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Abstract: Point clouds registration is an important step for laser scanner data processing, and there
have been numerous methods. However, the existing methods often suffer from low accuracy
and low speed when registering large point clouds. To meet this challenge, an improved iterative
closest point (ICP) algorithm combining random sample consensus (RANSAC) algorithm, intrinsic
shape signatures (ISS), and 3D shape context (3DSC) is proposed. The proposed method firstly uses
voxel grid filter for down-sampling. Next, the feature points are extracted by the ISS algorithm and
described by the 3DSC. Afterwards, the ISS-3DSC features are used for rough registration with the
RANSAC algorithm. Finally, the ICP algorithm is used for accurate registration. The experimental
results show that the proposed algorithm has faster registration speed than the compared algorithms,
while maintaining high registration accuracy.

Keywords: point clouds registration; iterative closest point (ICP); intrinsic shape signatures (ISS);
3D shape context (3DSC); random sample consensus (RANSAC); effective root mean square
error (ERMSE)

1. Introduction

With the rise of 3D imaging technology, laser scanners have been widely used in many
applications, including robotics, intelligent manufacturing, cultural relics protecting, etc.
Limited by the scanning angle of the equipment and the shape of the objects, the entire
three-dimensional information of the object needs to be collected from multiple views,
and it is necessary to align the correspondent point clouds into a complete model. Point
cloud registration is a key progress to capture the full shapes of 3D objects. At present, the
most classic registration method is the iterative closest point (ICP) algorithm [1], which
requires a good initial position and a high overlap rate, and is prone to fall into a local
optimal solution. In recent years, many variants on the original ICP algorithm have
been proposed to improve registration accuracy and efficiency, such as velocity updating
ICP (VICP) [2], generalized-ICP (GICP) [3], globally optimal ICP (Go-ICP) [4], point-
to-line ICP (PLICP) [5], etc. Magnusson [6] proposed a registration algorithm different
from the ICP registration model called the three-dimensional normal distribute transform
(3D-NDT) algorithm, which based on the probability density model. Compared with
ICP, 3D-NDT does not need to calculate the nearest neighbor matching point and thus
reduces the computational complexity. Chang et al. [7] proposed a non-rigid registration
method by performing k-means clustering on two point clouds and constructing connection
relationship. Wuyang Shui [8] used the principal component analysis (PCA) to achieve the
rough pair-wise registration. Jun Li [9] proposed a point cloud registration method based
on extracting overlapping regions to get high accuracy. Mohamad et al. [10] proposed the
super 4-points congruent sets (4PCS) algorithm, which uses intelligent indexing to reduce
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the complexity of the original 4PCS algorithm. The methods in papers [9,10] have high
registration accuracy for point clouds with large initial deviations and are robust to noise
and outliers. Yuewang He et al. [11] proposed a registration algorithm combing PointNet++
and ICP, which has fast registration speed and good robustness, but its registration result
for sparse point clouds is poor. Kamencay et al. [12] uses the scale-invariant feature
transform (SIFT) functions for initial alignment in combination with the k-nearest neighbor
(KNN) algorithm for function comparison and the ICP algorithm weighted for performing
accurate registration. Since calculating SIFT is time-consuming, it reduces the registration
efficiency. Fengguang Xiong et al. [13] proposed a local feature descriptor based on the
rotating volume for point cloud registration. Liang-Chia et al. [14] used the oriented
bounding box (OBB) regional area-based descriptor to get an initial transformation matrix
and ICP algorithm for fine registration.

The above methods can be classified to two categories: one is based on optimization;
the other is based on features. Optimization-based methods search corresponding point
pairs in the source cloud and target cloud at first, then estimate the transformation matrix by
the corresponding relation. These two stages will be iterated to find the best transformation.
With continuous iteration, the corresponding relation will become more and more accurate.
The limitation of this category is that many complicated strategies are needed to overcome
noise, outliers, density changes, and partial overlap changes, which will increase the
calculation cost. Feature-based methods do not search corresponding points directly; they
firstly extract feature points from the target and source clouds and describe them by another
method, then features are used to estimate the transformation matrix, which need not an
iteration. In those methods, the selection of feature points and their describing methods
will determine the registration results. Those methods often result in lower registration
accuracy for the reason that the feature points lack representativeness or their amount is
not enough.

