
applied
sciences

Article

Yielding Multi-Fold Training Strategy for Image Classification
of Imbalanced Weeds

Vo Hoang Trong 1 , Yu Gwang Hyun 1, Kim Jin Young 1,* and Pham The Bao 2,*

����������
�������

Citation: Trong, V.H.; Hyun, Y.G.;

Young, K.J.; Bao, P.T. Yielding Multi-

Fold Training Strategy for Image

Classification of Imbalanced Weeds.

Appl. Sci. 2021, 11, 3331. https://doi.

org/10.3390/app11083331

Academic Editor: Luis Javier

Garcia Villalba

Received: 14 March 2021

Accepted: 6 April 2021

Published: 7 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of ICT Convergence System Engineering, Chonnam National University, Gwangju 61186, Korea;
hoangtrong2305@gmail.com (V.H.T.); sayney1004@gmail.com (Y.G.H.)

2 Faculty of Information Technology, Saigon University, Ho Chi Minh City 72710, Vietnam
* Correspondence: beyondi@jnu.ac.kr (K.J.Y.); ptbao@sgu.edu.vn (P.T.B.)

Abstract: An imbalanced dataset is a significant challenge when training a deep neural network
(DNN) model for deep learning problems, such as weeds classification. An imbalanced dataset may
result in a model that behaves robustly on major classes and is overly sensitive to minor classes.
This article proposes a yielding multi-fold training (YMufT) strategy to train a DNN model on
an imbalanced dataset. This strategy reduces the bias in training through a min-class-max-bound
procedure (MCMB), which divides samples in the training set into multiple folds. The model is
consecutively trained on each one of these folds. In practice, we experiment with our proposed strat-
egy on two small (PlantSeedlings, small PlantVillage) and two large (Chonnam National University
(CNU), large PlantVillage) weeds datasets. With the same training configurations and approximate
training steps used in conventional training methods, YMufT helps the DNN model to converge
faster, thus requiring less training time. Despite a slight decrease in accuracy on the large dataset,
YMufT increases the F1 score in the NASNet model to 0.9708 on the CNU dataset and 0.9928 when
using the Mobilenet model training on the large PlantVillage dataset. YMufT shows outstanding
performance in both accuracy and F1 score on small datasets, with values of (0.9981, 0.9970) using the
Mobilenet model for training on small PlantVillage dataset and (0.9718, 0.9689) using Resnet to train
on the PlantSeedlings dataset. Grad-CAM visualization shows that conventional training methods
mainly concentrate on high-level features and may capture insignificant features. In contrast, YMufT
guides the model to capture essential features on the leaf surface and properly localize the weeds
targets.

Keywords: imbalanced dataset; deep neural network; weeds classification; Grad-CAM

1. Introduction

With the application of deep neural network (DNN) models, many computer vision
problems have achieved tremendous performance in tasks such as object classification [1],
object segmentation [2], object detection [3], and object localization [4]. However, the
success of DNN models may depend on the quality and distribution of the labels in the
dataset. As shown in [5–9], a DNN model (and machine learning techniques) trained on
an imbalanced dataset may show poor performance on minority labels. Cao et al. [10]
mentioned that large-scale datasets might have long-tailed label distributions, meaning
that dataset imbalances could become problematic when samples are collected in a large-
scale domain. Common approaches to addressing this problem, such as those reviewed
by Chawla in [11], include randomly oversampling minority or undersampling majority
labels in data space or feature space. However, as the authors of [12,13] point out, these
techniques may neglect potentially valuable data, sample unnecessary data, and risk losing
relevant information. The authors of [13–15] solve the imbalance problem by assigning
weights to classes. Others chose to combine multiple sampling strategies, such as [13,14,16].
In recent years, many methods have been proposed to deal with imbalanced datasets, such

Appl. Sci. 2021, 11, 3331. https://doi.org/10.3390/app11083331 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6969-3042
https://orcid.org/0000-0002-4847-4366
https://doi.org/10.3390/app11083331
https://doi.org/10.3390/app11083331
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11083331
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11083331?type=check_update&version=2

Appl. Sci. 2021, 11, 3331 2 of 27

as those using machine learning techniques [17,18], DNNs [19,20], generative adversarial
networks (GANs) [21], or reinforcement learning (RL) [22].

