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Abstract: The application of solar energy as a renewable energy source has significantly escalated
owing to its abundance and availability worldwide. However, the intermittent behavior of solar
irradiance is a serious disadvantage for electricity grids using photovoltaic (PV) systems. Thus,
reliable solar irradiance data are vital to achieve consistent energy production. Geostationary satellite
images have become a solution to this issue, as they represent a database for solar irradiance on a
massive spatiotemporal scale. The estimation of global horizontal irradiance (GHI) using satellite
images has been developed based on physical and semi-empirical models, but only a few studies
have been dedicated to modeling GHI using semi-empirical models in Korea. Therefore, this study
conducted a comparative analysis to determine the most suitable semi-empirical model of GHI
in Korea. Considering their applicability, the Beyer, Rigollier, Hammer, and Perez, models were
selected to estimate the GHI over Seoul, Korea. After a comparative evaluation, the Hammer model
was determined to be the best model. This study also introduced a hybrid model and applied a
long short-term memory (LSTM) model in order to improve prediction accuracy. The hybrid model
exhibited a smaller root-mean-square error (RMSE), 97.08 W/m2, than that of the Hammer model,
103.92 W/m2, while producing a comparable mean-bias error. Meanwhile, the LSTM model showed
the potential to further reduce the RMSE by 11.2%, compared to the hybrid model.

Keywords: global horizontal irradiance; satellite images; semi-empirical models; cloud index; clear-
sky model

1. Introduction

Solar photovoltaic (PV) power has been widely utilized to cope with global warming
and climate change, which are dominantly caused by the use of fossil fuels. Owing to
its simple adaptation and low maintenance cost, solar PV technology is also becoming
more common compared to other clean energies. However, the intermittent nature of solar
irradiance is a major drawback that leads to unpredictable and uncontrollable electricity
production from solar PV systems. Solar energy strongly depends on local meteorolog-
ical factors, such as clouds and aerosol molecules, as well as sun position at a specific
site. Therefore, solar irradiance data are critical for the optimization of solar PV power
generation and the operation of solar PV systems [1–4].

The most reliable solar irradiance data are obtained from direct measurement using a
pyranometer and pyrheliometer on the ground. Nowadays, the technology for irradiance
measurement has advanced to the point that real-time data can be automatically collected
and monitored. Nonetheless, ground measurement systems are expensive and require
careful maintenance. As a result, ground measurement has limited spatial coverage, and
the measurement database is still deficient for satisfying the demands of a PV-using society.
Despite the attempts of some scholars to overcome the limited spatial coverage of direct
measurement using conventional approaches, such as interpolation, the accuracy of the
interpolated data is still not adequate [5,6].
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Satellite data play an essential role in gathering information on solar irradiance on
the earth’s surface. Zelenka et al. [5] showed that the accuracy of satellite-derived data is
comparable with that of interpolated data from a station 25 km from the measurement site.
The national solar radiation database in the United States has already taken advantage of
satellite-driven irradiance data for nationwide coverage [7]. Geostationary satellites, whose
orbit speed is identical to that of earth rotation, can repeatedly capture images of a specific
area on the earth’s surface. The new generation of geostationary satellites are capable
of delivering data images with a high spatial resolution of 1 × 1 km2 for each visible
channel image up to a 15-min time interval. Therefore, the solar irradiance data extracted
from geostationary satellite images have a high potential for efficiently and inexpensively
satisfying the demands of the solar energy sector.

Many researchers have developed and improved models to extract global horizontal
irradiance (GHI) from satellite images [1–3,6,8–12]. The GHI estimation models are com-
monly in a physical or semi-empirical form. The physical models theoretically compute
the extraterrestrial solar irradiance transmission through the atmosphere by calculating
the radiative transfer equation. On the other hand, the semi-empirical models count on a
linear interrelation between the satellite-recorded surface albedo and the clear-sky index,
along with the consideration of important physical phenomena.

In terms of reliability and versatility, physical models have shown higher performance
than semi-empirical models, as shown in Table 1. However, physical models technically
require more input of atmospheric data, such as aerosol optical depth (AOD), ozone content,
and precipitable water. Such atmospheric data are often less accessible at a specific location
than ground measurement data of solar irradiance. In contrast, semi-empirical models rely
on simple assumptions and statistically determined coefficients. As a result, semi-empirical
models require only a few input variables, and furthermore most of them are geometric
factors. Semi-empirical models offer easier calculation, simpler implementation, and faster
operation [13,14]. Due to their simplicity, semi-empirical models are often favorable for
forecasting solar irradiance [8]. GHI forecasting means that the future values of input
variables need to be known. The forecast accuracy of the physical model can quickly
decrease with the number of input variables unless their values are properly forecast.

Table 1. Summary of semi-empirical and physical models using satellite images to estimate solar irradiance.

Reference Year Area
Köppen Climate

Classification
(Subtype)

Model RMSE (W/m2) rRMSE (%) Satellite
System

Beyer et al. [10] 1996 Germany
Continental (Dfb,

Dfc)
Temperate (Cfa, Cfb)

Semi-empirical − 16 Meteosat-1

Perez et al. [2] 2002 United States

Dry (All subtypes)
Temperate (All

subtypes)
Continental (All

subtypes)

Semi-empirical 118 − GOES

Hammer et al.
[8] 2003 Europe

Dry (BSk, BWh)
Temperate (Cfa, Cfb,

Cfc, Csa, Csb)
Continental (Dfa,

Dfb)

Semi-empirical −

35
(1 h ahead)

40
(2 h ahead)

Meteosat-2

Rigollier et al.
[3] 2004 Europe

Dry (BSk, BWh)
Temperate (Cfa, Cfb,

Cfc, Csa, Csb)
Continental (Dfa,

Dfb)

Semi-empirical
−
−
−

45 (Jan 95)
27 (Apr 95)
18 (Jul 94)

Meteosat-1

Moradi et al.
[11] 2009 Iran Temperate (Csa) Semi-empirical − 11.7 Meteosat-5

Eissa et al. [12] 2012 United Arab
Emirates Dry (Bwh) Semi-empirical 123 18.3 Meteosat-2
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Table 1. Cont.

