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Abstract: An imbalanced dataset is a significant challenge when training a deep neural network
(DNN) model for deep learning problems, such as weeds classification. An imbalanced dataset may
result in a model that behaves robustly on major classes and is overly sensitive to minor classes.
This article proposes a yielding multi-fold training (YMufT) strategy to train a DNN model on
an imbalanced dataset. This strategy reduces the bias in training through a min-class-max-bound
procedure (MCMB), which divides samples in the training set into multiple folds. The model is
consecutively trained on each one of these folds. In practice, we experiment with our proposed strat-
egy on two small (PlantSeedlings, small PlantVillage) and two large (Chonnam National University
(CNU), large PlantVillage) weeds datasets. With the same training configurations and approximate
training steps used in conventional training methods, YMufT helps the DNN model to converge
faster, thus requiring less training time. Despite a slight decrease in accuracy on the large dataset,
YMufT increases the F1 score in the NASNet model to 0.9708 on the CNU dataset and 0.9928 when
using the Mobilenet model training on the large PlantVillage dataset. YMufT shows outstanding
performance in both accuracy and F1 score on small datasets, with values of (0.9981, 0.9970) using the
Mobilenet model for training on small PlantVillage dataset and (0.9718, 0.9689) using Resnet to train
on the PlantSeedlings dataset. Grad-CAM visualization shows that conventional training methods
mainly concentrate on high-level features and may capture insignificant features. In contrast, YMufT
guides the model to capture essential features on the leaf surface and properly localize the weeds
targets.

Keywords: imbalanced dataset; deep neural network; weeds classification; Grad-CAM

1. Introduction

With the application of deep neural network (DNN) models, many computer vision
problems have achieved tremendous performance in tasks such as object classification [1],
object segmentation [2], object detection [3], and object localization [4]. However, the
success of DNN models may depend on the quality and distribution of the labels in the
dataset. As shown in [5–9], a DNN model (and machine learning techniques) trained on
an imbalanced dataset may show poor performance on minority labels. Cao et al. [10]
mentioned that large-scale datasets might have long-tailed label distributions, meaning
that dataset imbalances could become problematic when samples are collected in a large-
scale domain. Common approaches to addressing this problem, such as those reviewed
by Chawla in [11], include randomly oversampling minority or undersampling majority
labels in data space or feature space. However, as the authors of [12,13] point out, these
techniques may neglect potentially valuable data, sample unnecessary data, and risk losing
relevant information. The authors of [13–15] solve the imbalance problem by assigning
weights to classes. Others chose to combine multiple sampling strategies, such as [13,14,16].
In recent years, many methods have been proposed to deal with imbalanced datasets, such
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as those using machine learning techniques [17,18], DNNs [19,20], generative adversarial
networks (GANs) [21], or reinforcement learning (RL) [22].

Many approaches using conventional training of DNN models to solve the weeds
classification problem using imbalanced weeds datasets, such as those of Trong et al. [23],
who aggregated multiple DNN models and used the CNU Weeds dataset. The authors
of [24–32] developed and proposed novel models and techniques and applied them to
the PlantSeedlings and PlantVillage datasets. In reality, weeds image datasets may have
non-uniform distributions due to the relative prevalence of various species, some of which
are common and diverse, while others are rare and identical. Hence, training a DNN model
by selecting a batch of random samples from an entire training set makes the model robust
to majority species, but sensitive to minority species, as Johnson and Khoshgoftaar pointed
out in their survey [33].

To reduce this bias, we proposed the yielding multi-fold training (YMufT) strategy,
which trains the DNN model by arbitrarily dividing the training data into multiple folds
and then trains the model on each of these folds consecutively. Furthermore, samples of
minority species are trained more often than those of majority species so that the model
pays more attention to minority species. The MCMB procedure assures this specification
to determine the number of samples of each species selected and passed on each consec-
utive fold. In addition, we propose a formula to determine the number of training loops
and training periods in YMufT. This formula aims to ensure that the number of loading
training images in the YMufT strategy is approximately the same as, or less than, that in
conventional training methods.

We explore our strategy on four weeds datasets, containing two large datasets (CNU
and large PlantVillage) and two small datasets (PlantSeedlings and small PlantVillage).
Both types of datasets have plain and in-the-wild weeds datasets. Experiments are done
using three DNN models (Mobilenet, Resnet, and NASNet mobile) and the results are
compared to those of the conventional training methods. We find that YMufT runs faster
during the training period and is quicker to converge when training on the validation
set, even though both approaches have the same training configurations and approximate
training steps. The evaluation shows that training the DNN model using the YMufT
strategy results in comparable performance to conventional training strategies on large
datasets and higher performance on small datasets. Specifically, YMufT increases the F1
score in the NASNet model to 0.9708 on the CNU dataset and 0.9928 by using Mobilenet
model training on large PlantVillage dataset. On the small PlantVillage dataset, Mobilenet
achieves the highest performance of 0.9981 in accuracy and 0.9970 in F1 score. On the
PlantSeedlings dataset, Resnet shows the highest accuracy (0.9718) and F1 score (0.9689).
Grad-CAM visualization shows that YMufT guides the model to capture essential features
of the leaf surface and correctly localize weeds targets. Conventional training methods
mainly concentrate on high-level features and may capture insignificant features.

In summary, our main contributions are:
We propose a YMufT strategy to train the DNN model on imbalanced datasets. Using

this strategy, the model is more generalized, performs better, and is less time-consuming
during the training steps than conventional training methods.

We propose the MCMB procedure to select samples of each species to form a fold used
to train the model. This fold has a uniform distribution, or at least much less imbalance
than the distribution of species across the training set. This procedure also shows that the
model pays more attention to minority species, reducing bias towards majority species.