To achieve high efficiency along with high accuracy, this paper proposes a point cloud
registration algorithm combining intrinsic shape signatures (ISS) and 3D shape context
(3DSC). In this proposed algorithm, the feature points are extracted by ISS algorithm,
which are described by the 3DSC features, and then we used the random sample consensus
(RANSAC) algorithm to estimate the initial transformation matrix and used ICP algorithm
for fine registration. To solve the problem that sometimes the value of root mean square
error will be misleading [15], we proposed effective root mean square error (ERMSE), who
has all the advantages of root mean square error (RMSE), and can calculate the registration
error more accurately.

The rest of this article is structured as follows. Section 2 provides details on our
proposed method and describes the principles of the five main steps. Section 3 presents
the experiment of the proposed method on six models from the basic geometry library
and evaluates its accuracy and efficiency. In Section 4, we discuss the registration results
of our algorithm and the compared ones. Finally, Section 5 focuses on the conclusions of
this paper.

2. Proposed Method

The flow chart diagram of the proposed method is shown in Figure 1, which mainly
consists of five steps. First of all, the voxel grid filter is used to uniformly sample the
point cloud, reducing the registration time. Then, the feature points are extracted from
the down-sampled point cloud by the ISS algorithm. Next, the 3DSC algorithm is used to
describe the extracted feature points to form the ISS-3DSC features. After that, the ISS-3DSC
feature is used to coarse registration by RANSAC algorithm. Finally, the ICP algorithm is
used for fine registration. For high efficiency, k-dimensional (KD) tree algorithm is used to
accelerate this process.
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Figure 1. Flow chart diagram of the proposed method.

2.1. Down Sampling

Figure 2a shows the “Bed” point cloud to be registered, which has more than 10 thou-
sand points. To reduce executing time of the algorithm, the point cloud is divided into
multiple small cubes by the voxel grid filter, and each cube is a voxel. Using the center of
gravity of each voxel as a point, the entire point cloud is simplified. The voxel size will
affect the efficiency of the proposed algorithm. Figure 2b shows the down sampling result.
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2.2. Intrinsic Shape Signatures Algorithm

Compared with Harris, Normal Aligned Radial Feature (NARF), and SIFT feature
point extraction algorithms, the ISS is faster and the extracted feature points distribute
more evenly. It has two main parts: a local reference frame (LRF) and a feature vector used
to describe the points in the neighborhood around the basis point [16]. Figure 3 shows the
schematic of ISS algorithm.
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The steps of ISS algorithm are as follows:
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Step 1, weighting the basis point. In order to establish the LRF of the basis point, the
basis point and its adjacent points are weighted to compensate for uneven sampling of the
point cloud, which can be described as

wi = 1/‖
{

pj :
∣∣pj − pi

∣∣ < rdensity

}
‖ (1)

where wi is the weight of the pi, and rdensity is the radius of the sphere with pi as the center,
which represents its weighted range.

Step 2, basis point eigenvalue analyzing. Do eigenvalue analysis at basis point pi
with its neighbor points at a supporting radius riss_ f rame. The covariance matrix can be
calculated as

COV(pi) =
∑|pj−pi |<riss_ f rame

wj
(

pj − pi
)(

pj − pi
)T

∑|pj−pi |<riss_ f rame
wj

(2)

Step 3, LRF establishing. The eigenvalues
{

λ1
i , λ2

i , λ3
i
}

and eigenvectors {→e max,
→
e med,

→
e min}

of COV(pi) were calculated and arranged in the order of decreasing magnitude. As shown
in Figure 4, using pi as the origin,

→
e max,

→
e med and their cross product

→
e max ×

→
e med as the

x, y, and z axes, the LRF can be established.
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Step 4, feature points extracting. Set thresholds ε1 and ε2, the points satisfying Equation (3)
are regarded as ISS feature points. Figure 5 shows the feature points extracted by the ISS
algorithm from the “Bed”.

