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Abstract: The viscoplastic model proposed by Vermeer and Neher in 1999 is still currently used in
the oil and gas industry for subsidence modeling, to predict the deformation of the ground surface
induced by hydrocarbon withdrawal from underground reservoirs. Even though several different
implementations of this model have been proposed in the literature, also very recently, a consistent
fully implicit implementation is still missing, probably due to the technical difficulties involved in the
rigorous derivation of the analytical tangent matrix. To fill this gap and to provide an effective tool to
the engineering community, a fully implicit backward Euler integration is proposed and validated
in this work. The consistent expression of the tangent stiffness matrix is also derived analytically,
and its validation strategy is described in detail. The model was implemented in a commercial finite
element code through a user-defined material subroutine. The advantages of the proposed implicit
formulation in terms of stability with respect to an explicit formulation were assessed and validated.
The examples include studies at material point level and at field scale for a case study of subsidence
in a synthetic reservoir.

Keywords: viscoplastic soil; Vermeer; implicit time integration

1. Introduction

The computation and prediction of subsidence, due to the exploitation of an under-
ground deposit of hydrocarbons, is generally a very complex task and involves advanced
numerical simulations [1,2]. The problem physics includes the evolution of the fluid
pressure in the deposit and the correct evaluation of the time-varying stress field in the
compacting soil/rock. The corresponding fluid and solid problems can be addressed in a
coupled [3] or uncoupled approach [4] and other variants, including for example sequen-
tial coupling [5]. In the latter case, for a domain treated as a solid continuum, nonlinear
constitutive models accounting for creep become necessary.

The several stress–strain time-dependent models for soils that have been presented
in the literature mainly fall within the following two main categories:(i) models based
on the concept of overstress and (ii) models based on nonstationary yield theory, where
the classical plasticity yield limit is generalized to a viscoplastic yield locus that depends
on a time-dependent function, see e.g., [6,7] and the reviews in [8,9]. By following the
overtress approach, the Vermeer–Neher (V-N) model [10,11], which addresses materials
with a high degree of compressibility, such as soft soils, and generalizes odometer test
results to fully three-dimensional conditions accounting also for (secondary) creep through
an elastic-viscoplastic model, has encountered a significant popularity and is still actively
used in the oil and gas industry for subsidence modeling, to predict the deformation of
the ground surface induced by hydrocarbon withdrawal from underground reservoirs.
The reason for its success in engineering practice [12,13] rests on its relative simplicity
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and the limited number of required parameters that can be obtained by a few standard
experimental tests.

As any other elastic-viscoplastic model, the V-N model requires a time integration
scheme to be implemented in a finite element code. Both explicit [12,13] and (semi-)implicit
schemes [10,14] were used in the past for the V-N model time integration at the local
level. For the semi-implicit time integration approaches [10,14], there are unsolved issues:
namely, the deviatoric strain increment is not accounted for [14], so that the integration is
not actually fully implicit, and in general, the convergence is at best sublinear for the time
integration at the global level.

Very recently [15], a fully implicit backward Euler formulation for the local time inte-
gration of the V-N model was proposed, in combination with a preconditioned conjugate
gradient (PCG) technique for the global solver. In this formulation, the tangent stiffness
matrix, however, is artificially symmetrized (this is a requirement for the PCG method),
and its entries are computed numerically, without providing their analytical expression.
Despite the popularity of the V-N model, its intense use in practical engineering applica-
tions, and the fact that its implementation is still the object of new contributions in the
scientific literature, a robust and completely consistent implicit backward Euler integration
of the model, together with an analytical expression of its consistent tangent matrix, is
still missing. The reason for this deficiency is probably due to the technical difficulties
involved in the formulation of the Newton–Raphson local iterative scheme, necessary
to obtain the updated stress and viscoplastic strain increments, and most of all, in the
laborious derivation of the analytical expression of the consistent tangent matrix for the
global Newton–Raphson scheme.

A consistent tangent matrix formulation and Newton–Raphson scheme for the implicit
integration of an elastoplastic finite element model in large strains was proposed for the
first time by Nagtegaal [16]. Simo and Taylor [17] clarified the difference between the
tangent matrix for the rate problem and the consistent tangent matrix for the backward
Euler iterative scheme. Simo et al. [18] and Perego [19] discussed the formulation of
consistent backward Euler approaches in the case of multi-surface plasticity models with
corners. Borja [20,21] provided a detailed presentation of the consistent backward Euler
integration of a Cam–Clay model. Despite the fact that the theoretical aspects connected
with the backward Euler integration of elastoplastic constitutive models were exhaustively
treated in the literature mentioned above, the application of implicit integration schemes to
viscoplastic models has continued to attract the interest of the research community, due to
the already mentioned technical difficulties. De Borst and Heeres [22] provided a unified
scheme for standard and viscous plasticity models in geomechanics. Grimstad and Degago
in [23] implemented an implicit backward Euler integration scheme for a similar (n-SAC)
model (see also, e.g., [24,25] and the references therein).

To fill the gap in the implicit implementation of the V-N model and to provide an
efficient analysis tool to the engineering community, in this work we present a rigorous
backward Euler time integration scheme with a Newton–Raphson solution of the nonlinear
equations at the integration point. In addition, we provide a closed form for the consis-
tent tangent stiffness matrix, showing that superior performances are obtained when the
non-symmetric nature of the tangent stiffness matrix is preserved. A short version of the al-
gorithm proposed here was anticipated in a conference paper [26]. In the present paper, we
present a complete and detailed derivation, together with a rigorous validation procedure.
Indeed, one of the critical points in the analytical derivation of the consistent tangent matrix
is its validation. The procedure followed for this purpose is therefore described in detail.
The implicit integration of the model was implemented as a user material subroutine in
the finite element code Abaqus Standard™. The accuracy and practical effectiveness of the
implemented model were validated through numerical examples, both at material point
level and at the scale of a real reservoir.