Many approaches using conventional training of DNN models to solve the weeds
classification problem using imbalanced weeds datasets, such as those of Trong et al. [23],
who aggregated multiple DNN models and used the CNU Weeds dataset. The authors
of [24–32] developed and proposed novel models and techniques and applied them to
the PlantSeedlings and PlantVillage datasets. In reality, weeds image datasets may have
non-uniform distributions due to the relative prevalence of various species, some of which
are common and diverse, while others are rare and identical. Hence, training a DNN model
by selecting a batch of random samples from an entire training set makes the model robust
to majority species, but sensitive to minority species, as Johnson and Khoshgoftaar pointed
out in their survey [33].

To reduce this bias, we proposed the yielding multi-fold training (YMufT) strategy,
which trains the DNN model by arbitrarily dividing the training data into multiple folds
and then trains the model on each of these folds consecutively. Furthermore, samples of
minority species are trained more often than those of majority species so that the model
pays more attention to minority species. The MCMB procedure assures this specification
to determine the number of samples of each species selected and passed on each consec-
utive fold. In addition, we propose a formula to determine the number of training loops
and training periods in YMufT. This formula aims to ensure that the number of loading
training images in the YMufT strategy is approximately the same as, or less than, that in
conventional training methods.

We explore our strategy on four weeds datasets, containing two large datasets (CNU
and large PlantVillage) and two small datasets (PlantSeedlings and small PlantVillage).
Both types of datasets have plain and in-the-wild weeds datasets. Experiments are done
using three DNN models (Mobilenet, Resnet, and NASNet mobile) and the results are
compared to those of the conventional training methods. We find that YMufT runs faster
during the training period and is quicker to converge when training on the validation
set, even though both approaches have the same training configurations and approximate
training steps. The evaluation shows that training the DNN model using the YMufT
strategy results in comparable performance to conventional training strategies on large
datasets and higher performance on small datasets. Specifically, YMufT increases the F1
score in the NASNet model to 0.9708 on the CNU dataset and 0.9928 by using Mobilenet
model training on large PlantVillage dataset. On the small PlantVillage dataset, Mobilenet
achieves the highest performance of 0.9981 in accuracy and 0.9970 in F1 score. On the
PlantSeedlings dataset, Resnet shows the highest accuracy (0.9718) and F1 score (0.9689).
Grad-CAM visualization shows that YMufT guides the model to capture essential features
of the leaf surface and correctly localize weeds targets. Conventional training methods
mainly concentrate on high-level features and may capture insignificant features.

In summary, our main contributions are:
We propose a YMufT strategy to train the DNN model on imbalanced datasets. Using

this strategy, the model is more generalized, performs better, and is less time-consuming
during the training steps than conventional training methods.

We propose the MCMB procedure to select samples of each species to form a fold used
to train the model. This fold has a uniform distribution, or at least much less imbalance
than the distribution of species across the training set. This procedure also shows that the
model pays more attention to minority species, reducing bias towards majority species.

Experiments show that YMufT improves performance on minority species while main-
taining performance on majority species. In particular, YMufT outperforms conventional
training methods on small datasets in terms of overall performance.

Grad-CAM visualization reveals that a model trained by the YMufT strategy tends to
focus on microscopic features on the leaf surfaces, while the conventional trained model
tends to concentrate on high-level features of the leaf.