λ2
i /λ1

i ≤ ε1, λ3
i /λ2

i ≤ ε2, (0 <ε1, ε2 < 1) (3)
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2.3. 3D Shape Context

The basic idea of 3DSC [17] feature descriptor is to count the context information
of each point in two point sets and compare whether they are similar to obtain a most
approximate arrangement, and find the corresponding points between the two point clouds.
The feature space of 3DSC is shown in Figure 6.
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The description steps of 3DSC algorithm are as follows:
Step 1, normals calculating. For each query point pi in the point cloud, take pi as

the center of the sphere, R3dsc_ f rame as the radius, and use the surface normal Ni as the
direction of North Pole to establish a local supporting area. Figure 7 shows the normals of
the point cloud after down sampling.
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Step 2, sub-regions dividing and radiuses calculating. On the radius R3dsc_ f rame ={
R0 . . . RJ

}
, divide J + 1 intervals by logarithm, divide L + 1 intervals along azimuth

angle ψ = {ψ0 . . . ψL}, and K + 1 intervals along pitch angle θ = {θ0 . . . θK} equally; thus
J × K× L sub-regions in total are divided. As the intervals are divided logarithmically on
the radius, if the area near the sphere center pi is too small, it will be disturbed by noise
easily. Setting R0 as the minimum radius rmin, and RJ as the maximum radius rmax, the
radius Rj is calculated by

Rj = exp
{

ln(rmin) +
j
J

ln
(

rmax

rmin

)}
. (4)

Step 3, sub-regions weighting. Calculate the weights ω(pi) of each point in the area
by Equation (5). Here V(j, k, l) represents the volume of the area for the j-th radius, the k-th
azimuth direction, and the l-th elevation direction. ρi is the density of the corresponding
local point.

ω(pi) =
1

ρi
3
√

V(j, k, l)
(5)

Step 4, feature vector composing. Then, make a statistic of the values of ω(pi) to

compose a feature vector
→
fpi , →

fpi = {ω1, ω2, . . . , ωk} (6)

where k = {1, 2, . . . , n}, n = J × K× L.This vector contains the shape context information
around the basis point.
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2.4. RANSAC Coarse Registration

The RANSAC algorithm proposed by Fischler and Bolles [18] can automatically fit
the model in data, and the solution to the location determination problem shows that
RANSAC can also calculate the position of the corresponding points, so it can be used for
3D point cloud registration. In our approach, we use an improved RANSAC algorithm [19]
to calculate the initial transformation matrix T̂ ∈ SE(3), which minimizes the sum of the
squared distances between the corresponding points of the two point clouds, as shown in
Equation (7):

T̂ = argmin
T

g(T) = argmin
T

∑
p∈P

(Tp− q)2 (7)

This algorithm needs to input the down-sampled source point cloud P′ and target
point cloud Q′ and the corresponding descriptors. The main steps are as follows:

Step 1, corresponding point searching. Select n(n ≥ 3) points {p1, p2, . . . , pn} ran-
domly in P′ for each iteration to find its corresponding point {q1, q2, . . . , qn} in Q′ by
nearest neighbors matching of five feature descriptors.

Step 2, difference vector of corresponding sides calculating. Compute the Euclidean
distance between the n sampling points at first. Then, calculate the ratio of the difference
between the two corresponding side lengths to the bigger side length to form a vector
→
η . If ‖→η ‖ is smaller than edge length similarity threshold εploy, continue the next step,

otherwise, return to the first step. Set n = 3 as a sample,
→
η is calculated as Equation (8) and

the schematic diagram of computing
→
η is shown as Figure 8.