The computing performances of the proposed backward Euler integration were as-
sessed by comparison against the fully explicit formulation proposed in [13] and the fully
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implicit one recently proposed in [15]. While implicit schemes are unconditionally stable,
but generally require an iterative scheme for the solution of the implicit problem generated
at each Gauss point, explicit integration schemes are only conditionally stable and require a
high number of very small time increments. This drawback could be mitigated by adopting
an adaptive sub-stepping technique. The obtained results show the superiority of the
proposed backward Euler implementation with respect to the fully explicit references, con-
firming that the tangent stiffness matrix consistent with the global time integration, as the
one derived in this paper, allows for a substantial computational gain in terms of overall
analysis time with respect to both the explicit and implicit time integration approaches. It
is also worthwhile to emphasize that the original version of the V-N model has a deficiency
in the definition of the critical state (see e.g., [9]), but this problem is not addressed in
the present paper. Finally, we mention that, while an anisotropic formulation for the V-N
model has been provided [27], this work refers to the simpler, isotropic version [10,11].

2. Constitutive Model in Rate Form

Under the assumption of infinitesimal strains, the elasto-viscoplastic constitutive
model of [11] is based on the following definition of the effective stress rate, positive if
compressive (note that, to simplify the notation and in contrast to what is usually done in
soil mechanics, the symbol σ is used to denote the effective stress and not the total stress):

σ̇(t) = D(t) : [ε̇(t)− ε̇vp(t)] (1)

where t is the physical time, σ denotes the effective stress, ε the total strain, and D the
isotropic elastic tensor:

D(t) = 2G(t)II +
[

K(t)− 2
3

G(t)
]

I⊗ I (2)

where I is the second-order identity tensor and II is the fourth-order tensor of Cartesian components:

[I I]ijhk = δih δjk + δik δjh i, j, h, k = 1, 2, 3 (3)

G and K are the shear and bulk modulus, respectively. Finally, ε̇vp in (1) is the
viscoplastic strain rate:

ε̇vp = γ̇
∂peq

∂σ
(4)

γ̇ is a scalar viscoplastic multiplier, introduced for convenience of notation, and peq is the
plastic potential, defined as:

γ̇ =
µ∗

τ

1
peq

,p

(
peq

peq
p

) λ∗−κ∗
µ∗

peq(p, q) = p +
q2

M2 p

(5)

In (5), a comma denotes the partial derivative with respect to the variable after the
comma, τ and the non-dimensional parameters µ∗, λ∗, and κ∗ are material parameters,
which will be defined below, p = σ : I/3 is the effective hydrostatic pressure, q =

√
3/2 s : s

is the effective deviatoric stress, s being the deviatoric stress tensor, and M is the slope of the
critical state line in the q− p plane (see Figure 1). Finally, peq

p (note that in this case, there is
no comma before the subscript p) is an internal variable, to be interpreted as a generalized
consolidation pressure, governing the hardening behavior of the viscoplastic response.
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Figure 1. Original and evolved domain for the plastic potential peq in the
deviatoric-hydrostatic plane.

τ, µ∗, λ∗, and κ∗ are material parameters with a clear physical meaning and easily
identifiable through standard laboratory tests, such as odometric tests. τ is a characteristic
time, usually set equal to 24 h. µ∗ is the modified creep index (modified because it is
expressed in terms of the volumetric strain rather than the void ratio), which can be
obtained in the long term from: (i) the slope of volumetric strain εv versus the logarithm of
time [11] (see Figure 2a), (ii) the slope of the inverse of volumetric strain rate versus time
(see [28]), and (iii) the slope of logarithm of strain rate versus strain (see [29]), while λ∗

is the modified compression index, measuring the slope of the normal consolidation line
in the εv − log p plane (see Figure 2b), and κ∗ is the modified swelling index, measuring
the slope of the unloading or swelling curve in the same plot. The parameters λ∗ and κ∗

should not be confused with the more commonly used λ and κ (without the ∗ at the apex):
Equation (31) in [11] states their relationships (it is λ∗ = λ/(1 + e) and κ∗ = κ/(1 + e),
where e is the void ratio).

Figure 2. Model parameters from odometric tests: (a) µ∗ determination; (b) λ∗ and κ∗ determination.

The evolution of the consolidation pressure, peq
p in (5), is governed by the follow-

ing law:

peq
p = peq

p0 exp

(
ε

vp
v

λ∗ − κ∗

)
(6)
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where ε
vp
v is the volumetric viscoplastic strain and peq

p0 is a reference parameter defining
the initial value of the consolidation pressure. Figure 1 shows two contour plots of peq in
the q− p plane, the original one and an evolved state. The critical state line of slope M
is also shown in the plot. Equation (6) shows that the evolution of the plastic potential
is independent of the deviatoric component of stress and, together with (4), defines an
associative evolution of the viscoplastic strains. It should be noted that these inelastic
strains start to develop whenever peq > 0, though, due to the power law in (5), for common
values of the parameters, the growth rate is very small as long as peq/peq

p < 1.
In general, both G and K in (2) are taken to depend on the current pressure state p(t),

and hence on time, through the following relation:

K(t) =
p(t)
κ∗

, G(t) =
3
2

1− 2ν

1 + ν

p(t)
κ∗

(7)

ν being Poisson’s coefficient.
For the subsequent developments, it is convenient to introduce the projector operators

m and n defined as:
m =

∂p
∂σ

=
1
3

I, n =
∂q
∂σ

=
∂q
∂s

=
3
2

s
q

(8)

such that:
p = m : σ, q = n : σ, m : D = 3Km, n : D = 2G n (9)

Following [20], the key idea is that, by using m and n, the viscoplastic strain rate can
be easily decomposed into its volumetric and deviatoric components:

ε̇vp = γ̇
∂peq

∂σ
= γ̇

(
peq

,p m + peq
,q n

)
(10)

Noting that m : n = 0, m : m = 1/3, and n : n = 3/2, the rates of the stress invariants
p and q can be directly obtained from (1), (4), and (10) as:

ṗ = m : D : ε̇−m : D :
(

peq
,p m + peq

,q n
)

γ̇ = ṗtrial − Kpeq
,p γ̇ (11)

q̇ = n : D : ε̇− n : D :
(

peq
,p m + peq

,q n
)

γ̇ = q̇trial − 3Gpeq
,q γ̇ (12)

In (12), ṗtrial = Kε̇v/3 and q̇trial = 2G n : ε̇ (and hence, also σ̇trial = D : ε̇) represent
tentative values of the stress rates under the assumption of a purely elastic stress variation.
In view of the already mentioned absence of a stress threshold for the activation of the
viscoplastic strains, a purely elastic stress variation is impossible and, therefore, the trial
quantities are purely theoretical.