Experiments show that YMufT improves performance on minority species while main-
taining performance on majority species. In particular, YMufT outperforms conventional
training methods on small datasets in terms of overall performance.

Grad-CAM visualization reveals that a model trained by the YMufT strategy tends to
focus on microscopic features on the leaf surfaces, while the conventional trained model
tends to concentrate on high-level features of the leaf.
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2. Related Works

Kang et al. [17] and Lin et al. [22] noted that dealing with the imbalance problem by
undersampling may increase computational complexity and decrease performance. Several
approaches aimed to combine multiple sampling techniques, such as that of Gonzalez
et al. [13], who proposed a set of new sampling techniques and applied inside monotonic
chains to preserve the monotonicity of the datasets and to improve performance on mi-
nority classes. Liu et al. [14] simultaneously combined ensemble learning, evolutionary
undersampling, and multiobjective feature selection. This combination resulted in an
imbalanced classification method called Genetic Under-sampling and Multiobjectie Ant
Colony Optimization based Feature selection, which efficiently solved the imbalanced
classification problem. Nejatian et al. [16] proposed modified-bagging by combining multi-
ple poor classifiers similar to the decision tree method. This algorithm is suitable for an
imbalanced dataset in which the samples of the minority classes are much less frequent
than those of the majority class.

Another approach aimed at weight classes depends on the classes’ contribution to the
total population. Zhang et al. [12] assigned different misclassification costs for different
classes based on the training data. Without prior domain knowledge, these costs were
optimized using the adaptive differential evolution algorithm, which was then applied to
the deep belief network. Khan et al. [34] proposed a cost-sensitive DNN to learn robust
feature representation for all classes. They incorporated class-dependent costs during
model training. They automatically set these costs using statistics. Shu et al. [15] proposed
a one-hidden layer multi-layer perceptron (MLP) to learn weights directly from the data.
During the training, they used a small, unbiased validation set to choose the optimal
training parameters.

Besides applying sampling techniques, the use of the area under the receiver operat-
ing characteristic (ROC) is also a prominent approach to classification in the presence of
imbalanced class distribution. The effectiveness of a ROC strategy depends on the classifi-
cation threshold. Zou et al. [35] proposed a sampling-based threshold auto-tuning method
to identify the optimal classification threshold. Their approach improved classification
performance over other commonly employed methods.

Using support vector machine (SVM) is a common method for classification prob-
lems in conventional machine learning, but an SVM loses its effectiveness on large-scale
imbalanced datasets. Kang et al. [17] proposed a weighted undersampling scheme to
improve SVM performance. This scheme assigns weights to majority classes based on their
Euclidean distance to the hyperplane. By grouping samples based on their weights, this
scheme reduces the number of majority classes. Lemnaru and Potolea [18] studied possible
solutions to the class imbalance problem. They analyzed many standard classification
algorithms, such as decision trees, Bayesian methods, and SVM. They found that none of
these algorithms help all datasets, but MLP was the most robust to the imbalance problem,
and SVM performed well on artificial data.

With the development of deep learning, many methods applied this technique to
solve imbalance problems. Jia et al. [19] applied a deep normalized convolutional neural
network (CNN) to imbalanced fault classification of machinery. Using a neuron activation
maximization algorithm to analyze kernels in the convolutional layers, they found that
these kernels behave like filters—the deeper the layer, the more complex these kernels.
Dong et al. [20] formulated a class imbalanced deep learning model to train a model on
an imbalanced dataset. They designed the model to minimize the dominance of majority
classes using batch-wise mining of complex samples. They also proposed a class rectifi-
cation loss regularization algorithm for minority class incremental rectification. Mullick
et al. [21] argued that oversampling techniques such as synthetic minority over sampling
technique or deep oversampling framework could not be applied to an end-to-end deep
learning system. Thus, they re-approached oversampling techniques by proposing an
end-to-end feature-extraction-classification framework consisting of a convex generator, a
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multi-class classifier network, and a real/fake discriminator to generate new samples from
minority classes.

An RL approach was proposed by Lin et al. [22]. They argued that conventional
classification algorithms fail when the data distribution is imbalanced. Using deep Q-
learning, they formulated this problem as a sequential decision-making process. The agent
performs a classification action. The environment evaluates this action and returns a reward
to the agent such that the more minor the class, the larger the reward. This results in a
model that pays more attention to the minority classes.

3. Datasets

We analyze the YMufT strategy and compare it with conventional training methods
on small and large weeds datasets. In addition, we select in-the-wild and plain datasets
to further analyze the efficiency of the YMufT strategy over a variety of weeds datasets.
The Chonnam National University (CNU) weeds dataset helps us evaluate YMufT in
comparison to conventional methods on a large and in-the-wild dataset. In contrast, the
small PlantVillage dataset is used to examine the robustness of the two training approaches
on a small and plain dataset. Another small dataset, the PlantSeedlings dataset, is used
to investigate behavior of the DNN models on an in-the-wild dataset. Finally, the large
PlantVillage dataset is used to helps us consider the benefit of YMufT on a large and
plain dataset.

3.1. PlantSeedlings Dataset

The PlantSeedlings dataset [36] contains images of plant seedlings placed on Styrofoam
boxes. This dataset contains 5539 images of 12 species. Examining the distribution of species
in this dataset (shown in Figure 1) shows that the dataset is imbalanced. Common Chickweed
is the species with the largest number of images (713 images), while common wheat has the
fewest images (253 images). Figure 2 shows examples of samples of all 12 species.
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Figure 2. Example images of the 12 species in the PlantSeedlings dataset. The order of species (left to right, top to bottom)
corresponds to the labels (from left to right) in Figure 1.