Reference Year Area
Köppen Climate

Classification
(Subtype)

Model RMSE (W/m2) rRMSE (%) Satellite
System

Choi et al. [15] 2015 Korea Continental (Dwa) Semi-empirical − 30.8 COMS

Diallo et al. [6] 2018 French Guiana Tropical (Af) Semi-empirical 133 30 GOES

Yang et al. [4] 2020 Chengde Continental (Dwa) Semi-empirical

181
(1 h ahead)

200
(2 h ahead)

215
(3 h ahead)

− Fengyun-4A

Jia et al. [16] 2021 Northern
China Continental (Dwa) Semi-empirical 109 − Fengyun-4A

Yeom et al. [17] 2012 Korea Continental (Dwa) Physical 71 (clear-sky)
90 (cloudy) − MTSAT-1R

Lefe’vre et al.
[18] 2013 World All classifications Physical 35 7 Terra EOS

Zo et al. [19] 2014 Korea Continental (Dwa) Physical 85 − COMS

Qu et al. [20] 2016 Europe and
Africa All classifications Physical 90 18 Meteosat-2

Xie et al. [21] 2016 United States

Dry (All subtypes)
Temperate (All

subtypes)
Continental (All

subtypes)

Physical 130 − −

Yeom et al. [22] 2016 Korea Continental (Dwa) Physical 72 (clear-sky)
106 (cloudy) − COMS

Kim et al. [23] 2016 Korea Continental (Dwa) Physical 65 (clear-sky)
149 (cloudy)

13
57 COMS

Cano et al. [9] proposed a pioneering form of the semi-empirical model, known as the
Heliosat-1 model, which has become a fundamental technique for numerous following
models. They assumed that the cloud index (CI) can be estimated based on the brightness
of satellite sensor data. They calculated GHI by simply reducing clear-sky GHI according to
the CI. Since then, Rigollier et al. [3], Perez et al. [2], Hammer et al. [8], Beyer et al. [10], and
other scholars made improvements on the Cano model. As the well-known semi-empirical
models were mainly developed using data in Europe and North America, many researchers
evaluated and modified them for application to various other regions [6,11,12].

Table 1 implies that, based on Köppen–Geiger climate classification [24,25], the semi-
empirical models were mostly dedicated to continental and temperate areas. Only a few
studies addressed a hot summer continental climate, which is categorized as the “Dwa”
subtype. In the northern region of China, Yang et al. [4] predicted GHI 1, 2, and 3 h ahead
by using particle image velocimetry and the Rigollier method. Jia et al. [16] combined the
McClear clear-sky irradiance [18] and Rigollier models to estimate GHI at Zhangbei. Both
the studies utilized the Fengyun-4 satellite system.

In Korea, several studies have attempted to extract GHI from Korea’s Communication,
Ocean, and Meteorological Satellite (COMS) system [15,17,19,22,23]. Since the COMS
system was developed, most studies have focused on physical models. Zo et al. [19]
initiated GHI modeling by using COMS data as input and introducing a physical model,
which is called the Gangneung–Wonju National University (GWNU) model. Yeom et al. [22]
applied the Kawamura model [26] and generated a solar irradiance map by considering
topographical factors, such as terrain slope. In addition, Kim et al. [23] estimated GHI
using their own physical model, which is called the CLAVR-x model. Still, as far as we
know, only one such study has employed the semi-empirical method. Choi et al. [15] added
a preprocessing algorithm into the Rigollier model to distinguish cloud from ground.
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Considering the importance of semi-empirical models and the lack of relevant studies
evaluating them in the hot summer continental climates, the present study focuses on
two objectives. The first objective of this study is to conduct a comparative analysis
of the existing semi-empirical solar irradiance models using data from Korea, and thus
identify a semi-empirical model that is suitable for the hot summer continental climate. The
second objective is to investigate the improvements in accuracy that could be achieved by
combining formulas from various models and by applying a machine learning technique
for replacing climate-dependent coefficients in the semi-empirical model. The fulfillment
of these objectives will contribute to accurately estimating a regional database of solar
radiation for the hot summer continental climate.

This paper consists of five sections. Section 2 presents ground station measurement of
solar irradiance data, COMS satellite images, and AERONET data employed in this study.
In Section 3, semi-empirical modeling methods, which include calculations of the cloud
index, clear-sky irradiance, and GHI conversion, as well as the machine learning method,
are explained. In addition, error metrics for accuracy evaluation of each model are listed.
Detailed results, analyses, and discussions are presented in Section 4. Finally, Section 5
provides a summary of the major findings from the study.

2. Satellite Images, Ground Measurement, and AERONET Dataset

The COMS has become a significant player in providing reliable weather data and
atmospheric conditions since the Korean government launched its first geostationary
satellite in 2011 at 128.2◦ E. The satellite system records the Korean peninsula and Asia-
Pacific region, including the Australian continent, China, and Southeast Asia.

The COMS system carries three infrared (10.8 µm, 12 µm, and 3.7 µm), water vapor
(6.7 µm), and visible (0.67 µm) channels to observe the earth’s surface. The images that
COMS produced are composed of three levels of quality: level 1A, level 1B, and level 2.
The level 1A images are satellite images processed through radiometric, geometric, and
georeferencing calibration. In level 1B, images are then screened from distortion and
nonuniform pixel intensity. Finally, images in level 2 are extracted into applicable maps,
such as for forest fires, fog observation, and solar irradiance maps. Technically, the COMS
satellite produces 16-bit visible images at 15-min intervals, and the satellite system provides
a spatial resolution of 1 × 1 km2 for the visible sensor and 4 × 4 km2 for the three infrared
channels. In this work, we utilized the hourly level 1B of satellite images (Figure 1) obtained
from 1 January to 31 December 2018 and selected the pixel from each image that was closest
to the ground measurement in order to validate our model.