Equation (10) implicitly defines the rate of the volumetric viscoplastic strain as:

ε̇
vp
v = peq

,p γ̇ (13)

whose integration is required to compute the evolution of the internal variable peq
p in (6).

3. Implicit Backward-Difference Time Integration

Let ∆t = tn+1 − tn > 0, with tn, tn+1 ∈ [0 − T], a time interval along which the
constitutive law (1) has to be integrated. A fully implicit, backward-difference scheme
is adopted here, whereby all the quantities are evaluated at the end tn+1 of the step,
whereas the state of the system is assumed to be completely known at tn. In the following
derivations, the isotropic elastic tensor D is considered constant in the time step, as is
commonly assumed in the literature; see, e.g., [20]. Its value will be updated based on
Equation (7) only at the end of the considered time step. An implicit formulation of the
algorithm considering also the evolution of D within the time step would be possible, at the
cost however of additional complications in the formulation of the integration scheme
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and of the consequent increase of the computing time, with little expected improvement
of accuracy.

The stress at the end of the step can be expressed as:

σn+1 = σtrial −D : ∆εvp (14)

where σtrial = D :
(
εn+1 − εvp n) is the stress value at the end of the step under the

theoretical assumption of a purely elastic increment and εn+1 is assumed to be a prescribed
quantity. The symbol ∆ will be used to denote the finite increments of all quantities between
tn and tn+1.

From (10), the increment of viscoplastic strains is expressed as:

∆εvp = ∆γ

(
∂peq

∂σ

)n+1
= ∆γ

[(
peq

,p

)n+1
m +

(
peq

,q

)n+1
nn+1

]
(15)

Exploiting the well-known property for which nn+1 = ntrial = (3/2) strial/qtrial (see
Appendix A), with qtrial =

√
3/2 strial : strial, the increment of viscoplastic strains can be

written as:
∆εvp = ∆ε

vp
v m + ∆evpn (16)

with:
∆ε

vp
v = ∆γ(peq

,p )
n+1, ∆evp = ∆γ(peq

,q )
n+1 (17)

and the notation n is used instead of ntrial. Based on (12), the hydrostatic and deviatoric
invariants are in turn written as:

pn+1 = ptrial − K ∆ε
vp
v , qn+1 = qtrial − 3 G ∆evp (18)

According to the definition (5) of γ̇, the increments of the volumetric viscoplastic

strain (13) and of the internal variable
(

peq
p

)n+1
(6) at the end of the step are given by:

∆ε
vp
v = (peq

,p )
n+1∆γ =

µ∗

τ
∆t

( peq

peq
p

)n+1
 λ∗−κ∗

µ∗

(
peq

p

)n+1
= peq

p0 exp

(
ε

vp n
v + ∆ε

vp
v

λ∗ − κ∗

) (19)

Using (13), one can express the increment of the plastic multiplier as:

∆γ =
∆ε

vp
v(

peq
,p

)n+1 =
µ∗

τ

∆t(
peq

,p

)n+1

( peq

peq
p

)n+1
 λ∗−κ∗

µ∗

(20)

and use this expression for the computation of ∆evp in (17).
The local non-linear problem defined by Equations (16)–(20) is solved at each Gauss

point in an iterative way using the Newton–Raphson method. Once the values pn+1, qn+1

in (18) have been computed, the value of the stress at the end of the step is determined as:

σn+1 = sn+1 + pn+1I =
2
3

qn+1n + pn+1I (21)

The selected unknowns are collected in the vector X defined as:

X
(5×1) =

[
∆evp ∆ε

vp
v

(
peq

p

)n+1
pn+1 qn+1

]T
(22)
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whose corresponding residuals are:

Ψ1 = ∆evp −
(

peq
,q

)n+1 ∆ε
vp
v(

peq
,p

)n+1 = 0 (23)

Ψ2 = ∆ε
vp
v −

µ∗

τ
∆t

( peq

peq
p

)n+1
 λ∗−κ∗

µ∗

= 0 (24)

Ψ3 =
(

peq
p

)n+1
− peq

p0 exp

(
ε

vp n
v + ∆εP

v
λ∗ − κ∗

)
= 0 (25)

Ψ4 = pn+1 − ptrial + K ∆ε
vp
v = 0 (26)

Ψ5 = qn+1 − qtrial + 3 G ∆evp = 0 (27)

For convenience, these can be collected in a residual vector Ψ:

Ψ
(5×1) =

[
Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

]T (28)

The trial values in (26) and in (27) are given by:

σtrial = D :
(

εn+1 − εvp n
)

, ptrial = m : σtrial, strial = n : σtrial,

qtrial =

√
3
2

strial : strial
(29)

It should be noted that not all residuals explicitly depend on all unknowns, as can be
seen below:

Ψ1 = Ψ1

(
∆evp, ∆ε

vp
v , pn+1, qn+1

)
(30)

Ψ2 = Ψ2

(
∆ε

vp
v ,
(

peq
p

)n+1
, pn+1, qn+1

)
(31)

Ψ3 = Ψ3

(
∆ε

vp
v ,
(

peq
p

)n+1
)

(32)

Ψ4 = Ψ4

(
∆ε

vp
v , pn+1

)
(33)

Ψ5 = Ψ5

(
∆evp, qn+1

)
(34)

Proceeding iteratively with a first-order linearization of the resolving system, at the
(i + 1)-th iteration, one has:

Ψi+1
∼= Ψi +

dΨ

dX

∣∣∣∣
i
δX = 0 (35)

where Ψi defines the residual vector at iteration i and δX is the increment of the unknown
variables between two subsequent iterations:

δX
(5×1) =

[
δ∆evp δ∆ε

vp
v δpeq

p δp δq
]T

(36)

The residual gradient dΨ/dX is a 5 × 5 matrix containing the derivatives of the
residuals w.r.t. the unknowns. Its detailed expression is given in Appendix B. It can be
shown that the gradient dΨ/dX is non-symmetric. Consequently, a non-symmetric solver
must be used for the local problem, if a consistent tangent matrix is desired to assure an
asymptotic quadratic convergence.
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4. Consistent Tangent Stiffness

Starting from the known material state at tn+1, a virtual total stress variation δσ
occurring in the infinitesimal time δt can be expressed as (since all quantities are evaluated
at tn+1, the superscript n + 1 is omitted to simplify the notation):