3.2. Small PlantVillage Dataset

The PlantVillage dataset [37] consists of 39 classes separated by species and disease.
This dataset has two versions: with and without augmentation. The non-augmentation
version is referred to as the small dataset. This dataset has 55,447 images in total. Figure 3
shows the distribution of classes, which is clearly imbalanced. Orange___Haunglongbing_
(Citrus_greening) has the highest number of images (5507 images), while Potato___healthy
has the fewest images (152 images). Figure 4 shows examples of each of the 39 classes.
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Figure 3. Distribution of classes in the small PlantVillage dataset.

3.3. CNU Weeds Dataset

This dataset contains 208,477 images of 21 species produced by CNU, Gwangju, Re-
public of Korea. Images of weeds were captured and collected by Korean plant taxonomists
working on farms and fields in the Republic of Korea with high-definition resolution cam-
eras. Figure 5 shows example images from the CNU Weeds dataset, and Figure 6 shows
the distribution of species in this dataset. This dataset is imbalanced. The species with the
largest number of images is Galinsoga quadriradiata Ruiz & Pav. (24,396 images), while the
species with the smallest number of images is Bidens bipinnata L. (804 images).
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3.4. Large PlantVillage Dataset

The large PlantVillage dataset is built off of the small PlantVillage dataset, with the
following six data augmentation techniques applied to increase the size of the dataset:
flipping, gamma correction, noise injection, PCA color augmentation, rotation, and scaling.
The large PlantVillage dataset has 61,485 images. Figure 7 shows the distribution of the
39 classes in the large PlantVillage dataset. Like the small PlantVillage dataset, this dataset
is imbalanced, and Orange___Haunglongbing_(Citrus_greening) is the class with the largest
number of images (5507 images). Seventeen classes have the smallest number of images
(1000 images each).
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4. Methodology

Given a training set and a DNN model, the conventional training methods first train
the whole training model with several epochs. In each epoch, the samples are randomly
divided into an equal number of batches and each batch is fed to the model. No sample
appears in two different batches. After the model is trained on every epoch, it is validated
on the validation set. With this strategy, the model tends to encounter majority species
more often than minority species, making the model robust to majority species since it
can capture the whole variety of features in the majority samples. Otherwise, the lack of
samples of minority species would make the model less focused and cause difficulties
learning about the general characteristics of these species.

Our proposed strategy (YMufT) solves this problem by dividing the samples in the
training set into multiple folds. Minority species are presented to the model more often
than majority species. The smaller the number of samples, the more times the related
species will be learned. This division strategy reduces the bias of the DNN model towards
the majority species. We define the balance error (BE) to measure the imbalance of the
dataset (Definition 1).
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Definition 1 (Balance Error). A datasetD has c species, and each species yi has ni samples. nmax
and nmin are the largest and smallest number of samples in a species, respectively. We calculate
the Balance Error BE of D using Formula (1) below. The lower the value of BED , the greater the
balance of D.

BED =
nmax − nmin

∑i ni
(1)

Consider the number of samples in a species as a discrete random variable. By this
definition, BECNU of the CNU Weeds dataset is 0.11316. Only five species have more
than the median number of samples (18,974), and the standard deviation around this
median is 12,557.854. In the large PlantVillage dataset, BElPV = 0.0733, and 11 classes have
more samples than the median (1546.5). The standard deviation is 1135.824. In the small
PlantVillage dataset, while BEsPV = 0.0966 > BElPV , only 10 classes have more than the
median number of samples (1618). The standard deviation around this median is 1254.96.
In the PlantSeedlings dataset, BEPS = 0.0920, and five species have more than the median
number of samples (500.5). The standard deviation is 97.62. Considering the uniform
distribution as the standard distribution for a balanced dataset, we can measure the relative
entropy from the distribution of a dataset to the uniform distribution. Equation (2) is the
formula used to calculate the relative entropy from P to Q, where P and Q are two discrete
probability distributions and χ is a set of species in a dataset.

DKL(P ‖ Q) = ∑
x∈χ

P(x) log2

(
P(x)
Q(x)

)
(2)

Assume that P is the probability distribution of a dataset with c species, and Q is a
uniform distribution. We can rewrite (2) to (3).

D(P) = log2(c) + ∑
x∈χ

P(x) log2(P(x)) (3)

Using (3) to calculate the relative entropy of the distribution of a dataset to the uni-
form distribution, we obtain D(PCNU) = 0.5649, D(PlPV) = 0.2597, D(PsPV) = 0.415, and
D(PPS) = 0.0998 corresponding to the CNU Weeds, large PlantVillage, small PlantVil-
lage, and PlantSeedlings datasets, respectively. This shows that the distribution of the
PlantSeedlings dataset is close to uniform, while the CNU Weeds dataset is quite imbal-
anced.

We define a set Y consisting of the number of samples of each species. This set has c
elements, in which the ith element is ni. The notation of the nth maximum and minimum
value in Y is max(Y , n), min(Y , n).

Instead of training the DNN model M directly on D, we create a fold f and train the
model on this fold. Folds are established by randomly collecting min(Y) samples of each
species and placing them in f . However, if the difference ε between the minimum and nth
minimum value in Y is small, then we collect min(Y , n) samples of each species and place
them into f , except we take all samples from a species containing a number of samples
between min(Y , 1) and min(Y , n− 1).

