· · ·
Z15_T
Z18_T
· · ·
Z22_T

Current zone temperature [10,40] ◦C 1/2

Appendix B.5. SimpleHouse and SwissHouse

SimpleHouse and SwissHouse represent two residential one-family houses. The entire
house is modeled with a single thermal zone in both cases. A Carnot heat pump is con-
nected to the room model and provides heat via radiator for the rad models
(SimpleHouseRad-v0 and SwissHouseRad-v0), or via floor heating for the slab model.

The evaluation weather file for the SimpleHouse and Swisshoue buildings is given
by the identifier CH_ZH_Maur and should not be used in the training process. The control
inputs to both simulation models and some outputs are described in Table A6.
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Table A6. Inputs and outputs for the models SimpleHouseRad-v0 and SimpleHouseSlab-v0 (1), and
SwissHouseRad-v0 (2).

Variable Name Description Bounds Units Model

Inputs

u Heat pump normalized power [0,1] - 1
heaSup.f Heat pump normalized supply flow [0,1] - 2
heaSup.T Heat pump supply temperature [293.15,353.15] K 2

Outputs

TOut.T Outside Temperature [253.15,343.15] K 1/2
temRoo.T Room Temperature [263.15,343.15] K 1/2
heaPum.P Heat pump power [0,30] kW 1/2
temRet.T Heat pump return temperature [273.15,353.15] K 1/2
temSup.T Heat pump supply temperature [273.15,353.15] K 1/2

Appendix C. Calibration Plots

Appendix C.1. MixedUse HVAC Performance Curves

For cooling mode, the obtained VRV capacity curves have a CV(RMSE) of 0.05%(Low),
0.10%(High) and 0.09%(Boundary) with an R2 above 99% for the three cases. While for its
electric input curves it has a CV(RMSE) of 3.59%(Low), 3.06%(High) and 0.07%(Boundary)
with an R2 of 91%, 96% and 99% respectively. As for heating mode, the results for the equip-
ment capacity curves have a CV(RMSE) of 0.35%(Low), 1.07%(High) and 0.01%(Boundary)
with an R2 above 99% for the three cases. The electric input curves CV(RMSE) range from
0.01%(Boundary), 0.41%(Low) to 0.75%(High), with an R2 above 99% for the three cases.
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Figure A5. VRV system performance curve comparison, Technical specification displayed in black
and calculated “z” value in red for heating, and blue for cooling.

For cooling, the MixedUse HP unit calculated capacity curves have a CV(RMSE) of
0.93% with an R2 of 99.4%, while its electric input has a CV(RMSE) 7.07% with an R2 of
94.5%. For heating, the calculated curve has a CV(RMSE) of 0.15% with an R2 above 99%.
Its COP curve has a CV(RMSE) of 0.19% with an R2 above 99%; see Figure A6.
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Figure A6. Heat pump performance curve comparison, technical specification displayed in black
and calculated “z” value in red for heating, and blue for cooling.
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Appendix C.2. MixedUse HVAC Calibration Results

Table A7. Results of VRV system calibration for cooling and heating periods, 2019–2020.

Index ASHRAE Cooling Average Heating Average
Thresholds Energy Indoor Energy Indoor

(Hourly) Consumption Temperature Consumption Temperature
(Main

Building)
(Main

Building)

DATE — May–October May–October November
2019–

November
2019–

2019 2019 April 2020 April 2020

NMBE (%) within ±10% 9.49% 0.16% 17.29% 1.12%
CV(RMSE) (%) ≤ 30% 27.57% 1.04% 27.57% 2.75%

R2 (%) ≥ 75% 76.17% 95.50% 66.50% 97.39%

Table A8. Results of HP system calibration for cooling and heating periods, 2019–2020.

Index ASHRAE Cooling TZ-05 HEATING TZ-05
Thresholds Energy Indoor Energy Indoor

(Hourly) Consumption Temperature Consumption Temperature
(Atrium) (Atrium)

DATE — July–October July–October November
2019–

November
2019–

2019 2019 April 2020 April 2020

NMBE (%) within ±10% 7.37% −0.02% −7.42% 5.31%
CV(RMSE) (%) ≤30% 27.41% 1.27% 27.21% 8.22%

R2 (%) ≥75% 78.89% 94.51% 76.49% 85.26%
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