δσ =
∂σ

∂ε
: δε +

∂σ

∂t
δt (37)

where the term ∂σ/∂t · δt accounts for the viscous stress relaxation at constant strains.
Using (21), the stress variation δσ can also be written as:

δσ = 2
3 n δq + 2

3 q δn + I δp = 2
3 n
(

∂q
∂ε : δε + ∂q

∂t δt
)
+ 2

3 q ∂n
∂ε : δε +

(
I ∂p

∂ε : δε + I ∂p
∂t δt

)
(38)

After reordering, we obtain:

δσ =

(
2
3

n⊗ ∂q
∂ε

+
2
3

q
∂n
∂ε

+ I⊗ ∂p
∂ε

)
︸ ︷︷ ︸

∂σ

∂ε

: δε +

(
2
3

n
∂q
∂t

+ I
∂p
∂t

)
︸ ︷︷ ︸

∂σ

∂t

δt (39)

The first term ∂σ/∂ε is the contribution to the global tangent matrix to be used in the
finite element code (i.e., in an UMAT user subroutine in the software Abaqus™).

The computation of (39) requires the derivation of δn, δp, and δq in terms of δε and
δt. n does not depend on time and its variation with δε can be obtained starting from its
definition (8)2:

δn =
3
2

(
1

qtrial δstrial − strial

qtrial2
δqtrial

)
(40)

with:
δstrial = 2G Dev : δε

δqtrial =
∂qtrial

∂strial : δstrial = 2Gn : Dev : δε = 2Gn : δε
(41)

where Dev is the deviatoric operator defined as:

Dev = II− 1
3

I⊗ I (42)

Replacing (41) in (40) and taking into account that strial = 2/3qtrialn, one has:

δn =
3G

qtrial

(
Dev− 2

3
n⊗ n

)
: δε (43)

The variations δp and δq are obtained from (18) and (17):

δp = δptrial − K
(

peq
,ppδp + peq

,pqδq
)

∆γ− Kpeq
,p δ∆γ

δq = δqtrial − 3G
(

peq
,qpδp + peq

,qqδq
)

∆γ− 3Gpeq
,q δ∆γ

(44)

with δqtrial given in (41)2 and:
δptrial = 3Km : δε (45)

After rearranging, Equation (44) can be rewritten as:(
1 + K peq

,pp ∆γ
)

δp +
(

K peq
,pq∆γ

)
δq = 3 K m : δε− K peq

,p δ∆γ(
3 G peq

,qp ∆γ
)

δp +
(

1 + 3 G peq
,qq∆γ

)
δq = 2 G n : δε− 3 G peq

,q δ∆γ
(46)
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The computation of δp and δq in (44) requires the definition of δ∆γ. This can be
obtained from the expression (19)1 of ∆ε

vp
v :

δ∆ε
vp
v = δ

(
peq

,p ∆γ
)
=

µ∗

τ
∆t δ

( peq

peq
p

) λ∗−κ∗
µ∗
+

µ∗

τ

(
peq

peq
p

) λ∗−κ∗
µ∗

δt (47)

with:
δ
(

peq
,p ∆γ

)
= peq

,pp∆γδp + peq
,pq∆γδq + peq

,p δ∆γ

δ

( peq

peq
p

) λ∗−κ∗
µ∗
 =

λ∗ − κ∗

µ∗

(
peq

peq
p

) λ∗−κ∗−µ∗
µ∗

δ

(
peq

peq
p

)

δ

(
peq

peq
p

)
=

1
peq

p

(
peq

,p δp + peq
,q δq

)
− peq(

peq
p

)2 δpeq
p

δpeq
p =

1
λ∗ − µ∗

(
peq

p

)n
exp

(
∆ε

vp
v

λ∗ − µ∗

)
δ∆ε

vp
v

(48)

Replacing (48)2,3,4 in (47), one has:

δ∆ε
vp
v =

∆t
τ

(λ∗ − κ∗)

[
peq

peq
p

] λ∗−κ∗−µ∗
µ∗

·

·


(

peq
,p δp + peq

,q δq
)

peq
p

− peq(
peq

p

)2

(
peq

p

)n

λ∗ − µ∗
exp

(
∆ε

vp
v

λ∗ − µ∗

)
δ∆ε

vp
v

+
+

µ∗

τ

[
peq

peq
p

] λ∗−κ∗
µ∗

δt

(49)

Rearranging the different terms, Equation (49) can be rewritten as:

A δ∆εP
v = B

(
peq

,p δp + peq
,q δq

)
+

µ∗

τ

(
peq

peq
p

) λ∗−κ∗
µ∗

δt (50)

with

B = ∆t
λ∗ − κ∗

τ

(
peq

peq
p

) λ∗−κ∗−µ∗
µ∗

· 1
peq

p
(51)

A = 1 + B

(
peq

peq
p

) (
peq

p

)n

λ∗ − κ∗
exp

(
∆ε

vp
v

λ∗ − µ∗

)
(52)

From (47), (48)1, and (50), one can write:

A peq
,pp ∆γ δp + A peq

,pq ∆γ δq + A peq
,p δ∆γ = B

(
peq

,p δp + peq
,q δq

)
+

µ∗

τ

[
peq

peq
p

] λ∗−κ∗
µ∗

δt (53)

and then solve for δ∆γ:

δ∆γ =
1

A peq
,p

[
Bpeq

,p − A peq
,pp ∆γ

]
δp +

1
A peq

,p

[
Bpeq

,q − A peq
,pq ∆γ

]
δq +

1
A peq

,p

µ∗

τ

[
peq

peq
p

] λ∗−κ∗
µ∗

δt (54)
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The present expression of δ∆γ can be replaced in (46), obtaining (after some algebra)
the following system of equations in the unknown variations δp and δq:

F11 δp + F12 δq = 3 K m : δε− K
A

µ∗

τ

[
peq

peq
p

] λ∗−κ∗
µ∗

δt

F21 δp + F22 δq = 2 G n : δε− 3 G
peq

,q

Apeq
,p

µ∗

τ

[
peq

peq
p

] λ∗−κ∗
µ∗

δt

(55)

with:
F11 = 1 + K peq

,pp
B
A

F12 = K peq
,q

B
A

F21 = 3 G peq
,qp ∆γ + 3 G peq

,q
B
A
− 3 G peq

,q
peq

,q

peq
,p

peq
,pp ∆γ

F22 = 1 + 3 G peq
,qq∆γ + 3 G

(
peq

,q

)2

peq
,p

B
A
− 3 G

peq
,q

peq
,p

peq
,pq

B
A

∆γ

(56)