These perceptions lead us to come up with the MCMB procedure to divide samples
into folds. First, we determine Min-Class in Y , which is MCargmin(Y , 1). Then, we form
a set S = {ni ∈ Y : ni ≤ ε + Y [MC]} containing elements in Y that are close to MC and
determine Max-Bound of S, which is MBmax(S). For all species, we take min(MB, ni)
samples of species i in Y and place them in f . In practice, ε is determined by an excess
ratio k ∈ [0, 1] to Y [MC], which is k · Y [MC]. This ratio aims to guarantee that the number
of samples in the “Max-Bound” species cannot be more than 2 times greater than MC to
avoid high imbalance distribution on f .

Algorithm 1 shows the algorithm of the YMufT strategy. The folds division process
proceeds until all samples are being divided. In this process, Atemp is a list containing
non-divided samples, and Y consists of the number of samples in Atemp. The MCMB
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procedure is only applied on Atemp. After establishing the 1st fold, dividable samples
are removed from Atemp. Additionally, all samples in species MC1 are being divided,
so Y [MC2] = 0. In the subsequent division, we select min(Y [i], MB2) samples for each
species i, except species MC2, for which we select min(B[i], MB2) samples from A, where
A is a list containing all samples in D and B is a set containing the number of samples in
species yi in the original training dataset.

Generally, given the dth fold division process, assume the MCMB procedure re-
turns M. We randomly select min(Yd[i], MBd) if species i has non-divided samples or
min(B[i], MBd) if all samples in species i have already been divided. Figure 8 illustrates
the YMufT strategy with five species. With k = 0.5, YMufT divides this data into four folds.

By applying the MCMB procedure, all samples of minority species are divided into
the first few folds. We randomly re-select these samples at the next folds while choosing
non-divided samples of the majority species and appending them to those folds. This
action means that samples of minority species are selected more frequently, and the model
may focus on learning the feature characteristics of those species, hence reducing the degree
of bias toward majority species.

Algorithm 1. Algorithm of the yielding multi-fold training (YMufT) strategy.

YMufT(D, c, k)
input D : A dataset has samples xi with corresponding species yi. c: Number of species in D. k: An excess ratio, k ∈ [0, 1].
output List of folds F

Step 1
Initialize A has c rows, A[i] =

{(
xi

j, yi
j

)∣∣∣xi ∈ yi

}
Initialize B, B[i]← |yi| .
Initialize Atemp ← A, Y ← B, an empty list F .

Step 2

While ∃m ∈ N,Y [m] > 0 do:
Initialize an empty fold fi

MC ← arg
+

min(Y) //Select the species has the smallest positive value in Y .
ε← k · Y [MC] //Determine the maximum possible boundary.
inbou← {Y [·] : Y [·] ≤ ε + Y [MC]} //List of species that lay in the boundary.
MB← max(inbou) //Select the maximum value.

For i1 to c do:
If Y [i] > 0 :

nt = min(Y [i], MB)
Si ⊆ Atemp[i], |Si| = nt //Randomly select nt samples from Atemp[i].

fi.append(Si)
Atemp[i]← Atemp[i]\Si //Delete these nt samples in Atemp[i].
Y [i]← Y [i]− nt

Else:
nt = min(B[i], MB)

Si ⊆ A[i], |Si| = nt //Randomly select nt samples from A[i].
fi.append(Si)

F .append( fi)
Step 3 Return F .
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𝑃

𝑘=1
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𝑞

𝑖=1

)

𝑃
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Assume a list F contains q folds. We have the following two definitions:
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Definition 2. A training period is when the model trains all q folds consecutively from the first
fold f1 to the last fold fq.

Definition 3. A training loop is a process in which the model trains a fold on a finite loop.

In the YMufT training strategy, we argue that training a model with α loops on P
periods is not beneficial because the number of samples in each fold is much smaller than
Ntrain, leading to overfitting if α is set too high. After capturing the characteristics of the
samples, the model may converge quickly in later periods, leading to poor generalizability.
To deal with this problem, we reduce α in later periods. We assign a finite sequence (αk)

P
k=1,

indicating the number of training loops αk in the kth training period, and ensure that
α1 ≥ α2 ≥ . . . ≥ αP. After the completion of P training periods, the total number of times
the loading samples are calculated is given by Formula (4)

NYMu f T =
P

∑
k=1

(
αk ·

q

∑
i=1

(⌊
| fi|
nb

⌋
· nb
))

(4)

≈
P

∑
k=1

(
αk ·

q

∑
i=1

(| fi|)
)

(5)

=
P

∑
k=1

αk ·
q

∑
i=1

(| fi|) (6)

where nb is the number of batches and | fi| indicates the number of samples in fold fi. In the
conventional training method, if we train the model on D for eps epochs and the number
of batches is nb, the total number of times the loading samples are calculated is given by
Formula (7).

Nconve =

⌊
|D|
nb

⌋
· nb · eps ≈ |D| · eps (7)

To ensure that the YMufT training strategy results in faster training than conventional
training methods, we solve inequality (8).

NYMu f T ≤ Nconve (8)

⇔
P

∑
k=1

αk ·
q

∑
i=1

(| fi|) ≤ |D| · eps (9)

Since we can determine q, | fi|, |D| and the number of epochs eps used in conventional
training, we only need to define the sequence (αk)

P
k=1 that satisfies inequality (8). If we

choose this sequence as consecutive natural numbers beginning with 1, inequality (8)
becomes

P

∑
k=1

αk ·
q

∑
i=1

(| fi|) ≤ |D| · eps (10)

⇔ P(P + 1)
2

·
q

∑
i=1

(| fi|) ≤ |D| · eps (11)

⇔ P2 + P− 2|D| · eps

∑
q
i=1(| fi|)

≤ 0 (12)

Based on Vieta’s formulas, the left-hand side in inequality (12) has one positive
solution. We select the natural number P ∈

[
1, −1+

√
∆

2

]
to satisfy (8), in which

∆ = 1 +
8|D| · eps

∑
q
i=1(| fi|)

(13)
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To assure the maximum possible value of P is at least 1, we need to solve inequal-
ity (14):

−1 +
√

∆
2

≥ 1 (14)

⇒ 1 +
8|D| · eps

∑
q
i=1(| fi|)

≥ 9 (15)

⇔ eps ≥ ∑
q
i=1(| fi|)
|D| (16)

which means that the number of epochs in a conventional training method must be greater
than or equal to the ratio between the total number of samples in q folds and the total
number of samples in the training set.