Appl. Sci. 2021, 11, 3331 3 of 27

2. Related Works

Kang et al. [17] and Lin et al. [22] noted that dealing with the imbalance problem by
undersampling may increase computational complexity and decrease performance. Several
approaches aimed to combine multiple sampling techniques, such as that of Gonzalez
et al. [13], who proposed a set of new sampling techniques and applied inside monotonic
chains to preserve the monotonicity of the datasets and to improve performance on mi-
nority classes. Liu et al. [14] simultaneously combined ensemble learning, evolutionary
undersampling, and multiobjective feature selection. This combination resulted in an
imbalanced classification method called Genetic Under-sampling and Multiobjectie Ant
Colony Optimization based Feature selection, which efficiently solved the imbalanced
classification problem. Nejatian et al. [16] proposed modified-bagging by combining multi-
ple poor classifiers similar to the decision tree method. This algorithm is suitable for an
imbalanced dataset in which the samples of the minority classes are much less frequent
than those of the majority class.

Another approach aimed at weight classes depends on the classes’ contribution to the
total population. Zhang et al. [12] assigned different misclassification costs for different
classes based on the training data. Without prior domain knowledge, these costs were
optimized using the adaptive differential evolution algorithm, which was then applied to
the deep belief network. Khan et al. [34] proposed a cost-sensitive DNN to learn robust
feature representation for all classes. They incorporated class-dependent costs during
model training. They automatically set these costs using statistics. Shu et al. [15] proposed
a one-hidden layer multi-layer perceptron (MLP) to learn weights directly from the data.
During the training, they used a small, unbiased validation set to choose the optimal
training parameters.

Besides applying sampling techniques, the use of the area under the receiver operat-
ing characteristic (ROC) is also a prominent approach to classification in the presence of
imbalanced class distribution. The effectiveness of a ROC strategy depends on the classifi-
cation threshold. Zou et al. [35] proposed a sampling-based threshold auto-tuning method
to identify the optimal classification threshold. Their approach improved classification
performance over other commonly employed methods.

Using support vector machine (SVM) is a common method for classification prob-
lems in conventional machine learning, but an SVM loses its effectiveness on large-scale
imbalanced datasets. Kang et al. [17] proposed a weighted undersampling scheme to
improve SVM performance. This scheme assigns weights to majority classes based on their
Euclidean distance to the hyperplane. By grouping samples based on their weights, this
scheme reduces the number of majority classes. Lemnaru and Potolea [18] studied possible
solutions to the class imbalance problem. They analyzed many standard classification
algorithms, such as decision trees, Bayesian methods, and SVM. They found that none of
these algorithms help all datasets, but MLP was the most robust to the imbalance problem,
and SVM performed well on artificial data.

With the development of deep learning, many methods applied this technique to
solve imbalance problems. Jia et al. [19] applied a deep normalized convolutional neural
network (CNN) to imbalanced fault classification of machinery. Using a neuron activation
maximization algorithm to analyze kernels in the convolutional layers, they found that
these kernels behave like filters—the deeper the layer, the more complex these kernels.
Dong et al. [20] formulated a class imbalanced deep learning model to train a model on
an imbalanced dataset. They designed the model to minimize the dominance of majority
classes using batch-wise mining of complex samples. They also proposed a class rectifi-
cation loss regularization algorithm for minority class incremental rectification. Mullick
et al. [21] argued that oversampling techniques such as synthetic minority over sampling
technique or deep oversampling framework could not be applied to an end-to-end deep
learning system. Thus, they re-approached oversampling techniques by proposing an
end-to-end feature-extraction-classification framework consisting of a convex generator, a

Appl. Sci. 2021, 11, 3331 4 of 27

multi-class classifier network, and a real/fake discriminator to generate new samples from
minority classes.

An RL approach was proposed by Lin et al. [22]. They argued that conventional
classification algorithms fail when the data distribution is imbalanced. Using deep Q-
learning, they formulated this problem as a sequential decision-making process. The agent
performs a classification action. The environment evaluates this action and returns a reward
to the agent such that the more minor the class, the larger the reward. This results in a
model that pays more attention to the minority classes.

3. Datasets

We analyze the YMufT strategy and compare it with conventional training methods
on small and large weeds datasets. In addition, we select in-the-wild and plain datasets
to further analyze the efficiency of the YMufT strategy over a variety of weeds datasets.
The Chonnam National University (CNU) weeds dataset helps us evaluate YMufT in
comparison to conventional methods on a large and in-the-wild dataset. In contrast, the
small PlantVillage dataset is used to examine the robustness of the two training approaches
on a small and plain dataset. Another small dataset, the PlantSeedlings dataset, is used
to investigate behavior of the DNN models on an in-the-wild dataset. Finally, the large
PlantVillage dataset is used to helps us consider the benefit of YMufT on a large and
plain dataset.