This study performed GHI measurements from a ground station located in the north-
ern part of Seoul (latitude, 37.612◦ N; longitude, 126.996◦ E; and altitude, 141 m). The
ground measurement system comprises one pyranometer (MS-802 model) for the GHI and
one pyrheliometer (MS-57 model) for direct normal irradiance (DNI). Both of the instru-
ments, manufactured by the Eko company in Japan, have a sensitivity around ±7 µVm2/W
for the GHI and DNI, respectively [27,28]. Identical to the COMS satellite data, hourly
intervals for the ground data were also locally archived from 1 January–31 December 2018.

In this study, quality control was applied based on the procedure from Gueymard and
Ruiz-Arias [29] to guarantee reliable data from the ground measurement. In particular,
data that did not meet the following criteria were rejected:

1. θz > 80◦

2. GHI > 0 W/m2

3. GHI < 1.5Gext cos1.2 θz + 100 W/m2

4. DNI ≥ 0 W/m2

5. DNI ≤ Gext,

where θz and Gext denoted the solar zenith angle and extraterrestrial irradiance on a normal
surface, respectively. The data that did not meet the requirements were rejected. Note that
the criterion of θz > 80◦ was applied to remove GHI values at low sun elevation, and DNI
data only were used for the data quality control.
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Figure 1. Example of a satellite image from visible channel provided by COMS (Communication,
Ocean, and Meteorological Satellite), stationed at 36,000 km above the equator. This image is
considered as level 1B data.

The aerosol robotic network (AERONET) is a network of ground-based measurements
providing continuous data on spectral AOD, precipitable water, and inversion aerosol in
various aerosol regimes using a sun radiometer [30]. The sun–sky radiometer system of
AERONET quantifies solar spectral measurements every 15 min through eight spectral
bands at wavelengths of 340, 380, 440, 500, 675, 870, 940, and 1020 nm [31]. The AERONET
dataset has three grades: level 1 for raw data, level 1.5 for data with clouds removed,
and level 2 for quality-controlled data. In this study, clear-sky irradiance was calculated
through the Linke turbidity factor (TL) to consider the reduction of solar irradiance owing
to atmospheric effects. The level 2 data of AERONET, which were collected from 1 January–
31 December 2018, were employed and arranged into hourly intervals to determine the
value of TL.

3. Global Horizontal Irradiance Models

In this study, from their accuracy, applicability, and versatility, well-known semi-
empirical models were chosen to generate the GHI over the Korea peninsula [1,3,8,11].
The Beyer, Rigollier, and Hammer models originally utilized the Meteosat imagery sys-
tem and their results were validated through ground measurements located in Europe.
Beyer et al. [10] modified the original Heliosat-1 model by introducing new variants for
geometrical correction, backscatter correction, and clear-sky irradiance computation. It was
revealed that the hourly insolation accuracy of the Beyer model has an RMSE of 120 Wh/m2

(rRMSE of 16%). Rigollier et al. [3] improved the Heliosat-1 method by applying calibrated
radiances instead of digital numbers. The application of the calibrated radiances as input
opened the opportunity for substituting several empirical components of Heliosat-1 into
the physical computation. The results of the Rigollier model revealed RMSEs and rRMSEs
of 62 Wh/m2 (45%), 96 Wh/m2 (27%), and 103 Wh/m2 (18%) for January 1995, April 1995,
and July 1994, respectively.

The Hammer model was established to forecast the GHI several hours ahead. A
motion vector field from two consecutive satellite images can be generated to determine
cloud motion. The vector field was computed with the current images and extrapolated up
to 120 min ahead with a 30-min interval. Finally, the GHI could be forecast by applying
the extrapolated pixels of the satellite image to the Hammer model. The relative RMSEs
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(rRMSE) were 35% and 40% for 1-h and 2-h forecast horizons, respectively. Contrary to
the other three models, the Perez model used the geostationary operational environmental
satellite (GOES) system in the United States. Validation of the Perez model was then
conducted against ten ground measurements from different climatic types of the American
region. The RMSE of the Perez model varied from 44 to 118 W/m2, depending on the
location of the ground measurement. Below are the detailed explanations of the procedures
used for each model.

3.1. Cloud Index Formula

The schematic diagram in Figure 2 illustrates the flow to derive the GHI using the semi-
empirical models. The two important procedures are the CI estimation, which represents
the cloudiness over the earth’s surface based on a satellite image, and the calculation of
the clear-sky irradiance using atmospheric data. Thus, the GHI can be determined as the
decrease in the clear-sky irradiance due to the CI.

Figure 2. Procedure to derive solar irradiance from satellite images.

Normalization of satellite image data is mandatory to obtain a CI that is independent
from optical and geometric effects [1]. The air mass and backscatter effects mainly cause
optical distortion in image data. The air mass effect occurs because sunlight is scattered
and absorbed by particles when it passes through the atmosphere. As a result, the closer
the sun is to the horizon, the stronger the air mass effect is. The backscatter effect, which
is also known as the hot-spot effect, implies that sunlight more significantly goes back
in the sun’s direction after scattering by atmospheric particles. Thus, the sensor system
overestimates the ground albedo when the satellite is close to the sun.

Each semi-empirical model has its own correction formula, which was originally
developed using its satellite systems and local stations. The conversion formulas from raw
satellite pixel data (Csat) to normalized data (CC) are presented in Table 2. The Beyer and
Hammer models include a correction factor (C0) for the air mass and backscattering effects,
where C0 is determined through θz, backscattering angle (ψ), and satellite zenith angle (ϕ).
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The production of the solar constant (I0) and the eccentricity correction of the sun-to-earth
distance (ε) represent the extraterrestrial irradiance.

The Rigollier model extracted its correction factor (C0R) using some equations from the
European Solar Radiation Atlas (ESRA) model. To obtain CCR, clear-sky diffuse irradiance
(DHIcR), transmittance from the sun to the earth (T), and transmittance from the earth to
the satellite system (Tsat) were computed. The parameters θz, ϕ, and TL were the key input
variables for determining the energy that is scattered in the atmosphere and evaluated via
the ESRA model. The maximum total irradiance of the visible sensor (I0met) was obtained
from the convolution of the spectral distribution of I0 by the spectral sensitivity curve of
the radiometer [3]. To obtain further details on the normalization process, the reader is
encouraged to refer to Rigollier et al. [3] and the ESRA [32].