The system (55) can be solved analytically for δp and δq:

δp = c11

3 K m : δε− K
A

µ∗

τ

[
peq

peq
p

] λ∗−κ∗
µ∗

δt

+ c12

2 G n : δε− 3 G
peq

,q

A peq
,p

µ∗

τ

[
peq

peq
p

] λ∗−κ∗
µ∗

δt


δq = c21

3 K m : δε− K
A

µ∗

τ

[
peq

peq
p

] λ∗−κ∗
µ∗

δt

+ c22

2 G n : δε− 3 G
peq

,q

A peq
,p

µ∗

τ

[
peq

peq
p

] λ∗−κ∗
µ∗

δt


(57)

where the terms c11, c12, c21, c22 are the coefficients of the matrix C = F−1, namely:

C =

[
c11 c12
c21 c22

]
= F−1 =

1
det F

[
F22 −F12
−F21 F11

]
(58)

Rearranging (57), one obtains:

δp = [c11 K I + c12 2 G n] : δε−

c11
K
A

µ∗

τ

(
peq

peq
p

) λ∗−κ∗
µ∗

+ c12 3 G
peq

,q

A peq
,p

µ∗

τ

(
peq

peq
p

) λ∗−κ∗
µ∗
 : δt

δq = [c21 K I + c22 2 G n] : δε−

c21
K
A

µ∗

τ

(
peq

peq
p

) λ∗−κ∗
µ∗

+ c22 3 G
peq

,q

A peq
,p

µ∗

τ

(
peq

peq
p

) λ∗−κ∗
µ∗
 : δt

(59)

Replacing the obtained expressions of δn (43), δp (59)1, and δq (59)2 in (37), one finally
obtains the explicit expression of the tangent matrix:
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δσ =

[(
2
3

c21 K n⊗ I + c12 2 G I⊗ n
)
+

4
3

G
(

c22 −
q

qtrial

)
n⊗ n + 2 G

q
qtrial Dev + c11 K I⊗ I

]
︸ ︷︷ ︸

∂σ

∂ε

: δε+

+

{
−I
[

c11
K
A

µ∗

τ

(
peq

peq
p

) λ∗−κ∗
µ∗

+ c12 3 G
peq

,q

A peq
,p

µ∗

τ

(
peq

peq
p

) λ∗−κ∗
µ∗ ]

+

− 2
3

n
[

c21
K
A

µ∗

τ

(
peq

peq
p

) λ∗−κ∗
µ∗

+ c22 3 G
peq

,q

A peq
,p

µ∗

τ

(
peq

peq
p

) λ∗−κ∗
µ∗ ]}

δt

(60)

The term inside the curly brackets in (60) is the partial derivative of the stress with
respect to time, i.e. ∂σ/∂t. The stress variation in (60) consists of two contributions.
The first, ∂σ/∂ε, is the tangent stiffness operator to be used for the predictor step in the
global Newton–Raphson iteration scheme. This is the term that is required by Abaqus™
to be computed at each Gauss point in a User Material subroutine and to be passed to
the code for global iteration. The second term, ∂σ/∂t, accounts for the stress relaxation at
constant strain and does not have to be passed to Abaqus™ by the User Material subroutine.
However, it has to be properly taken into account for the validation of the tangent stiffness
operator, as will be discussed in the next section.

It should be noted that the tangent stiffness operator ∂σ/∂ε in (60) is not symmetric.
However, it can be shown that the coefficients c12 and c21 of the non-symmetric part in (60)
vanish for vanishing ∆γ, a result in agreement with the findings in [20].

The implemented procedure is summarized in Algorithms 1–4.

Algorithm 1: Implicit backward difference time integration.
Initialization
Solve Newton–Raphson linear System (35) to obtain σn+1, Equation (21)

Compute tangent matrix
(

∂σ
∂ε

)n+1
, Equation (60)

Algorithm 2: Initialization.
At time step n, from tn to tn+1, all quantities at time tn are known.
Given ∆εn, compute εn+1 = εn + ∆εn.
ntrial, σtrial, strial, ptrial and qtrial from Equations (8)2 and (29).
Initial (trial) values for derivatives of peq are then known from Equation (A10).

Algorithm 3: Solve Newton–Raphson linear System (35) to obtain σn+1.
At iteration i, if i = 0, use trial values for n + 1 quantities.
Compute residuals Ψi for the linearized system (35) with Equations (23)–(27).

Compute the coefficient matrix
dΨ

dX

∣∣∣∣
i

for the linearized system (35) with

Equations (A11)–(A13).
Solve linearized System (35) for the unknowns δX in Equation (36).
Update X i+1 = X i + δX.
Convergence test: if passed, Xn+1 = X i+1, and exit loop. Else, repeat from 1 with

X i+1 = X i and i + 1 −→ i.
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Algorithm 4: Compute tangent matrix
(

∂σ
∂ε

)n+1
, Equation (60).

Update at tn+1: (peq)n+1 with Equation (5)2; derivatives of (peq)n+1 with
Equation (A10); Kn+1, Gn+1 with Equation (7); peq

p with Equation (19).
Compute B and A from Equations (51) and (52), respectively.
Compute F11, F12, F21, F22 with Equation (56), det F = (F11 · F22 − F12 · F21) and the

coefficients c11, c12, c21, c22 with Equation (58).
Compute the tangent stiffness matrix with Equation (60), here rewritten for clarity
(all quantities are calculated at tn+1, if not indicated otherwise):(

∂σ

∂ε

)n+1
=

(
2
3

c21 K n⊗ I + c12 2 G I⊗ n
)
+

4
3

G
(

c22 −
q

qtrial

)
n⊗ n+

+ 2 G
q

qtrial Dev + c11 K I⊗ I

5. Numerical Tests

The robustness, accuracy, and efficiency of the proposed model were investigated with
numerical tests. The implicit version of the model described in the previous sections was
first implemented in a MATLAB™ code and validated at the material point level by impos-
ing a strain history and calculating the corresponding stress. Then, the material model was
implemented in a user material subroutine of a commercial finite element code [30] and was
applied to the simulation of subsidence at a reservoir scale, as was described in [26]. Finally,
the model was tested on a large-scale geomechanical problem. In the tests, the proposed
implicit approach was compared both with the explicit integration procedure proposed
in [13] and with the implicit one proposed in [15]. When showing the results, the following
convention for the stress components was assumed: σ = [σ11 σ22 σ33 σ23 σ13 σ12].