3.1. PlantSeedlings Dataset

The PlantSeedlings dataset [36] contains images of plant seedlings placed on Styrofoam
boxes. This dataset contains 5539 images of 12 species. Examining the distribution of species
in this dataset (shown in Figure 1) shows that the dataset is imbalanced. Common Chickweed
is the species with the largest number of images (713 images), while common wheat has the
fewest images (253 images). Figure 2 shows examples of samples of all 12 species.

Appl. Sci. 2021, 11, 3331 4 of 28

convex generator, a multi-class classifier network, and a real/fake discriminator to gen-

erate new samples from minority classes.

An RL approach was proposed by Lin et al. [22]. They argued that conventional

classification algorithms fail when the data distribution is imbalanced. Using deep

Q-learning, they formulated this problem as a sequential decision-making process. The

agent performs a classification action. The environment evaluates this action and returns

a reward to the agent such that the more minor the class, the larger the reward. This re-

sults in a model that pays more attention to the minority classes.

3. Datasets

We analyze the YMufT strategy and compare it with conventional training methods

on small and large weeds datasets. In addition, we select in-the-wild and plain datasets to

further analyze the efficiency of the YMufT strategy over a variety of weeds datasets. The

Chonnam National University (CNU) weeds dataset helps us evaluate YMufT in compar-

ison to conventional methods on a large and in-the-wild dataset. In contrast, the small

PlantVillage dataset is used to examine the robustness of the two training approaches on a

small and plain dataset. Another small dataset, the PlantSeedlings dataset, is used to in-

vestigate behavior of the DNN models on an in-the-wild dataset. Finally, the large

PlantVillage dataset is used to helps us consider the benefit of YMufT on a large and plain

dataset.

3.1. PlantSeedlings Dataset

The PlantSeedlings dataset [36] contains images of plant seedlings placed on

Styrofoam boxes. This dataset contains 5539 images of 12 species. Examining the distri-

bution of species in this dataset (shown in Figure 1) shows that the dataset is imbalanced.

Common Chickweed is the species with the largest number of images (713 images), while

common wheat has the fewest images (253 images). Figure 2 shows examples of samples

of all 12 species.

Figure 1. Distribution of species in the PlantSeedlings dataset.

.

Figure 1. Distribution of species in the PlantSeedlings dataset.

Appl. Sci. 2021, 11, 3331 4 of 28

convex generator, a multi-class classifier network, and a real/fake discriminator to gen-

erate new samples from minority classes.

An RL approach was proposed by Lin et al. [22]. They argued that conventional

classification algorithms fail when the data distribution is imbalanced. Using deep

Q-learning, they formulated this problem as a sequential decision-making process. The

agent performs a classification action. The environment evaluates this action and returns

a reward to the agent such that the more minor the class, the larger the reward. This re-

sults in a model that pays more attention to the minority classes.

3. Datasets

We analyze the YMufT strategy and compare it with conventional training methods

on small and large weeds datasets. In addition, we select in-the-wild and plain datasets to

further analyze the efficiency of the YMufT strategy over a variety of weeds datasets. The

Chonnam National University (CNU) weeds dataset helps us evaluate YMufT in compar-

ison to conventional methods on a large and in-the-wild dataset. In contrast, the small

PlantVillage dataset is used to examine the robustness of the two training approaches on a

small and plain dataset. Another small dataset, the PlantSeedlings dataset, is used to in-

vestigate behavior of the DNN models on an in-the-wild dataset. Finally, the large

PlantVillage dataset is used to helps us consider the benefit of YMufT on a large and plain

dataset.

3.1. PlantSeedlings Dataset

The PlantSeedlings dataset [36] contains images of plant seedlings placed on

Styrofoam boxes. This dataset contains 5539 images of 12 species. Examining the distri-

bution of species in this dataset (shown in Figure 1) shows that the dataset is imbalanced.