Contrary to the other three models, the Perez model introduced dependence on the
sun elevation (γ) and air mass (AM) to normalize pixels from air mass effect. Perez et al. [2]
evaluated the backscatter correction by deriving different lower boundaries of the dynamic
range from several years of recorded satellite data. However, the present study only used
the data of a single year, and the backscatter effect was not considered.

In addition to the models chosen in this study, more models are available throughout
the literature. The combination of formulas used by various models was attempted to
investigate the possibility of increasing prediction accuracy. As a result, the normaliza-
tion equations provided by Zelenka et al. [5], the clear-sky irradiance equation given by
Kasten [33], and the GHI conversion equation proposed by Perez et al. [2] were combined
to create a single model. In this study, this model will be referred to as the hybrid model.
Originally, Zelenka et al. [5] used θz and ψ as the correction factor (C0M) to normalize
ground albedo (Cmin).

Clouds are the main factor attenuating solar irradiance when sunlight penetrates the
atmospheric layer. The CI, which is used to represent the amount of clouds in the sky,
can be estimated via a relative difference in the normalized pixel value between the lower
and upper boundaries of its dynamic range. The lower and upper boundaries can be
interpreted as the earth’s surface and cloud reflectance, respectively. Cloud index can be
determined according to the previous studies [8,10,34]:

CI =
CC − Cmin

Cmax − Cmin
(1)

where Cmax and Cmin denote the highest and lowest values of CC, respectively. The CI
value ranges from zero, which represents the darkest condition (no clouds) to unity, which
represents the brightest condition (overcast). For the Rigollier model, Cmax should be
obtained in the same way as CCR, but using the effective cloud albedo formulation, as
follows [3]:

CmaxR =
0.78 − 0.13[1 − exp(−4 cos (θz)

5)]− C0R
T(θz, TL)Tsat(ϕ, TL)

(2)

3.2. Clear-Sky Irradiance Formula

Another essential element of semi-empirical models is the determination of the max-
imum solar irradiance limit, i.e., the clear-sky irradiance (GHIc). Under a cloudless con-
dition, the solar irradiance attenuation depends on the concentration of absorbers and
scatterers, such as aerosols, gases, and water vapor, inside the atmosphere. Most clear-sky
models address solar attenuation through a derivation from atmospheric components and
geometric position. With regard to the semi-empirical approach, the complexity of the
clear-sky irradiance model, which is caused by rapid changes in aerosols, water vapor, and
other molecules, is relatively reduced. The atmospheric variables can instead be simplified
into a single turbidity variable of TL [35–37]. In this study, well-known clear-sky irradiance
models (Table 3) were selected to examine GHIc.
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Table 2. Pixel normalization formulas for obtaining an independent cloud index (CI) (step 2). Each “raw” pixel (Csat) is
subjected to this normalization before CI extraction.

Model Equation

Beyer
CCB = Csat−C0B

(0.7)ε cosθz cos0.15 θz
(3)

C0B = 4.3 +
[
4.5(1 + cos2ψ) cos0.15 θz

cos0.8ϕ

]
(4)

Rigollier
CCR = Csat−C0R

T(θz,TL)Tsat(ϕ,TL)
(5)

C0R =
(

DHIcR
π

)(
I0met

I0

)(
0.5

cosϕ

)0.8 (6)

Hammer

CCH = Csat−C0H
I0ε cosθz

(7)

C0H = 4.3 +
[
(1 + cos2ψ) FH

cos0.78ϕ

]
(8)

FH = −0.55 − 25.2 cos θz − 38.3 cos2 θz + 17.7 cos3 θz (9)

Perez CCP = Csat AMε
2.283γ−0.26 exp(0.004γ)

(10)

Hybrid
CCM = Csat

C0M
(11)

C0M =
[
0.85 + 0.15

(
cosθz+sinθz exp(0.04−0.04AM)

cosθz(cosθz+sinθz)

)][
1 + 0.7

(
50−ψ

50

)2
]

(12)

The Beyer model applies a straightforward clear-sky model based on only a geomet-
ric calculation. This model is called the Bourges clear-sky formula and uses only θz to
summarize the attenuation of extraterrestrial solar irradiance during transmission in the
atmosphere [10]. The model was purely developed from an empirical correlation between
ground measurement, sun position, and site location [38].

The clear-sky irradiance of the Rigollier model, which is known as the ESRA model, is
decomposed into direct and diffuse components, considering TL and the Rayleigh scattering
factor (δR). The clear-sky irradiance formula of the Hammer model is similar to that of the
Rigollier model. The clear-sky DNI equations in both the Rigollier and Hammer models
are identical [39], but the clear-sky DHI equations are different.

Owing to the complexities in the derivation of the clear-sky GHI from the Rigollier
model, it was preferable to adopt a simpler formula, successfully applied in previous
literature. Here, the Kasten clear-sky model was selected to determine the clear-sky GHI
of the hybrid model. The model conserved site elevation (z) and atmosphere turbidity
for a site. By including z in the equation, the Kasten model demonstrated its advantage
in investigating clear-sky GHI at high elevations. In the Perez model, the clear-sky GHI
is calculated based on the study by Ineichen and Perez [36], in which they upgraded the
original Kasten model. This new variant also considers TL and z to enhance its suitability
for observational data from the West of the American continent.

The most important input parameter in the clear-sky model is the Linke turbidity,
which accounts for atmospheric conditions. The Linke turbidity is also a convenient tool
for simplifying the degree of atmospheric attenuation due to absorption and scattering.
Theoretically, TL can be evaluated via either a direct or indirect formula [40]. The direct
formula, which is called the pyrheliometric formula, commonly exploits DNI measurement
data, AM, and δR [2]. In contrast, the indirect formula, which is called the parameter-
ized formula, uses atmospheric components, such as AM, precipitable water vapor (w),
angstrom turbidity factor (β), and AOD [41]. After testing various formulas of TL, the
model introduced by Remund et al. [41] (Equation (13)) turned out to be optimal and was
used throughout this study:

TL = (1.8498 + 0.2425w − 0.0203w2) + (15.427 + 0.3153w − 0.0254w2)β (13)
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Table 3. Clear-sky irradiance formulas used for each semi-empirical model.