→
η =


∣∣∣dp

12 − dq
12

∣∣∣
max

(
dp

12, dq
12

) ,

∣∣∣dp
23 − dq

23

∣∣∣
max

(
dp

23, dq
23

) ,

∣∣∣dp
13 − dq

13

∣∣∣
max

(
dp

13, dq
13

)
 (8)Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 15 
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Step 3, corresponding points transforming. Estimate a temporary transformation
matrix Ti from corresponding point pairs and transform P′ into Pi

′.
Step 4, inlier points judging. Compute the Euclidean distances of the nearest neighbors

between Pi
′ and Q′, and take the points whose nearest neighbor distance is lower than the

set distance threshold εransac as inlier points. If the number of inlier points is too small, go
back to Step 1.

Step 5, transformation matrix computing. Compute the transformation matrix ac-
cording to the corresponding relationship of the interior points. The iteration number k of
RANSAC is obtained by a presumed success probability p and a preset inlier fraction w,
which is shown as Equation (9):

k =
log(1− p)

log(1− wn)
(9)

Step 6, model estimating and updating. Use the inlier points fitting a parameterized
model to test other points, and update the inlier points to continue iterative calculations
until the best estimation model is obtained or max iteration number Riter is reached. When
the value of g

(
T̂
)

is the smallest, set T̂ as the best estimation result and stop the iteration.



Appl. Sci. 2021, 11, 3426 7 of 14

2.5. ICP Fine Registration

When the ICP algorithm registers the two point clouds P and Q, it searches for the
nearest neighbor point pairs that meet certain constraints, and calculates the optimal
rotation matrix and translation matrix to minimize the error function. The larger the
amount of data in the point cloud, the more time-consuming it is to query the point pairs.
In our approach, we use the KD tree in the ICP algorithm, which can quickly search for
neighbor point pairs and improve the registration efficiency [20]. The specific process of
registration is as follows:

Step 1, nearest neighbor points searching. Use the KD tree algorithm to search for the
nearest neighbor qi of the point pi (pi ∈ P) in Q, and minimize the Euclidean distance |pi − qi|.

Step 2, optimal rotation matrix and rotation matrix solving. Use the least square
method to solve the optimal rotation matrix R and translation matrix T, the error function
G(R, T) is minimized.

G(R, T) =
1
N ∑N

i=1 ‖(Rpi + T − qi)‖2 (10)

Step 3, source point cloud transforming. Perform R, T transformation on the point
cloud P, and get the transformed corresponding points p′ i = {p′ i = Rpi + T, pi ∈ P}, then
calculate the average distance of point pair (p′ i, qi):

d =
1
N ∑N

i=1 ‖p′ i − qi‖
2 (11)

Step 4, threshold judging. Set the threshold εicp, if the conditions dk − dk+1 < εicp are
met, end the iteration, otherwise iterate goes on.

Step 5, registration completing. According to the finally obtained R and T, the point cloud
P is transformed into the coordinate system of the point cloud Q to complete the registration.

3. Experimental Results

The experiment dataset contains “Bed”, “Motorbike”, and “Piano” from the basic
geometry library and “Dragon1”, “Dragon2”, and “Bunny” from Stanford University
Graphics Lab. The point numbers of the point clouds are Bed (110372, 108615), Motorbike
(41214, 40023), and Piano (54139, 54139), Dragon1 (126546, 132000), Dragon2 (184982,
155208), Bunny (40256, 40097). Our proposed algorithm is implemented in Microsoft Visual
Studio 2015 and PCL (Point Cloud Library), while all the experiments are conducted on
a 3.6 GHz Intel(R) Pentium(R) G4600 processor with 8 GB RAM. In order to verify the
rationality and efficiency of the algorithm in this paper, it is compared with ICP, and sample
consensus initial alignment ICP (SAC-IA+ICP), and 3D histograms of point distributions
ICP (3DHoPD+ICP) [21] algorithms under the same environment.