5. Experiments
5.1. Performance Metrics

We applied the metrics described in [23] to evaluate the performance of the con-
ventional and YMufT strategies for training of a DNN model on an imbalanced dataset.
Suppose the evaluation dataset D contains m images of c species. Assume Ri ⊂ D is the
set of images classified as species ci, then

• True Positive (TPi): The number of images in Ri that are classified correctly.
• False Positive (FPi): The number of images in Ri that are classified incorrectly.
• False Negative (FNi): The number of images of species ci that are incorrectly classified

as not being ci.

We define the overall performance using four metrics: Accuracy, Precision, Recall, and
F1 score.

• Accuracy: The percentage of images in D that are correctly classified.

Accuracy =
∑c

i=1 TPi

m
(17)

• Precision: The average percentage of images predicted to belong to species ci that are
correctly classified, across all c species.

Precision =
1
c

c

∑
i=1

TPi
TPi + FPi

(18)

• Recall: The average percentage of images in ci that are correctly classified across all
c species.

Recall =
1
c

c

∑
i=1

TPi
TPi + FNi

(19)

• F1 score: The harmonic means of precision and recall. This metric is suitable for
measuring the performance of training strategies on an imbalanced dataset.

F1 score = 2 · Precision · Recall
Precision + Recall

(20)

In addition, we measured precision and recall on every species to estimate the behavior
of minority and majority species.

5.2. Training of DNN Models

We trained the DNN models using the Keras library on an Ubuntu 16.04.5 LTS Linux
server, Intel(R) Core(TM) i9-7900X CPU @ 3.30 GHz, 125 GB RAM. The graphics processing
unit is a 12 GB NVIDIA TITAN V with CUDA 10.1. We selected 3 DNN models for the
experiment. These models have different architectures, and capture species characteristics
in different ways.
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• Mobilenet [38]. This model architecture uses depthwise and pointwise convolution to
learn an object’s features. There are fewer parameters in the model than in traditional
convolution operators. Mobilenet is the lightest of the 3 DNN models. We used
Mobilenet version 1, which has nearly 3.5 million trainable parameters.

• Resnet [39]. This is a deep residual learning model in which a shortcut connection is
added between two blocks of convolutional layers, allowing information from one
layer to flow directly to another layer. We used the 50-layer Resnet model that has
over 24 million trainable parameters.

• NASNet [40]. This model architecture is generated by using Neural Architecture
Search to build a network from the ImageNet dataset. We used the mobile version of
NASNet, which has over 4.5 million trainable parameters.

We applied transfer learning, and used parameters trained on the ImageNet dataset as
the initial parameters to train the model. We fine-tuned all three models by adding a fully
connected layer of length 256, batch normalization, ReLU, and a Softmax layer. The input
RGB image for the three models was 128× 128, normalized to the range [0, 1]. Stochastic
Gradient Descent was used as the optimization method with a learning rate of 0.001. We
applied these model configurations on both strategies to enable a fair comparison between
the conventional and YMufT strategies, except that the batch size varied depending on the
model and dataset. Table 1 show the batch sizes for each model and dataset, which were
applied for both training approaches.

Table 1. Batch size according to model and dataset.

CNU PlantVillage (Large) PlantVillage (Small) PlantSeedlings

Mobilenet 128 32 32 128
Resnet 32 16 16 32

NASNet 16 8 8 16

We evaluated model performance on two small datasets (small PlantVillage and
PlantSeedlings) by applying 5-fold cross-validation and 2 data augmentation techniques,
random rotation, and random zoom. We used the YMufT strategy and divided the training
set into folds. Due to the small number of samples in each fold, we duplicated the images
in each fold four times in PlantSeedlings and three times in the small PlantVillage dataset
to avoided overfitting when training the model using those folds. On two large datasets
(CNU Weeds and large PlantVillage), we randomly selected 60% of each species’ images for
training, 20% for validation, and 20% for testing. We used no data augmentation techniques
in the training set.

We applied a sequence of consecutive numbers (αk)
P
k=1 as the training loop on P

periods, which required us to select a value of P that satisfied inequality (16). Table 2
shows the total number of samples in the folds (2nd column) and the training set (3rd
column) with k = 0.5. The ratio in the 4th column indicates that use of eps ≥ 8 when
training the model in the conventional training method guarantees that P ≥ 1. We trained
the DNN models using the conventional training method on 50 epochs in CNU Weeds
and PlantVillage, and 100 epochs on the PlantSeedlings dataset. We chose the maximum
possible natural number T that satisfies inequality (16), as shown in Table 3.

Table 2. Total number of samples in the folds and training set.

q
∑

i=1
(| fi|) |D| ∑

q
i=1(| fi|)
|D|

CNU 271,713 125,081 2.17
PlantVillage (large) 80,124 36,895 2.17
PlantVillage (small) 329,721 44,360 7.43

PlantSeedlings 28,296 4431 6.39
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Table 3. Number of training periods, P.