Model Equation

Beyer GHIcB = 0.7I0ε cos1.15 θz (14)

Rigollier

GHIcR = DNIcR cos θz + DHIcR (15)
DNIcR = I0ε cos θz exp(−0.8662TLδR AM) (16)

DHIcR = I0εTrdFR (17)
Trd = −0.015843 + 0.03543TL + 0.0003797TL

2 (18)
FR = A0 + A1 cos θz + A2 cos2 θz (19)

A0 = 0.26463 − 0.061581TL + 0.0031408TL
2 (20)

A1 = 2.0402 − 0.018945TL + 0.01161TL
2 (21)

A2 = −1.3025 − 0.039231TL + 0.0085079TL
2 (22)

Hammer

GHIcH = DNIcH cos θz + DHIcH (23)
DNIcH = I0ε cos θz exp(−0.8662TLδR AM) (24)

DHIcH = Gextε

[
0.0065 + (−0.045 + 0.0646TL) cos θz+

(0.014 − 0.0326TL) cos2 θz

]
(25)

Perez

GHIcP = cg1I0 cos θz exp[−cg2AM( f h1 + f h2(TL − 1))] exp(0.01AM1.8) (26)
f h1 = exp

( −z
8000

)
(27)

f h2 = exp
( −z

1250
)

(28)
cg1 = 0.0000509z + 0.868 (29)

cg2 = 0.0000392z + 0.0387 (30)

Hybrid GHIcM = 0.84I0 cos θz exp[−0.027AM( f h1 + (TL − 1) f h2)] (31)

3.3. GHI Conversion Formula

After CI and GHIc are given, the GHI can be calculated from GHIc by appropriately
reducing it according to CI. The reduction factor is called the clear-sky index (kc) and is
expressed as a correlation function. Finally, the conversion equations are presented in
Table 4.

GHI = kcGHIc (32)

Table 4. Global horizontal irradiance (GHI) conversion used for each semi-empirical model.

Model Equation

Beyer GHIB = kcBGHIcB (33)
kcB = 1 − CIB (34)

Rigollier

GHIR = kcRGHIcR (35)
CIR ≤ −0.2; kcR = 1.2 (36)

−0.2 < CIR ≤ 0.8; kcR = 1 − CIR
0.8 < CIR ≤ 1.1; kcR = 2.0667 − 3.6667CIR + 1.6667CIR

2

1.1 < CIR; kcR = 0.05

Hammer

GHIH = kcHGHIcH (37)
CIH ≤ −0.2; kcH = 1.2 (38)

−0.2 < CIH ≤ 0.8; kcH = 1 − CIH
0.8 < CIH ≤ 1.1; kcH = 2.0667 − 3.6667CIH + 1.6667CIH

2

1.1 < CIH ; kcH = 0.05

Perez
GHIP = kcPGHIcP(0.0001kcPGHIcP + 0.9) (39)

kcP = 2.36CIP
5 − 6.2CIP

4 + 6.22CIP
3 − 2.63CIP

2 − 0.58CIP
2 − 0.58CIP + 1 (40)

Hybrid GHIM = (0.02 + 0.98987kcM)GHIcM (41)
kcM = 1 − CIM (42)

Table 5 presents the input variables of all the semi-empirical models utilized in this
study. Compared to the other three models, the Beyer model is the simplest and does not
require TL to account for the atmospheric conditions. On the other hand, the Rigollier and
Hammer models are the best options in terms of versatility and comprehensiveness. These
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models allow generating three components at once, i.e., GHI, DNI, and DHI, under clear
skies. They were also demonstrated to be accurate in major areas of Europe and Africa,
which include regions with a similar climate to Korea [6,12]. The Perez model could also
be a prudent candidate for application in Korea, based on the number of input variables.
Note that one variable is implicit in the Perez model; Perez et al. [2] supposed that Cmin
dynamically changed, rather than being a constant throughout a year and thus determined
it according to historical data. Consequently, this step to select Cmin can be regarded as an
independent variable. In this study, this step was not implemented. The hybrid model
also takes four input variables for accuracy while trying to circumvent the complexities in
other models.

Table 5. Comparison of input variables in semi-empirical models.

Model Input Total

θz (or γ ) ϕ TL ψ z Cmax
Beyer • • • 3

Rigollier • • • • 4
Hammer • • • • 4

Perez • • • 3
Hybrid • • • • 4

3.4. Long Short-Term Memory Model

The long short-term memory (LSTM) model is a variant of the recurrent neural
network model that enables learning order dependence in sequential data [42]. The
model was successfully applied for temporal and ordinal data, including image captioning,
machine translation, and speech recognition [43–45]. Although the LSTM model works
in similar steps to the recurrent neural network model, the procedures inside the cell are
different. As shown in Figure 3, LSTM contains three main gates: input, output, and forget
gates with internal memory. Each cell memorizes values in certain time intervals and these
three gates control the information that comes in and out of the cell. The gates and internal
memory of LSTM are used to resolve the vanishing and exploding gradient problems that
often occur in recurrent neural network models.

Figure 3. Architecture of the long short-term memory (LSTM).

The operational formulas of the LSTM method and definitions of notation are as follows:

ft = σ(W f Xt + U f ht−1 + b f ) (43)

it = σ(WiXt + Uiht−1 + bi) (44)
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ot = σ(WoXt + Uoht−1 + VoCt + bo) (45)

St = tanh(WcXt + Ucht−1 + bc) (46)

Ct = itSt + ft−1St (47)

ht = ottanh(Ct) (48)

• Xt is the input vector to the memory cell at time t.
• σ is the sigmoid function.
• b is the bias vector.
• W, U and V are weight matrices.
• it, ft, and ot are the values of the input, forget, and output gates at time t, respectively.
• St, Ct, and ht are the values of candidate state of the memory cell, the state of the

memory cell at time t, and the value of the memory cell at time t, respectively.