Common Chickweed is the species with the largest number of images (713 images), while

common wheat has the fewest images (253 images). Figure 2 shows examples of samples

of all 12 species.

Figure 1. Distribution of species in the PlantSeedlings dataset.

.

Figure 2. Cont.

Appl. Sci. 2021, 11, 3331 5 of 27Appl. Sci. 2021, 11, 3331 5 of 28

Figure 2. Example images of the 12 species in the PlantSeedlings dataset. The order of species (left to right, top to bottom)

corresponds to the labels (from left to right) in Figure 1.

3.2. Small PlantVillage Dataset

The PlantVillage dataset [37] consists of 39 classes separated by species and disease.

This dataset has two versions: with and without augmentation. The non-augmentation

version is referred to as the small dataset. This dataset has 55,447 images in total. Figure 3

shows the distribution of classes, which is clearly imbalanced. Or-

ange___Haunglongbing_(Citrus_greening) has the highest number of images (5507 images),

while Potato___healthy has the fewest images (152 images). Figure 4 shows examples of

each of the 39 classes.

Figure 3. Distribution of classes in the small PlantVillage dataset.

Figure 2. Example images of the 12 species in the PlantSeedlings dataset. The order of species (left to right, top to bottom)
corresponds to the labels (from left to right) in Figure 1.

3.2. Small PlantVillage Dataset

The PlantVillage dataset [37] consists of 39 classes separated by species and disease.
This dataset has two versions: with and without augmentation. The non-augmentation
version is referred to as the small dataset. This dataset has 55,447 images in total. Figure 3
shows the distribution of classes, which is clearly imbalanced. Orange___Haunglongbing_
(Citrus_greening) has the highest number of images (5507 images), while Potato___healthy
has the fewest images (152 images). Figure 4 shows examples of each of the 39 classes.

Appl. Sci. 2021, 11, 3331 5 of 28

Figure 2. Example images of the 12 species in the PlantSeedlings dataset. The order of species (left to right, top to bottom)

corresponds to the labels (from left to right) in Figure 1.

3.2. Small PlantVillage Dataset

The PlantVillage dataset [37] consists of 39 classes separated by species and disease.

This dataset has two versions: with and without augmentation. The non-augmentation

version is referred to as the small dataset. This dataset has 55,447 images in total. Figure 3

shows the distribution of classes, which is clearly imbalanced. Or-

ange___Haunglongbing_(Citrus_greening) has the highest number of images (5507 images),

while Potato___healthy has the fewest images (152 images). Figure 4 shows examples of

each of the 39 classes.

Figure 3. Distribution of classes in the small PlantVillage dataset.

Figure 3. Distribution of classes in the small PlantVillage dataset.

3.3. CNU Weeds Dataset

This dataset contains 208,477 images of 21 species produced by CNU, Gwangju, Re-
public of Korea. Images of weeds were captured and collected by Korean plant taxonomists
working on farms and fields in the Republic of Korea with high-definition resolution cam-
eras. Figure 5 shows example images from the CNU Weeds dataset, and Figure 6 shows
the distribution of species in this dataset. This dataset is imbalanced. The species with the
largest number of images is Galinsoga quadriradiata Ruiz & Pav. (24,396 images), while the
species with the smallest number of images is Bidens bipinnata L. (804 images).

Appl. Sci. 2021, 11, 3331 6 of 27Appl. Sci. 2021, 11, 3331 6 of 28

Figure 4. Example images of each of the 39 classes in the small PlantVillage dataset. The order of classes (left to right, top

to bottom) corresponds to the labels (from left to right) in Figure 3..

3.3. CNU Weeds Dataset

This dataset contains 208,477 images of 21 species produced by CNU, Gwangju, Re-

public of Korea. Images of weeds were captured and collected by Korean plant taxono-

mists working on farms and fields in the Republic of Korea with high-definition resolution

cameras. Figure 5 shows example images from the CNU Weeds dataset, and Figure 6

shows the distribution of species in this dataset. This dataset is imbalanced. The species

with the largest number of images is Galinsoga quadriradiata Ruiz & Pav. (24,396 images),

while the species with the smallest number of images is Bidens bipinnata L. (804 images).