5.1. Tests at the Material Point Level

The tests at the material point level were performed by imposing a strain history and
evaluating the corresponding stresses. The results of the proposed implicit integration
scheme were compared with the outcomes of an explicit integration. The material prop-
erties used in these tests are shown in Table 1, where OCR denotes the overconsolidation
ratio, used in the definition of peq

0 = OCR · p0, p0 being the initial hydrostatic stress.

Table 1. Material parameters for the Vermeer–Neher (V-N) law. OCR, overconsolidation ratio.

κ∗ λ∗ µ∗ M ν OCR τ (days)

0.0084 0.061 0.0011 1.33 0.3 1.39 1

In the following examples, the strain history will be imposed by defining the strain
increment vector ∆ε as:

∆ε = ∆εV [n1 + c1n2 ] (61)

where ∆εV is the desired volumetric strain (to be imposed), n1 = [1 1 1 0 0 0]T (using Voigt’s
notation for the stress tensor), c1 = K tan β

2G , and β defines the relationship between p and q
(∆p = tan β ∆q) in the first increment. The vector n2 defines which stress directions were
activated, and it varies from case to case. All the analyses were initialized with a non-zero
hydrostatic stress through the parameter p0.
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5.1.1. Test 1: Monotonic Loading

In the first test, an increasing strain was imposed at a single Gauss point. Because of
the imposed strain path (61), the obtained stress had both a hydrostatic and a deviatoric
component. The imposed deformation increment was chosen to activate the stress compo-
nent in Direction 11, i.e., aligned with the vector n2 = [1 0 0 0 0 0]T . The other parameters
were: ∆εV = 10−4, β = 30o, and p0 = 105 Pa.

The evolution in time of the stress component σ11 is depicted in Figure 3. To be precise,
the stress is plotted as a function of the time step number, where time steps of constant
amplitude were used. The curves show an excellent agreement between implicit and
explicit integration using a time step ∆t = 0.1, where ∆t is the non-dimensional time step
size ∆t = (tn+1 − tn)/τ̄ and the time units of τ̄ are years. It can be observed that the
implicit scheme was able to provide an accurate solution even when using a time step
10 times (∆t = 1.0) larger than the explicit case. When using the same larger time step
(∆t = 1.0), the implementation with explicit integration was not able to provide a solution.
To confirm the accuracy of the proposed algorithm, an explicit solution with a very small
time step (∆t = 0.01) is plotted. No significant difference can be appreciated between
the curves.

Figure 3. Test 1. Time evolution of the stress σ11 at different time steps for explicit and implicit
time integrations.

The same results are subsequently plotted in a p− q plane in Figure 4. In this plane
as well, it is possible to observe a very good agreement between the implicit solution
with large time step and the explicit one obtained with a much smaller time step. A slight
difference is visible in the implicit solution with the larger time step, due to the less frequent
evaluation of the stress along the (nonlinear) loading history.

Figure 4. Test 1. Stress point evolution in the p− q plane.
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5.1.2. Test 2: Monotonic Loading

The second test was very similar to the previous one, the only difference being the
activated stress component. In this second case, the increasing strain activated the stress
in Direction 12, i.e., aligned with the vector n2 = [0 0 0 1 0 0]T). Figure 5 shows the time
evolution of the stress component for two different time step sizes. For the smaller time
step (∆t = 0.1), the implicit and explicit results were very close. However, when the time
step size increased (∆t = 1.0), the explicit solution tended to oscillate.

Figure 5. Test 2. Time evolution of σ11 stress at different time steps for explicit and implicit
time integrations.

The same results can be also observed in a p− q plane in Figure 6. As expected, this
test confirmed that the implicit integration scheme was more robust and allowed for the
use of a larger time step size, possibly reducing the global computing time of the analysis.

Figure 6. Test 2. Stress point evolution in the p− q plane.

5.1.3. Test 3: Loading and Unloading

In this test, a loading and unloading evolution of the strain was imposed. First, it
increased linearly (∆εV = 10−4 for 10 time steps), then it remained constant for a while
(∆εV = 0 for 10 time steps); finally, it decreased linearly again to zero (∆εV = −10−4

for 10 time steps). Due to the viscous behavior, in the region with constant strain, a
stress relaxation took place. The other parameters were: n2 = [1 0 0 0 0 0]T , β = 30o, and
p0 = 5 · 105 Pa. In Figure 7, results in the p− q plane are shown.
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Figure 7. Test 3. Stress point evolution in the p− q plane.

As in the previous cases, implicit and explicit integration schemes gave very close
results when a relative small time step was used (∆t = 0.1). On the contrary, when a
larger time step was used (∆t = 1.0), only the proposed implicit scheme could provide a
non-oscillating solution.

5.2. On the Validation of the Consistent Stiffness Matrix in a Standard FE Code

To verify the implementation of the consistent tangent stiffness matrix (60) in a com-
mercial FE code, the following procedure was followed.

The implicit time integration of the constitutive model was first carried out over a time
step of a regular size for a prescribed strain increment. Stresses σn+1 and viscoplastic strains
εvp n+1 at the end of the step were therefore computed as an output of the implicit time
integration. Starting from this computed stress state, six very small (of the order of 10−8)
strain increment vectors δεi, i = 1, . . . 6 were assigned. Each strain increment vector δεi
consisted of a very small non-zero i-th component, while the remaining five components
were zero. The corresponding vector δ(σloc)i was then computed by solving the local
backward difference problem stated through the nonlinear system (35) and the update (21).

This stress vector was compared to the estimate obtained as δ
(
σapprox

)
i =

[
∂σ

∂ε

]n+1
δεi,

where
[

∂σ

∂ε

]n+1
is the tangent stiffness matrix (60) at time tn+1, in correspondence with the

computed stresses σn+1. This estimate is more acceptable the smaller the strain increment
δεi is. For each of the six strain increment vectors δεi, the accuracy of the i-th column of
the tangent stiffness matrix was tested.