The sigmoid function, σ in Equations (43)–(45) generates values from zero to one. A
value of one signifies that the input data are available to transfer through the gate, while the
value of zero implies the opposite [43,46]. St via tanh function in Equation (46) produces
a new value at time t, which ranges from −1 to 1. The value of Ct in Equation (47) is
obtained from the inputs of it and ft, and the multiplication between ot and tanh(Ct) in
Equation (48) results in the final output, ht.

The LSTM model showed the best performance compared to the other machine
learning methods for GHI prediction. Rajagukguk et al. [43] mentioned that the RMSE of
the LSTM model ranged from 108.88 W/m2 to 30.21 W/m2, depending on location, input
parameter, forecast horizon, and time interval. Thus, this study applied LSTM for solar
irradiance forecasting in order to compare it with semi-empirical models, which contain
regression equations. The inputs for the LSTM model were Csat, θz, TL, and ψ, whereas the
constant value of z was ignored. The data from January–September 2018 were used for
training, and those from October–December 2018 were selected for data tests.

3.5. Error Metrics for Model Validation

Determining statistical accuracy is necessary to quantify whether a model underesti-
mates or overestimates the GHI. This study validated the accuracy through MBE, RMSE,
rRMSE, and rMBE determination. The formulas were defined, respectively, as follows:

MBE = 1/n∑ n
i=1(GHImodel − GHImeasurement) (49)

RMSE =

√
1/n∑ n

i=1(GHImodel − GHImeasurement)
2 (50)

rRMSE =

√
1/n∑ n

i=1(GHImodel − GHImeasurement)
2

1/n∑ n
i=1GHImeasurement

× 100 (51)

rMBE =
1/n∑ n

i=1(GHImodel − GHImeasurement)
1/n∑ n

i=1GHImeasurement
× 100, (52)

where n denotes the total number of data points. The RMSE indicated how close the
predicted values were to the observational data with help from a regression line. The RMSE
always produces a positive value. On the other hand, the MBE demonstrates the average
bias in a model. The MBE is a sum of predicted data minus the observations. Hence, a
positive MBE value indicates an overprediction, whereas a negative one represents an
underprediction.

4. Results and Discussion

The vital step in determining CI is the pixel normalization to compensate for backscat-
ter and air mass effects, which often create bias in images. Thus, the normalization provides
the “true” brightness of the earth’s surface. Note that the digital number for COMS pixels
varies from 0 to 1023. Figure 4 presents box-and-whisker plots of the pixel values after



Appl. Sci. 2021, 11, 3445 12 of 21

the normalization of each model was conducted. The normalized pixels were expected to
demonstrate a constant dynamic range of the upper and lower boundaries. In all the mod-
els, the lower boundary was relatively constant, except at low backscatter angles. In other
words, when the backscatter angle reached 0◦, i.e., the sun was close to the satellite, the
lower boundary tends to become slightly increased. The constant lower boundary indicates
that the albedo for the earth’s surface had not change significantly. The upper boundaries,
which represent overcast conditions, were also expected to remain constant. The variations
of the upper boundaries were larger than those of the lower boundaries. Moreover, large
maximums and some outliers beyond the maximum appeared. Consequently, the determi-
nation of the upper boundaries is more uncertain, and the GHI estimation under overcast
conditions tends to be less accurate. Compared to the other three models, the Beyer model
exhibited large deviations in terms of the interquartile range and the maximum. Based
on the range of the normalized pixel counts, as shown in Figure 4, CI was determined
according to Equation (1). CI indicates an attenuation factor from clear-sky GHI.
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Figure 4. Normalized COMS satellite pixel against backscatter angle; (a) Beyer, (b) Rigollier, (c) Ham-
mer, (d) Perez, and (e) hybrid models. The backscatter angle, ψ, was divided into nine classes with
the interval of 10◦. In the box-and-whisker plot, the box height is the distance between the first and
the third quartiles, and the maximum and minimum is determined by the interquartile range.
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The derivations of GHIc against γ are visualized in Figure 5. In general, all the
models showed similar trends, where GHIc escalated along with γ. However, each model
also yielded different dispersions due to their basic formulas. As previously discussed,
the Beyer model does not consider atmospheric conditions via TL. Consequently, the
dispersion of the Beyer model results was the smallest among the models. The Rigollier
and Hammer models produced a similar trend, while the latter showed slightly larger
dispersions. Contrarily, the dispersion in the Perez and hybrid models was significantly
wide. Note that a small or large dispersion does not imply that the GHIc has good accuracy.
Instead, it indicates that TL has significant effects in those two models. The maximum
and minimum values of GHIc also varied among the models. The Beyer model yielded
the smallest range, from 70.22 to 859.54 W/m2. The hybrid and Perez models produced
broader ranges, of 10.12–1021.77 W/m2 and 5.86–998.23 W/m2, respectively. The Hammer
model obtained the largest GHIc, where it achieved from 50.78 W/m2 to 1092.52 W/m2.

Figure 5. Clear-sky irradiance against the sun elevation angle; (a) Beyer, (b) Rigollier, (c) Hammer,
(d) Perez, and (e) hybrid models. The sun elevation angle, γ, was divided into eight classes with the
interval of 10◦.
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Based on CI and clear-sky irradiance, as shown in Figures 4 and 5, GHI values
under all sky conditions were derived and compared with the measurement data in
Figure 6. The comparison was distinguished on different levels of the clearness index
(kT = GHImodel/I0 cos θz). Note that kT ≤ 0.25, 0.25 < kT ≤ 0.5, 0.5 < kT ≤ 0.75, and
kT > 0.75 were described as cloudy, partially cloudy, clear, and clearest sky conditions,
respectively. The scatterplots in Figure 6 indicate that all the semi-empirical models worked
well within a kT range from 0.25 to 0.75. The Beyer model, the simplest model, was unable
to estimate the GHI when kT > 0.75. It is obvious that the Rigollier model underestimates
when kT is small, and the opposite when kT is large.