CNU PlantVillage (Large) PlantVillage (Small) PlantSeedlings

P 6 6 3 5

In the conventional training method, we validated the model on every epoch. In
YMufT, we made every training loop through all periods. The number of times the model
is validated in YMufT is calculated using expression (21). Table 4 shows the number of
validations in the conventional and YMufT strategies. As shown in this table, the YMufT
strategy required more time to validate the model than the conventional training strategy,
except on the PlantSeedlings dataset.

q · P(P + 1)
2

(21)

Table 4. Number of times the model was validated in the conventional and YMufT strategies.

CNU PlantVillage (Large) PlantVillage (Small) PlantSeedlings

Conventional 50 50 50 100
YMufT 315 231 156 90

5.3. Computational Complexity

Two factors affect the processing time of both approaches: The training and validation
time of the model. Assume that the model finishes training, without validation, at time Tt,
and the time it takes to validate the model is Tv. We estimated the total time T for training
and validation of the model using Formula (22)

T = Tt + vTv (22)

where v is the number of times the model was validated. In the conventional training
method, v equals the number of epochs, while in YMufT, v was calculated using For-
mula (21).

Figure 9 shows the number of times, Tv, the model was validated. Only Resnet on the
CNU Weeds dataset ran faster than Mobilenet. On the other datasets, Mobilenet was the
fastest at validating a model, followed by Resnet and NASNet. Figure 10 compares Tt and
T when training a model using the conventional method and YMufT strategy. In every
case, YMufT required slightly less time to train a model than the conventional method.
However, the increase in the number of validations meant that the YMufT strategy took
more time to complete the training process, except on the PlantSeedlings dataset.
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5.4. Results
5.4.1. CNU Weeds Dataset

Figure 11 shows the learning curves of the 3 models trained by the conventional and
YMufT strategies. In contrast to the smooth training curve of the conventional method,
the training curve of YMufT had a sawtooth appearance, which reflected the transitions
between folds. When the model began to converge, sawtooth marks appeared when it
learned features from samples in one fold on a few training loops but then changed to a
new fold with new samples. In this case, the model first showed a drop in performance but
then began generalizing on the next training loop. Notice that later folds contained many
species that already appeared on previous folds, which helped the model not decrease in
performance to the same extent and made it easier to converge. After a few periods, the
amplitude of each sawtooth was reduced and the model started to converge throughout
many folds.

The model converged at the 10th validation in the conventional strategy; this was
faster than in the YMufT strategy, which required 60 validations to converge. However, as
illustrated by the overall performance scores in Figure 12, use of YMufT led to a higher
F1 score, while the accuracy was approximately the same as that seen with conventional
training. Figure 13 shows a comparison of the precision, recall, and F1 scores by species
between the YMufT and conventional training strategies. In this figure, the species are
arranged in ascending order, based on the ratio of the number of samples in a species to
the maximum number of samples.

On Mobilenet, although YMufT did not have a clear advantage in terms of precision,
it showed improved recall on minority species over the conventional training strategy
while maintaining recall on majority species. Thus, the F1 score slightly increased on
minority species. In Resnet, YMufT showed an advantage in terms of precision over the
conventional training strategy on minority species but remained imprecise in terms of
recall. Still, the F1 score of minority species was slightly better than that of the conventional
training method. In NASNet, although the overall F1 score using YMufT was marginally
higher than that of the conventional strategy, recall on minority species did not improve.
Only precision showed a clear advantage of YMufT on minority species, which resulted in
a slight improvement in F1 score on minority species.
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5.4.2. Large PlantVillage

The learning curves in Figure 14 show a shorter sawtooth than the CNU Weeds dataset
because of the lack of variety in samples in the large PlantVillage dataset. In a given training
fold, despite prior knowledge from the previous folds, the samples were not significantly
different, which help the model converge quickly.
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Figure 14. Performance when models were trained on the large PlantVillage dataset, using the conventional training (upper
row) and YMufT strategies (lower rows).

As with the CNU Weeds dataset, the model converged on the first few validations
faster than YMufT, which needed 60 validations to converge. Figure 15 shows the out-
standing overall performance of YMufT in Mobilenet. Training Mobilenet in this dataset
using the YMufT strategy resulted in an overall performance that was superior to those of
Resnet and NASNet. The learning curves of the two latter models show more oscillation,
illustrating the difficulty in generalizing sample characteristics in this dataset.
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In Figure 16, minority classes showed a slight improvement in precision and recall
using Mobilenet trained by the YMufT strategy. This improvement led to an increase
in F1 score in those classes. In contrast, YMufT showed inappreciable improvement on
minority classes in terms of precision and recall, making the F1 score lower than that of the
conventional training method.

5.4.3. Small PlantVillage

Figure 17 shows the learning curves of the 3 models trained on the small PlantVillage
dataset. Unlike the large dataset, the validation curves of Resnet and NASNet trained using
the conventional training method showed a large degree of oscillation. Specifically, Resnet
was unable to converge. In contrast, the training and validation curves of the models
trained using the YMufT strategy converged quickly after 20 validation times, which was
faster than those of the models trained using the conventional method. The amplitudes of
the sawtooth markings were also smaller than those on the large dataset.
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the number of samples of a class to the maximum number of samples in all classes.

Appl. Sci. 2021, 11, 3331 19 of 28 
 

   

Figure 16. Precision, recall, and F1 score on each class in the large PlantVillage dataset. The blue bars indicate the ratio of 

the number of samples of a class to the maximum number of samples in all classes. 

5.4.3. Small PlantVillage 

Figure 17 shows the learning curves of the 3 models trained on the small PlantVillage 

dataset. Unlike the large dataset, the validation curves of Resnet and NASNet trained using 

the conventional training method showed a large degree of oscillation. Specifically, Resnet 

was unable to converge. In contrast, the training and validation curves of the models 

trained using the YMufT strategy converged quickly after 20 validation times, which was 

faster than those of the models trained using the conventional method. The amplitudes of 

the sawtooth markings were also smaller than those on the large dataset. 