The tests described above had to be repeated computing the tangent stiffness matrix
for several different initial stress states σn+1. As an example, for an initial hydrostatic stress
state p0 = 5 · 105 Pa, the verification of [∂σ/∂ε]n+1 was carried out at six different stress
values σn+1 = p0m + ∆σ (with ∆σ a function of ∆ε = n2 ∆ε, obtained by varying n2 with
one non-zero entry at a time and ∆ε = 10−4). The result, in terms of the δσ11 component,
is shown in Figure 8, evidencing in all cases a small, but unavoidable difference between
δ(σloc)11 and δ(σapprox)11. It is also worthwhile to emphasize that there are very small
values for δ(σapprox)11 appearing in Figure 8: they are actually on the order of magnitude
of the corresponding stress component shown in Table 2, where the increments for the
complete stress vector corresponding to Case 4 (with n2 = [0 0 0 1 0 0]T) are also shown.
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Figure 8. Validation tests. Stress increments δ(σ11)i starting from σn+1 = p0m + ∆σ for numerically
infinitesimal strain increments δ(εi) with i = 1, 2, . . . , 6.

Table 2. Stress increments in Pa during Validation Test 4 (case n2 = [0 0 0 1 0 0]T).

δ(σloc) δ
(
σapprox

)
δ(σcorr)

δσ11 −3.4705174 −2.1845232·10−10 −3.4691579
δσ22 −3.4705174 −2.1845232·10−10 −3.4691579
δσ33 −3.4705174 −2.1845232·10−10 −3.4691579
δσ23 2.7472039·10−1 2.7471848·10−1 2.7471550·10−1

δσ13 0.00000000 0.00000000 0.00000000
δσ12 −2.9853658·10−2 −1.9076352·10−12 −2.9841846·10−2

A better correspondence between the two values, to within the round-off machine
error, of the local update δ(σloc)i and of its estimate δ(σapprox)i can be obtained only

by accounting for the contribution
∂σ

∂t
evidenced in the second term of (60), namely by

defining a corrected term δ(σcorr)i =
∂σ

∂ε
δεi +

∂σ

∂t
δt. In the latter expression, the last

contribution accounts for the time dependence of the stiffness matrix in the time step
and cannot be inserted in standard FE codes, where typically, user customization of the

constitutive law allows only providing in a user subroutine the term
∂σ

∂ε
, next passed to

the global assembly.
This very small discrepancy, of the order of 0.0005% for the considered cases, however,

turned out to be appreciable only in the mentioned verification cases with tiny strain
increments (order of 10−8 in this case) that were not of interest in real applications, and this
is irrelevant for practical applications. Nevertheless, it needed to be carefully considered
during the validation phase.

5.3. Subsidence Evaluation for a Real Case Study

A real gas field, located in the Adriatic Basin, was selected for the last test in order
to compare not only the results obtained with the different formulations, but also the
computational times on a larger scale model, representative of the size of the studies
typically performed in the industry for the prediction of subsidence due to hydrocarbon
exploitation. The field is located at about 60 km from the Italian coastline, where the average
water depth is 60 m. The depth of the reservoir layers ranges from 900 to 1500 m asl. The gas
volume originally in place is approximately 30 GSm3, with an expected recovery factor of
50%, and gas is produced from 28 wells, connected to two platforms. The geomechanical
model, whose details can be found in [31], was built from the corresponding reservoir
model in the same way as in the synthetic case described in [26]. The geometry of the fluid-
dynamic model was extended both laterally and vertically, so that the geomechanical model
reached an areal extent of about 88 × 73 km, for a depth of 5 km. It consisted of about 5.5
× 105 finite elements, for a total of around 2 × 106 degrees of freedom. Parameters for the
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Vermeer–Neher constitutive law used in the simulation are reported in Table 3. Preliminary
values for the parameters were obtained from the interpretation of specifically tailored
laboratory tests on samples from one of the wells of the field, and subsequently calibrated to
reproduce the subsidence measurements provided by a GPS station installed on a platform
of the field. The simulation was protracted for 30 years after the end of production in
order to evaluate the effect of pressure evolution in the mineralized region and in the
connected aquifers after the end of production. Figure 9 shows the time evolution of
vertical displacement at the point of maximum subsidence. Due to confidentiality reasons,
values were normalized with respect to the maximum value of subsidence reached during
the simulation.

Table 3. Parameters for the V-N law for the real case study.

κ∗ λ∗ µ∗ M ν OCR

0.00619 0.0575 0.00106 1.33 0.33 1.339

Figure 9. Subsidence evaluation for a real case study. Time evolution of the vertical displacement
(normalized) at the point of maximum subsidence.

This last test was considered to compare the performances of the implicit time inte-
gration with its consistent unsymmetric tangent matrix (as shown in Section 4) to those
obtained with its symmetrized version, as it was proposed very recently in [15], where
it was suggested to approximate the tangent matrix with its symmetric part, so that the
global linear system of equations could be solved more efficiently at each iteration.

The symmetric tangent matrix was computed starting from the non-symmetric one as
1
2

[(
∂σ

∂ε

)
+

(
∂σ

∂ε

)T
]

, where
∂σ

∂ε
is given in (60).

Figure 10 shows the number of global nonlinear iterations for each time step. From the
plots, it is clear that, if, on the one hand, the computation of the consistent tangent matrix
was more complex, on the other hand, it guaranteed fewer iterations for each time step
than its symmetrized counterpart.

A further confirmation can be obtained by Figure 11, where the total analysis time
is shown. As a reference, the time value for the implicit and symmetrized case was set
equal to 100. The consistent unsymmetric tangent matrix guaranteed the lowest computing
time, while the explicit case was slightly higher. The case of the implicit integration with
an unsymmetric consistent tangent matrix was considered also in conjunction with a quasi-
Newton (q-N) scheme provided in Abaqus™ as a variant of a BFGS scheme [32], where
the tangent matrix was not recomputed at each iteration, but it was substituted by a series
of secant matrices [30]. In this case as well, the faster convergence rate provided by the
consistent Newton–Raphson scheme led to a globally lower total computing time.
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Figure 10. Real case test. Number of nonlinear iterations per time step for symmetric and unsymmet-
ric operators.

Figure 11. Real case test. Total computing time.