Figure 6. Comparison of modeling results with measurement data by the level of the clearness index;
(a) Beyer, (b) Rigollier, (c) Hammer, (d) Perez, and (e) hybrid models. The clearness index, kT , was
divided into four classes with the interval of 0.25.

Error metrics for the comparisons in Figure 6 are summarized in Table 6. As indicated
in Figure 6b, MBE values confirmed the biased estimation by the Rigollier model for
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different kT levels. The Hammer model also exhibited a similar trend to the Rigollier
model, even though MBE values were reduced. Probably, the change from underestimation
to overestimation as kT increases is a common feature of Helisat-2 models. On the other
hand, RMSE generally decreases with kT , which implies difficulties in generating accurate
CI or limitations of CI-based modeling.

Table 6. Accuracy of the GHI models by level of clearness index.

Model Clearness Level R2 RMSE
(W/m2)

rRMSE
(%)

MBE
(W/m2)

rMBE
(%)

Beyer

kT ≤ 0.25 0.60 87.23 90.29 10.25 10.61
0.25 < kT ≤ 0.5 0.88 116.16 39.85 −26.86 −9.21
0.5 < kT ≤ 0.75 0.97 121.59 19.65 −67.87 −10.97

kT > 0.75 − − − − −
All kT 0.94 113.74 29.18 −36.84 −9.45

Rigollier

kT ≤ 0.25 0.68 90.02 79.40 −30.26 −26.69
0.25 < kT ≤ 0.5 0.88 145.46 41.45 −83.68 −23.85
0.5 < kT ≤ 0.75 0.95 133.29 20.98 −12.83 −2.02

kT > 0.75 0.99 145.97 16.85 121.16 13.98
All kT 0.91 137.38 35.09 −30.12 −7.69

Hammer

kT ≤ 0.25 0.73 84.34 78.64 −21.65 −20.18
0.25 < kT ≤ 0.5 0.87 105.56 40.14 −11.01 −4.18
0.5 < kT ≤ 0.75 0.96 106.23 19.89 0.39 0.07

kT > 0.75 0.98 126.50 15.88 90.87 11.41
All kT 0.94 103.92 26.54 0.09 0.02

Perez

kT ≤ 0.25 0.52 84.73 89.46 −1.10 −1.16
0.25 < kT ≤ 0.5 0.82 122.56 40.55 −16.96 −5.61
0.5 < kT ≤ 0.75 0.96 111.29 20.46 −17.50 −3.21

kT > 0.75 0.98 103.03 16.35 57.88 9.19
All kT 0.93 112.57 28.64 14.53 3.70

Hybrid

kT ≤ 0.25 0.64 82.83 85.03 2.32 2.38
0.25 < kT ≤ 0.5 0.85 113.39 40.90 −7.36 −2.65
0.5 < kT ≤ 0.75 0.97 89.60 15.67 −19.17 −3.35

kT > 0.75 0.99 48.24 5.47 10.06 1.14
All kT 0.95 97.08 24.12 −7.24 −1.80

The accuracy for all sky conditions means the annual performance throughout 2018.
All the models yielded promising results, in which they did not exceed 35.09% of rRMSE
and −9.45% of rMBE. It was found that the Hammer model outperformed the other three
semi-empirical models, with the best agreement of RMSE and MBE, as 103.92 W/m2 and
0.09 W/m2, respectively. Despite the fact that the Hammer model performed the best, the
differences in accuracy among the Hammer, Perez, and Beyer models were small. The
deviation in the rRMSE between the Hammer and Perez models was only 2.1%, whereas
that between the Hammer and Beyers models was only 2.64%. In contrast, the Beyer model
exhibited the largest MBE, with the value reaching −36.84 W/m2.

The hybrid model had slightly improved RMSE and rRMSE compared to the Hammer
model, with the differences of 6.84 W/m2 and 2.42%, respectively. Meanwhile, the MBE
and rMBE of the hybrid model were slightly larger than those of the Hammer model, with
the absolute differences 7.15 W/m2 and 1.82%, respectively. However, the rMBE of the
Hammer model significantly varies with kT , such that rMBE exceeds −20% when kT ≤ 0.25.
The rMBE of the hybrid model is fairly constant regardless of kT under the maximum
absolute value of 3.35%. The separation of GHIc into DNIc and DHIc, such as in Rigollier
and Hammer models (refer to Table 3) does not guarantee better accuracy. As shown in
Table 6, the Hammer and Rigollier models demonstrated contrasting accuracies, either
very good or very poor, in this study. Although the Beyer model adopted a very simple
formula that does not address atmospheric conditions via TL, it produced better accuracy
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than the Rigollier model. The hybrid model also took advantage of a simple clear-sky
irradiance formula and improved accuracy. As a result, a simple model can be better than
a complicated one if the clear-sky model is not sufficiently accurate.

Figure 7 shows variations of solar irradiance under clear-sky and overcast conditions
on exemplary days. In general, all the semi-empirical models were capable of estimating
hourly variations. However, all the models consistently overestimated or underestimated,
for instance, for the morning on 9 April, afternoon on 9 April, morning on 2 December,
and so on. Such consistent estimations, regardless of model, demonstrate that either the
atmospheric data to produce clear-sky irradiance are inaccurate or the assumption that
only the cloud amount contributes to reducing solar irradiance is incorrect. Pollen and
yellow sand dust often occur during the spring season in Korea, but clear-sky irradiance
models in Table 3 may not suitably account for such regional features. More importantly,
rain and snow are likely to affect solar irradiance. As evidenced by large RMSE values
when kT is low from Table 6, the consideration of the effects of rain and snow can improve
model accuracy.

Figure 7. Daily variations of solar irradiance: (a) clear sky conditions and (b) overcast conditions.