3.1. Selection of Main Parameters

The algorithm in this paper changes the registration result by modifying the param-
eters. Through the registration error returned by the experimental results, we find that
many parameters are related to the grid size of the point cloud. Root mean square error
(RMSE) is the error measurement method often used in point cloud registration, which
means the average of the sum of squared distances between the corresponding points of
two point clouds. It is defined as

RMSE =

√
1
N ∑N

i=1 ‖pi − qj‖2, (1 ≤ j ≤ M) (12)

where, pi and qj are nearest neighbors in pair, located in data P and Q, respectively, and N
and M represent the registration scales of P and Q. The smaller the RMSE, the better the
registration result.

Table 1 shows the number of sampling points and ISS feature points under different
grid sizes, the first two lines belong to source point cloud P, the rest belongs to Q. In order
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to reduce the running time of the algorithm, the number of sampling points is generally
several thousand. Considering that too many feature points will increase the calculation
time, and too few will affect the registration accuracy, the grid size is selected as 0.03 m.

Table 1. The number of sampling points and feature points under different grid sizes.

Grid Size/m 0.01 0.02 0.03 0.04 0.05

Sample points (P) 36,415 11,174 5425 3190 2173
ISS feature points (P) 769 220 120 48 32

Sample points (Q) 38,213 11,727 5661 3394 2239
ISS feature points (Q) 879 252 112 54 34

For the 3DSC algorithm, the main parameters are R3dsc_ f rame, rmin, and ρi. R3dsc_ f rame
denotes the support radius for 3DSC and is usually set to 10 times of the grid size. rmin is
the minimal radius value for the search sphere, which is often set same scale with the grid
size. ρi is the density of the corresponding local point, which is set one-tenth of rmin.

Table 2 shows the registration results of different εransac, when the initial value of εicp is
0.1 m. When εransac = 0.3 m, the registration time is the least and the RMSE is also the smallest.

Table 2. εicp = 0.1 m, the registration results of different εransac.

εransac/m 0.1 0.2 0.3 0.4 0.5 0.7 0.9

Time/s 0.926 0.844 0.801 0.812 0.815 0.812 0.812
RMSE/m 0.35 0.166 0.078 0.078 0.078 0.079 0.078

Table 3 shows the registration results of different εicp, when εransac = 0.3 m. When
εicp = 0.3 m, the RMSE is the smallest.

Table 3. εransac = 0.3 m, the registration results of different εicp.

εicp/m 0.02 0.05 0.08 0.1 0.2 0.3 0.4 0.5 0.6

Time/s 0.812 0.8 0.813 0.801 0.819 0.803 0.802 0.806 0.809
RMSE/m 0.091 0.091 0.081 0.078 0.078 0.07 0.07 0.07 0.07

Figure 9 shows the registration results of “Bed” with different grid sizes. It can be
seen from the figure that as the grid size increases, the registration time and the number of
ISS-3DSC features continue to decrease, and the RMSE value is quite small in the range of
0.02 m to 0.04 m, so we set the grid size to be 0.03 m. More parameters are listed in Table 4.
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Table 4. Parameters set of this algorithm.

Parameter Value Definition

Grid size 0.03 m The voxel grid of leaf size
C 0.0043 m Point cloud resolution

riss_ f rame 6C Support radius for intrinsic frame
rdensity 4C Weighted neighbors within the radius

ε1 0.975 Ratio of the second eigenvalue to the first
ε2 0.975 Ratio of the third eigenvalue to the second

R3dsc_ f rame 0.3 m Support radius for 3DSC
rmin 0.02 m Minimum radius of radial division to avoid noise
ρi 0.002 Density of the corresponding local point
n 3 Sample points in surface

εploy 0.01 Edge length similarity threshold
w 0.01 Inlier fraction

εransac 0.3 m Max-distance threshold of corresponding points for RANSAC
Riter 3000 Max-iteration number for RANSAC
εicp 0.3 m Max-distance threshold of corresponding points for ICP
Iiter 30 Max-iteration number for ICP