Figure 5. Distribution of species in the CNU weeds dataset.

Figure 4. Example images of each of the 39 classes in the small PlantVillage dataset. The order of classes (left to right, top to
bottom) corresponds to the labels (from left to right) in Figure 3.

Appl. Sci. 2021, 11, 3331 6 of 28

Figure 4. Example images of each of the 39 classes in the small PlantVillage dataset. The order of classes (left to right, top

to bottom) corresponds to the labels (from left to right) in Figure 3..

3.3. CNU Weeds Dataset

This dataset contains 208,477 images of 21 species produced by CNU, Gwangju, Re-

public of Korea. Images of weeds were captured and collected by Korean plant taxono-

mists working on farms and fields in the Republic of Korea with high-definition resolution

cameras. Figure 5 shows example images from the CNU Weeds dataset, and Figure 6

shows the distribution of species in this dataset. This dataset is imbalanced. The species

with the largest number of images is Galinsoga quadriradiata Ruiz & Pav. (24,396 images),

while the species with the smallest number of images is Bidens bipinnata L. (804 images).

Figure 5. Distribution of species in the CNU weeds dataset. Figure 5. Distribution of species in the CNU weeds dataset.

3.4. Large PlantVillage Dataset

The large PlantVillage dataset is built off of the small PlantVillage dataset, with the
following six data augmentation techniques applied to increase the size of the dataset:
flipping, gamma correction, noise injection, PCA color augmentation, rotation, and scaling.
The large PlantVillage dataset has 61,485 images. Figure 7 shows the distribution of the
39 classes in the large PlantVillage dataset. Like the small PlantVillage dataset, this dataset
is imbalanced, and Orange___Haunglongbing_(Citrus_greening) is the class with the largest
number of images (5507 images). Seventeen classes have the smallest number of images
(1000 images each).

Appl. Sci. 2021, 11, 3331 7 of 27
Appl. Sci. 2021, 11, 3331 7 of 28

Figure 6. Examples of the 21 species in the Chonnam National University (CNU) weeds dataset. The order of species (left

to right, top to bottom) corresponds to the labels (from left to right) in Figure 5.

3.4. Large PlantVillage Dataset

The large PlantVillage dataset is built off of the small PlantVillage dataset, with the

following six data augmentation techniques applied to increase the size of the dataset:

flipping, gamma correction, noise injection, PCA color augmentation, rotation, and scal-

ing. The large PlantVillage dataset has 61,485 images. Figure 7 shows the distribution of

the 39 classes in the large PlantVillage dataset. Like the small PlantVillage dataset, this

dataset is imbalanced, and Orange___Haunglongbing_(Citrus_greening) is the class with

the largest number of images (5507 images). Seventeen classes have the smallest number

of images (1000 images each).

Figure 7. Distribution of classes in the large PlantVillage dataset.

4. Methodology

Given a training set and a DNN model, the conventional training methods first train

the whole training model with several epochs. In each epoch, the samples are randomly

divided into an equal number of batches and each batch is fed to the model. No sample

appears in two different batches. After the model is trained on every epoch, it is validated

on the validation set. With this strategy, the model tends to encounter majority species

more often than minority species, making the model robust to majority species since it

Figure 6. Examples of the 21 species in the Chonnam National University (CNU) weeds dataset. The order of species (left to
right, top to bottom) corresponds to the labels (from left to right) in Figure 5.

Appl. Sci. 2021, 11, 3331 7 of 28

Figure 6. Examples of the 21 species in the Chonnam National University (CNU) weeds dataset. The order of species (left

to right, top to bottom) corresponds to the labels (from left to right) in Figure 5.