6. Conclusions

A rigorous implicit backward Euler integration of the viscoplastic model proposed
by [11] was presented. Even though several different implementations of this model have
been proposed in the literature, including explicit and semi-implicit time integrations,
a fully implicit and rigorous backward Euler implementation was still missing, with the
notable exception of [15], where, however, the analytical expression of the consistent
tangent matrix was not provided. In this work, besides a comprehensive description of the
implicit integration formulation, the analytical derivation of the consistent unsymmetric
tangent stiffness matrix for the V-N model was described in detail, together with its
validation strategy.

The derived model was implemented as a user-defined material subroutine in the
commercial finite element code Abaqus™ Standard. The expected advantages of the
implicit formulation in terms of robustness with respect to an explicit formulation were
assessed and validated by means of numerical tests carried out both at the material point
level and at the reservoir scale. A strategy for the numerical validation of the consistent
tangent matrix was described in detail and implemented, confirming the correctness of its
analytical derivation.

Finally, the performances of an implementation with a consistent tangent matrix were
assessed in comparison with those obtained with the same implicit integration coupled to a
symmetrized tangent matrix, as in [15], confirming the superiority of the first with respect
to the latter in terms of the number of iterations to convergence and of global computing
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time. Furthermore, the overall better performance of a fully consistent Newton–Raphson
scheme with respect to its quasi-Newton counterpart was also demonstrated.
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Appendix A. Deviatoric Projection Operator n

The formulation of the implicit time integration scheme in Section 3 makes use of the
following key property of the deviatoric projection operator n:

ntrial = nn+1 = n (A1)

This can be verified by considering the definition of the deviatoric stress tensor:

sn+1 = Dev : σn+1 = Dev : σtrial −Dev : D :
(

∂peq(p, q)
∂σ

)n+1

∆γ (A2)

where the deviatoric operator Dev was defined in (42) .
Making use of the volumetric-deviatoric decomposition (10) of the plastic strain

increment, one has:

sn+1 = strial − 2G Dev :
(

peq
,p m + peq

,q n
)n+1

∆γ = strial − 2G
(

peq
,q n
)n+1

∆γ (A3)

Solving with respect to strial and using the definition (8) of n, one obtains:

strial =

[
2
3

qn+1 + 2G
(

peq
,q

)n+1
∆γ

]
nn+1 (A4)

Squaring and multiplying both sides of the equality by 3/2 and taking into account
that n : n = 3/2 give:

3
2

strial : strial =
3
2
· 3

2

[
2
3

qn+1 + 2G
(

peq
,q

)n+1
∆γ

]2
(A5)

leading to:

qtrial = qn+1 + 3G
(

peq
,q

)n+1
∆γ (A6)

Using the definitions of qtrial above and of Equations (9)2, (14), and (15), one can
also write:

qtrial = n : σn+1 + 3G
(

peq
,q

)n+1
∆γ =

= nn+1 : σtrial − nn+1 : 2G
[(

peq
,q

)n+1
nn+1∆γ

]
+ 3G

(
peq

,q

)n+1
∆γ =

= nn+1 : σtrial

(A7)

Having in mind that one can also write qtrial = ntrial : σtrial, from (A7), one obtains:

qtrial = ntrial : σtrial = nn+1 : σtrial (A8)
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Comparing the two sides of the equations, one finally has:

ntrial = nn+1 (A9)

Appendix B. Tangent Operator for the Local Iterative Scheme

The derivation of the tangent operator ∂Ψ/∂X of the local problem in (35) requires the
following derivatives with respect to p and q:

∂peq(p, q)
∂p

= peq
,p = 1− q2

M2 p2
∂peq(p, q)

∂q
= peq

,q =
2 q

M2 p

∂2 peq(p, q)
∂p2 = peq

,pp =
2 q2

M2 p3 ,
∂2 peq(p, q)

∂p∂q
= peq

,pq = − 2 q
M2 p2

∂2 peq(p, q)
∂q∂p

= peq
,qp = − 2 q

M2 p2 ,
∂2 peq(p, q)

∂q2 = peq
,qq = − 2

M2 p2

(A10)

The components of the rows ∂Ψi/∂X of the tangent operator are then given by (where

αn+1 =
(

peq
,p

)n+1
has been set to simplify the notation):

∂Ψ1

∂∆evp
q

= 1

∂Ψ1

∂∆ε
vp
v

= −

(
peq

,q

)n+1

αn+1

∂Ψ1

∂∆peq
p

= 0

∂Ψ1

∂p
= −

(
peq

,qp

)n+1 ∆ε
vp
v

αn+1 +
(

peq
,q

)n+1 ∆ε
vp
v

(αn+1)
2

(
α,p
)n+1

=
2 q

M2 p2
∆ε

vp
v

αn+1 +
4 q3

M4 p4
∆ε

vp
v

(αn+1)
2

∂Ψ1

∂q
= −

(
peq

,qq

)n+1 ∆ε
vp
v

αn+1 +
(

peq
,q

)n+1 ∆ε
vp
v

(αn+1)
2

(
α,q
)n+1

=
2

M2 p
∆ε

vp
v

αn+1 −
4 q2

M4 p3
∆ε

vp
v

(αn+1)
2
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∂Ψ2

∂∆evp
q

= 0

∂Ψ2

∂∆ε
vp
v

= 1

∂Ψ2

∂∆peq
p

= +
λ∗ − κ∗

τ
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( peq

peq
p
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 λ∗−κ∗
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· 1
peq

p

∂Ψ2

∂p
= −λ∗ − κ∗

τ
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( peq

peq
p

)n+1
 λ∗−κ∗

µ∗ −1

· αn+1

peq
p

∂Ψ2

∂q
= −λ∗ − κ∗

τ
∆t

( peq

peq
p
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·
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,q
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p

(A12)
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∂Ψ3

∂∆evp
q

= 0,
∂Ψ4

∂∆evp
q

= 0,
∂Ψ5

∂∆evp
q

= 3 G

∂Ψ3

∂∆ε
vp
v

= −
peq

p,0 exp
(

∆ε
vp
v +ε

vp
n

λ∗−κ∗

)
λ∗ − κ∗

,
∂Ψ4

∂∆ε
vp
v

= K,
∂Ψ5

∂∆ε
vp
v

= 0

∂Ψ3

∂∆peq
p

= 1,
∂Ψ4

∂∆peq
p

= 0,
∂Ψ5

∂∆peq
p

= 0 (A13)
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= 0,

∂Ψ4

∂q
= 0,

∂Ψ5

∂q
= 1
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