3.2. Evaluation

RMSE can roughly represent the registration result, but it is not accurate enough.
The point clouds to be registered are often not complete models, some points have no
corresponding points, so the calculated RMSE may not be suitable. Additionally, when
debugging the parameters, only from the RMSE results, it is not known how many points
in the point cloud are involved in the registration [22]. We improved RMSE to better
describe the registration results of the incomplete models, and named it the effective root
mean square error (ERMSE). We set parameters δ(δ = nC, n ∈ Z∗) and β. δ is the distance
threshold. If the calculated Euclidean distance of the nearest neighbor pair is less than δ,
it is judged as a corresponding point, otherwise, it is a non-corresponding point. β is the
ratio of the number of the corresponding points involved in the registration to that of the
point cloud. The expressions of β and ERMSE are shown in Equation (13).{

β = (N − k)/N

ERMSE =
√

1
N−k ∑N

i=1 ‖pi − qj‖2, (1 ≤ j ≤ M)
(13)

where k represents the number of non-corresponding points, N represents the number of
points in the registered point cloud, and N−k represents the number of corresponding
points, pi and qj represent the nearest neighbor pair in the two point clouds.

As shown in Figure 10, we used ICP, SAC-IA+ICP, 3DHoPD+ICP and our approach
for the registration of Bed, Motorbike, Piano, Dragon1, Dragon2, and Bunny point clouds.
For the Bed, Motorbike, Piano, and Dragon1 models with large initial pose deviations, the
registration rate of the ICP algorithm is 0, and the ERMSEs are meaningless. However, its
registration accuracies for Dragon2 and Bunny are quite high, which just reflects the advan-
tages of ICP for small initial pose deviations. The SAC-IA+ICP algorithm, 3DHoPD+ICP
algorithm, and our proposed algorithm have almost the same registration rate for the six
models with the increase of δ, and when δ= 5C, the registration rates are all over 90%.
However, the registration accuracy of our approach is higher for models with large initial
pose deviations. From the experimental results of Dragon2 and Bunny, we can see that for
models with small initial pose deviations, the registration accuracies of ICP, SAC-IA+ICP,
and our method algorithms are almost the same, while 3DHoPD+ICP algorithm is higher
than them. From Figure 10, we can also get that with the increase of δ, the values of β
and ERMSE also increase gradually. This is because the point cloud is not completely
matched, and the greater the distance threshold, the greater the error. Therefore, δ needs to
be limited.
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Through the above experiments and the determination of the ERMSE values, we com-
pared the magnitude of RMSEs and ERMSEs for the four methods as shown in Figure 11.
Here, ICP uses the right vertical coordinate and SAC-IA+ICP, 3DHoPD+ICP, and our
method use the left vertical coordinate. Figure 11 shows that the ERMSE error is slightly
lower than RMSE, and agree with the change trend of RMSE.

Table 5 shows the final RMSE, β, and ERMSE values of ICP, SAC-IA+ICP, 3DHoPD+ICP,
and our method for the six models, and the best results are highlighted in bold font. From
the experiment results, we can see that ICP cannot be used for models with large initial
pose deviations, while SAC-IA+ICP, 3DHoPD+ICP, and our method can be used for all the
models, and their registration accuracies are both quite high.

Table 6 shows the registration time of each algorithm for the six models in the con-
ditions. We can see that our approach is the most efficient. The total registration time
of our method for the six models is only about 1/25 of SAC-IA+ICP method and 1/2 of
3DHoPD+ICP method. To get the reason of the performance in details, we compared the
operating time of ICP registering, and before this step, between 3DHoPD+ICP method
and ours. For the model of Bunny, the ICP registering time of our method is four orders
of magnitude lower than that of the 3DHoPD+ICP method, while the preparing time is
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about 0.4 s higher than it. This result indicates that for the entire point clouds registration
process, optimizing feature descriptors is a more effective way.
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Figure 11. Root mean square error (RMSE) and effective root mean square error (ERMSE) of ICP,
SAC-IA+ICP, 3DHoPD+ICP, and our method.

Table 5. RMSE, β, and ERMSE of ICP, SAC-IA+ICP, 3DHoPD+ICP, and our method for the six models.