Figure 18 shows the average overall performance on 5-fold cross-validation. The 

performance of the model trained using YMufT was far superior to that of the model 

trained using the conventional training strategy. In general, Mobilenet and Resnet 

showed good performance on this dataset. As shown in Figure 19, all three models 

showed high precision, recall, and F1 scores in most minority classes when the models 

were trained those models using the YMufT strategy. 

 Mobilenet Resnet NASNet 

Convent. 

   

YMufT 

   

Figure 17. Performance of models trained on the small PlantVillage dataset, using the conventional training (upper row) 

and YMufT strategies (lower rows). 

Figure 17. Performance of models trained on the small PlantVillage dataset, using the conventional training (upper row)
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Figure 18 shows the average overall performance on 5-fold cross-validation. The
performance of the model trained using YMufT was far superior to that of the model
trained using the conventional training strategy. In general, Mobilenet and Resnet showed
good performance on this dataset. As shown in Figure 19, all three models showed high
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precision, recall, and F1 scores in most minority classes when the models were trained
those models using the YMufT strategy.
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5.4.4. PlantSeedlings Dataset

The learning curves in Figure 20 show that both the YMufT and conventional training
strategies helped the models converge quickly. In contrast, the validation curves of models
trained using YMufT converged at the first few validation times, except that NASNet
suffered from overfitting before the 30th validation, then quickly converged later. Like
on the small PlantVillage dataset, in Figure 21, YMufT was better than the conventional
training method in terms of accuracy, precision, recall, and F1 score. In Figure 22, in most
cases, use of YMufT served to increase precision, recall, and F1 score in both minority and
majority species.
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Figure 20. Performance of models trained on the PlantSeedlings dataset, using conventional training (upper row) and
YMufT strategies (lower rows).
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Figure 21. Average overall performance of 5-fold cross-validation on the PlantSeedlings dataset.

5.5. Analysis

Generally, on large datasets (CNU Weeds and large PlantVillage), training a model
using the YMufT strategy rather than the conventional training method made the validation
slower to converge. Still, the overall F1 score and the score on minor species improved,
while the F1 score was maintained on major species. Of the three models, NASNet achieved
the best performance on the CNU Weeds dataset, while Mobilenet was the optimal solution
on the large PlantVillage dataset.

On small datasets (small PlantVillage and PlantSeedlings), the models trained using
the YMufT strategy were faster to converge on validation than those trained using the
conventional training method. Furthermore, using the YMufT strategy, the overall perfor-
mance of the models and the performance on minor species were significantly improved
in comparison to the performance of the models trained using the conventional training
method. Mobilenet and Resnet were the optimal models on the small PlantVillage dataset,
and Resnet achieved the highest performance on the PlantSeedlings dataset.

Table 5 compares the YMufT strategy to other methods. On the CNU Weeds dataset,
the NASNet model trained using the YMufT strategy showed slightly lower performance
than the other 2 DNN models. On the large PlantVillage dataset, Mobilenet trained us-
ing YMufT was the optimal solution. On the two small datasets, DNN models trained
using YMufT were superior to other methods. The optimal models on the small PlantVil-
lage dataset were Mobilenet and Resnet. Resnet was also the optimal model on the
PlantSeedlings dataset.
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number of samples of a species to the maximum number of samples in all species.

Table 5. Performance comparison between the YMufT strategy and other methods.

Dataset Method Accuracy Precision Recall F1 Score

CNU

YMufT, Mobilenet 0.9673 0.9602 0.9583 0.9591
YMufT, Resnet 0.9795 0.9720 0.9681 0.9698
YMufT, NASNet 0.9802 0.9721 0.9698 0.9708
2 models, product rule [23] 0.9844 0.9725 0.9768 0.9746

Large PlantVillage

YMufT, Mobilenet 0.9942 0.9930 0.9926 0.9928
YMufT, Resnet 0.9937 0.9921 0.9918 0.9919
YMufT, NASNet 0.9927 0.9910 0.9918 0.9914
Convention, Mobilenet 0.9922 0.9898 0.9902 0.9900
Convention, Resnet 0.9938 0.9925 0.9918 0.9921
Convention, NASNet 0.9937 0.9923 0.9920 0.9921

Small PlantVillage

YMufT, Mobilenet 0.9981 0.9970 0.9971 0.9970
YMufT, Resnet 0.9979 0.9967 0.9973 0.9970
YMufT, NASNet 0.9965 0.9944 0.9955 0.9949
SE-MobileNet [28] 0.9978 - - -
Resnet50 [29] 0.9959 - - -
DenseNet [29] 0.9975 - - -
ReLU [30] 0.9960 - - -
GoogleNet, transfer learning [31] 0.9935 0.9935 0.9935 0.9934
ResNet34, deep [32] 0.9967 - - -
Inception_v3 [32] 0.9976 - - -
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Table 5. Cont.

Dataset Method Accuracy Precision Recall F1 Score

PlantSeedlings

YMufT, Mobilenet 0.9637 0.9614 0.9587 0.9596
YMufT, Resnet 0.9718 0.9713 0.9672 0.9689
YMufT, NASNet 0.9682 0.9665 0.9643 0.9652
3 models, weighted linear
Combination (per-species) [23] 0.9704 0.9706 0.9659 0.9683

AgroAVNET 12 species [24] 0.9364 0.9300 0.9400 0.9300
ResNet-50 [25] 0.9621 0.9525 0.9583 0.9542
CFMNN [26] 0.9110 - - -
ResNet 50 [27] 0.9523 0.9500 0.9500 0.9500
MobileNetV2 [28] 0.9350 0.9400 0.9400 0.9300

Figure 23 compares the number of images that were correctly classified using the
conventional training method but incorrectly classified using YMufT (CtYf) and vice versa
(CfYt). In all cases, use of YMufT effectively enhanced the models’ ability to classify images
in both minor and major species.
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Figure 23. Number of images that were correctly classified using conventional training method but incorrectly classified
using YMufT (CtYf), and vice versa (CfYt).