In order to investigate seasonal variations of model performance, monthly rRMSE
and rMBE were plotted in Figures 8 and 9. Even though seasonal variations of rRMSE
are not so noticeable in Figure 8, prediction accuracy was slightly better in the spring
and fall seasons. Probably, the reason was that sky in both of the seasons tends to be
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clear in Korea. Unlike rRMSE in Figure 8, rMBE in Figure 9 reveals remarkable seasonal
variations independent of the model. Except for the Beyer model, overestimation only
occurs during the summer season. The closer to the winter season the time gets, the larger
the underestimation becomes. This seasonal change of accuracy is caused by ground albedo
change [2,47]. The location of interest, i.e., Kookmin University, is adjacent to the mountain,
and the 1 × 1-km2 COMS pixel corresponding to the location is likely to include both
buildings and forest. Consequently, the combined effects of vegetation, soil, and building
properties resulted in the ground albedo, Cmin. In winter, this issue becomes even more
evident due to snow cover, which is often disguised as cloud. If the ground albedo change
is considered, the solar irradiance model can improve prediction accuracy.

Figure 8. Comparison of monthly accuracy based on rRMSE (%).

Figure 9. Comparison of monthly accuracy based on rMBE (%).

The Rigollier model consistently produced the largest error, and it only performed
slightly better than the Beyer model during April and September 2018. Contrarily, the
Hammer model produced smaller rRMSE and rMBE values than the Beyer, Perez, and
Rigollier models throughout the 12 months. The lowest errors gained by the Hammer
model were 18.8% for the rRMSE and 0.6% for the rMBE in April. The accuracy of the
Perez model followed that of the Hammer model, with the best rRMSE and rMBE being
22.6% in February and 3.7% in September, respectively. The hybrid model consistently
had a better accuracy than any of the four semi-empirical models for each month, with the
lowest rRMSE and rMBE values at 17.1% and −0.1% during April, respectively. The hybrid
model also showed higher accuracy compared with the other models during winter, as can
be observed from the rRMSE values of 19.9%, 21.4%, and 18.5% for December, January, and
February, respectively.

So far, the hybrid model has turned out to be more accurate than any other model.
However, the development of such models is cumbersome and awkward because the hy-
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brid model in this study was created after using trial-and-error combinations of constituent
formulas. Therefore, to replace the combination process in the hybrid model, an LSTM
model was attempted, and its results are summarized in Table 7. As the hybrid model
produced the best accuracy among the semi-empirical models, the input variables of the
hybrid model (Csat, θz, TL, and ψ) were selected for those of the LSTM model. The LSTM
model revealed a slight improvement in RMSE compared to the hybrid model. Its MBE
slightly increased, but it was comparable to that of the hybrid model and still better than
those of the other models. Consequently, it was demonstrated that the machine learning
method can replace the hybrid model.

Table 7. Accuracy of the semi-empirical models and LSTM model from October to December 2018.

Model RMSE (W/m2) rRMSE (%) MBE (W/m2) rMBE (%)

Beyer 118.95 28.10 −88.05 −20.80
Rigollier 143.45 41.09 −107.27 −30.72
Hammer 88.36 25.31 −35.44 −10.15

Perez 89.67 25.75 −28.71 −8.24
Hybrid 86.14 23.92 −19.70 −5.47
LSTM 76.45 21.92 −24.28 −6.96

5. Conclusions

Four semi-empirical models that use pixel values from a COMS geostationary satellite
in order to extract GHI were evaluated. The models were compared using the same data
time-resolution and location. The investigation was also deepened by separating the GHI
based on daily, monthly, and annual evaluations, as well as on a clearness index. This
study demonstrated that the Hammer model was selected as the most appropriate model
for deriving the GHI over Korea, according to the RMSE and MBE.

The hybrid model, which was developed from the combination of correlation formulas,
was found to exhibit moderately improved accuracy and successfully simplified a lengthy
procedure in the Hammer and Rigollier models. The hybrid model was also able to slightly
decrease the RMSE and rRMSE of the Hammer model from 103.92 W/m2 and 26.54%, to
97.08 W/m2 and 24.12%, respectively.

In order to replace the trial-and-error combination of the hybrid model, a machine
learning model of LSTM was also presented. The LSTM model was able to predict GHI
more accurately than the hybrid model, with an enhancement in rRMSE of 2%, although
its rMBE was still comparable to that of the hybrid model.

Semi-empirical models can accurately determine the GHI with a small number of
inputs, such as θz,ϕ, TL,ψ, and z. In the context of Korea, this study provided a comparison
of well-known semi-empirical models and suggested improved methods using hybrid
formulas and the LSTM method. Hopefully, this study will be helpful for utilizing a
semi-empirical approach to estimating solar irradiance in regions with a hot summer
continental climate.
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Nomenclature

AM Air mass
CI Cloud index
Csat Raw satellite pixel value
C0 Total atmospheric air mass correction, backscattering effect correction, and

satellite sensor system correction
CC Normalized actual satellite pixel value
Cmin Normalized minimum satellite pixel value
Cmax Normalized maximum satellite pixel value
Gext Extraterrestrial irradiance on a horizontal plane (W/m2)
I0 Solar constant of 1367 W/m2

I0met Total irradiance in the visible sensor of the satellite system (W/m2)
kc clear-sky index
kT clearness index
T Atmospheric path transmittance from the sun to the earth’s surface
TL Linke turbidity
Tsat Atmospheric path transmittance from the earth’s surface to the visible sensor

of satellite
Trd Diffuse irradiance transmission function
w Precipitable water vapor
z Site elevation (m)
Greek Symbols
θz Solar zenith angle (deg)
γ Solar elevation angle (deg)
ψ Backscatter angle (deg)
ϕ Satellite zenith angle (deg)
ε Normalized variation of the sun-to-earth distance from its mean value
δR Rayleigh optical thickness
β Angstrom turbidity
Subscripts
c Clear sky
B Heliosat-1 Beyer model
R Heliosat-2 Rigollier model
H Heliosat-2 Hammer model
P Perez model
M Hybrid model
Abbreviations
COMS Communication, ocean, and meteorological satellite system
DNI Direct normal irradiance (W/m2)
DHI Diffuse horizontal irradiance (W/m2)
GHI Global horizontal irradiance (W/m2)
KMA Korean Meteorological Administration
MBE Mean bias error (W/m2)
RMSE Root-mean-square error (W/m2)
rRMSE Relative root-mean-square error (%)
rMBE Relative mean bias error (%)
PV Photovoltaic
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