Model
ICP SAC-IA+ICP 3DHoPD+ICP Ours

RMSE β/% ERMSE RMSE β/% ERMSE RMSE β/% ERMSE RMSE β/% ERMSE

Bed 2.381 0.002 2.381 0.0763 75.2 0.0089 0.078 77.7 0.009 0.078 75.5 0.0079
Motorbike 0.6145 0.008 0.6145 0.0207 92.3 0.0117 0.021 92.3 0.0124 0.0221 91.3 0.0134

Piano 0.5435 0 0.5435 0.0007 100 0.0007 0.0009 100 0.0009 0.0058 100 0.0058
Dragon1 0.1573 0 0.1573 0.002 91.1 0.0005 0.0022 95.9 0.001 0.002 91.9 0.0007
Dragon2 0.0011 92.6 0.0005 0.0011 92.7 0.0005 0.002 95.8 0.0012 0.0011 92.4 0.0005
Bunny 0.0023 92.9 0.001 0.0026 91.5 0.0013 0.0024 91.1 0.0013 0.0026 94.6 0.0099

Table 6. Registration time for six models of each algorithm/s.

Model ICP SAC-IA+ICP 3DHoPD+ICP Ours

Bed 30.208 14.266 1.043 0.662
Motorbike 3.099 7.191 0.689 0.56

Piano 22.33 13.16 0.732 0.583
Dragon1 4.776 17.426 1.385 0.38
Dragon2 1.014 18.538 1.751 0.696
Bunny 1.745 19.342 1.462 0.613
Total 63.172 89.923 7.062 3.494

The registration results of each algorithm are shown in Figure 12. In the experiments,
the source point clouds are in green, the target point clouds are in red, and the registered
point clouds are in blue. It can be seen from the results that the ICP has a large registration
error for the point cloud with large initial positions, and the registration of Bed, Motorbike,
Piano, and Dragon1 point are failed. The SAC-IA-IA+ICP algorithm, the 3DHoPD+ICP
algorithm, and our method have nearly the same registration results for the six models,
which are all registered successfully. On the other hand, our approach has the least
registering time, showing a higher efficiency. Hence, this algorithm has a significant
improvement over others.
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4. Discussion

In the process of point clouds registration, descriptors can often determine the final
performance. There are many different approaches, but all of them have the same target:
providing a useful representation of the shape around the given point that facilitates
searching for correspondences between two shapes, thereby avoiding exhaustive searches.
Combining a good descriptor with a sophisticated searching strategy would improve
the efficiency of the methods. In this article, we proposed a fast point cloud registration
algorithm based on ISS-3DSC feature descriptors, an improved RANSAC algorithm and
ICP algorithm. The RANSAC algorithm can estimate high-precision parameters from a
large number of data sets. Its disadvantage is that the number of iterations for different
models is significantly different and there is a certain probability of getting wrong results,
which need to be improved by subsequent fine registration. Different from the classic
RANSAC algorithm, the improved RANSAC algorithm uses both surface and feature
descriptors to describe a point. Wrong assumptions are removed in time, and the time
for a lot of pose assumptions is reduced. This method has too many parameters to be set
artificially, which is not conducive for intelligent registration; in the next step, we will
develop a new framework to solve this problem.

5. Conclusions

We proposed a fast point cloud registration algorithm based on ISS-3DSC feature
descriptors. By comparing with ICP, SAC-IA+ICP, and 3DHoPD+ICP algorithms on
different point cloud samples, we have shown that this algorithm has a good registration
accuracy, and it is more efficient than the others. The registration time is less than 1 second
for all of the models, while the registration errors are only 0.01% or less. We have also
proposed an evaluating parameter ERMSE on the basis of RMSE, and prove through the
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experiments that ERMSE is better than RMSE to describe the point cloud registration error.
When working with real data perturbed by noise and occlusions and related to real-life
applications, a large number of points are often necessary, and thus efficiency becomes
a key factor. The 3D representation would benefit from non-subsampled point clouds in
order not to lose any data, or to minimize data loss. Future work should also address
working with optimized real-world point clouds, understanding this optimization as the
process of removing noise and subsampling to its minimum expression.
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