To further explore the effectiveness of YMufT, we applied Grad-CAM [41] to visualize
the behavior of the models trained by the conventional method and YMufT strategy.
Figure 24 shows examples of images that were incorrectly predicted by the models trained
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with the conventional method but correctly classified by those trained using YMufT. On the
CNU Weeds dataset, YMufT helped the models focus on the leaf surface, while conventional
training was more focused on high-level features. Specifically, for the species Veronica persica
Poir. and Amaranthus powellii S.Watson, conventional training focused on the lower curve
position, while YMufT concentrated on leaf veins and leaf blades. A similar phenomenon
also occurred on Ambrosia artemisiifolia L., Ipomoea coccinea L., and Chenopodium album L.
species. The only image from Chenopodium ficifolium Smith contains overlapping leaves, so
the YMufT strategy guided the model to localized areas around leaf centroids, while the
conventional training method focused on a lower region. Similar things happened on the
large PlantVillage dataset, such as for images of Cherry___healthy, Tomato___Late_blight,
Tomato___Bacterial_spot, Apple___Apple_scab, and Potato___Early_blight. For one image
of Pepper,_bell___Bacterial_spot, both methods focused on the leaf surface, but the YMufT
strategy mainly concentrated on the petiole region. Generally, on large datasets, YMufT
helped the model focus on the leaf surface to capture essential low-level features. In
contrast, the conventional training method focused on high-level features such as leaf
curves, which may not be significant in terms of species characteristics.
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Figure 24. Cont.
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In contrast, both the conventional training and YMufT strategies concentrated on the
surfaces in images in the small PlantVillage dataset. Still, the heatmap color shown in
Potato___healthy, Apple___Cedar_apple_rust, and Tomato___Leaf_Mold indicated that
YMufT made the model pay more attention to the local area in the surface and reduced
its attention to patterns in the background. Other images show that the two methods
displayed different feature localization behavior. The conventional training method fo-
cused on the wide region in the middle of the leaf in Corn___ Cercospora_leaf_spot
Gray_leaf_spot, but the YMufT strategy looked at micro-characteristics towards the top.
In Corn___Northern_Leaf_Blight, the small region near the middle was not sufficient to
classify this image, so YMufT extended the region towards both sides to collect additional
essential features. Consider Potato___Late_blight image: although both methods focused
on the left half of the image, the conventional method mainly focused on the upper and
lower curve, while YMufT considered the inner region to capture essential features. In
the PlantSeedlings dataset, low-quality images, as well as the small shapes of parts of the
weeds, meant that the model trained by the conventional method suffered from difficulty
in localizing the target weeds. This was true for images of maize, black-grass, charlock,
and sugar beet. However, the YMufT strategy guided the model so that it localized the
target properly, which increased the model’s performance. Examples include images of
common wheat and cleavers.

6. Conclusions

In this work, we presented YMufT, a strategy for training DNN models on imbalanced
datasets. Given an imbalanced dataset, YMufT divides the training set into multiple folds,
and the model trains these folds consecutively. We proposed an MCMB procedure to
divide samples from the training set into folds such that the model is trained on minority
species more often than majority species, thus reducing the bias toward majority species.
We developed a formula to determine the numbers of training loops and training periods.
The number of times training samples are loaded in the YMufT strategy is smaller or
approximately the same as that for the conventional training method. We used a sequence
of decreasing consecutive natural numbers, starting with the number of the training period,
as the number of training loops.

We experimented with our strategy on two large datasets (CNU and large PlantVillage)
and two small datasets (small PlantVillage and PlantSeedlings). Without considering
validation times that can be changed on purpose, on all types of weeds datasets, training
of the model using the YMufT strategy was faster than training using the conventional
training method. Despite a slight reduction in accuracy, YMufT produced an increase in the
overall F1 score and the F1 score on minor species on the in-the-wild CNU weeds dataset
(a large dataset). The F1 score was 0.9708 using the NASNet model. Similar results were
obtained on the plain large PlantVillage weeds dataset, for which Mobilenet showed the
best performance in terms of both accuracy (0.9942) and F1 score (0.9928). Use of YMufT
to train DNN models on small datasets results in better model performance than use of
conventional training methods. Mobilenet and Resnet were the optimal solutions for the
plain small PlantVillage weeds dataset, with an accuracy of 0.9981 and F1 score of 0.9970
for Mobilenet, and an accuracy of 0.9979 and F1 score of 0.9970 for Resnet. Resnet was also
the best-performing model on the in-the-wild PlantSeedlings dataset, with an accuracy of
0.9718 and an F1 score of 0.9689.

We used Grad-CAM to visualize and analyze the models’ behavior on large datasets.
YMufT guided the model to focus on learning essential features on the leaf surfaces, while
conventional training method led the model to pay attention to high-level features such as
leaf curves or leaf centroids, which might be insufficient to describe species characteristics.
On the small PlantVillage weeds dataset, both approaches concentrated on the leaf surface.
Still, YMufT made the model pay more attention to the local area on the surface and
reduced capture of patterns in the background. On the PlantSeedlings dataset, YMufT
guided the model to properly localize the weeds targets.
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