3.4. Large PlantVillage Dataset

The large PlantVillage dataset is built off of the small PlantVillage dataset, with the

following six data augmentation techniques applied to increase the size of the dataset:

flipping, gamma correction, noise injection, PCA color augmentation, rotation, and scal-

ing. The large PlantVillage dataset has 61,485 images. Figure 7 shows the distribution of

the 39 classes in the large PlantVillage dataset. Like the small PlantVillage dataset, this

dataset is imbalanced, and Orange___Haunglongbing_(Citrus_greening) is the class with

the largest number of images (5507 images). Seventeen classes have the smallest number

of images (1000 images each).

Figure 7. Distribution of classes in the large PlantVillage dataset.

4. Methodology

Given a training set and a DNN model, the conventional training methods first train

the whole training model with several epochs. In each epoch, the samples are randomly

divided into an equal number of batches and each batch is fed to the model. No sample

appears in two different batches. After the model is trained on every epoch, it is validated

on the validation set. With this strategy, the model tends to encounter majority species

more often than minority species, making the model robust to majority species since it

Figure 7. Distribution of classes in the large PlantVillage dataset.

4. Methodology

Given a training set and a DNN model, the conventional training methods first train
the whole training model with several epochs. In each epoch, the samples are randomly
divided into an equal number of batches and each batch is fed to the model. No sample
appears in two different batches. After the model is trained on every epoch, it is validated
on the validation set. With this strategy, the model tends to encounter majority species
more often than minority species, making the model robust to majority species since it
can capture the whole variety of features in the majority samples. Otherwise, the lack of
samples of minority species would make the model less focused and cause difficulties
learning about the general characteristics of these species.

Our proposed strategy (YMufT) solves this problem by dividing the samples in the
training set into multiple folds. Minority species are presented to the model more often
than majority species. The smaller the number of samples, the more times the related
species will be learned. This division strategy reduces the bias of the DNN model towards
the majority species. We define the balance error (BE) to measure the imbalance of the
dataset (Definition 1).

Appl. Sci. 2021, 11, 3331 8 of 27

Definition 1 (Balance Error). A datasetD has c species, and each species yi has ni samples. nmax
and nmin are the largest and smallest number of samples in a species, respectively. We calculate
the Balance Error BE of D using Formula (1) below. The lower the value of BED , the greater the
balance of D.

BED =
nmax − nmin

∑i ni
(1)

Consider the number of samples in a species as a discrete random variable. By this
definition, BECNU of the CNU Weeds dataset is 0.11316. Only five species have more
than the median number of samples (18,974), and the standard deviation around this
median is 12,557.854. In the large PlantVillage dataset, BElPV = 0.0733, and 11 classes have
more samples than the median (1546.5). The standard deviation is 1135.824. In the small
PlantVillage dataset, while BEsPV = 0.0966 > BElPV , only 10 classes have more than the
median number of samples (1618). The standard deviation around this median is 1254.96.
In the PlantSeedlings dataset, BEPS = 0.0920, and five species have more than the median
number of samples (500.5). The standard deviation is 97.62. Considering the uniform
distribution as the standard distribution for a balanced dataset, we can measure the relative
entropy from the distribution of a dataset to the uniform distribution. Equation (2) is the
formula used to calculate the relative entropy from P to Q, where P and Q are two discrete
probability distributions and χ is a set of species in a dataset.

DKL(P ‖ Q) = ∑
x∈χ

P(x) log2

(
P(x)
Q(x)

)
(2)

Assume that P is the probability distribution of a dataset with c species, and Q is a
uniform distribution. We can rewrite (2) to (3).

D(P) = log2(c) + ∑
x∈χ

P(x) log2(P(x)) (3)

Using (3) to calculate the relative entropy of the distribution of a dataset to the uni-
form distribution, we obtain D(PCNU) = 0.5649, D(PlPV) = 0.2597, D(PsPV) = 0.415, and
D(PPS) = 0.0998 corresponding to the CNU Weeds, large PlantVillage, small PlantVil-
lage, and PlantSeedlings datasets, respectively. This shows that the distribution of the
PlantSeedlings dataset is close to uniform, while the CNU Weeds dataset is quite imbal-
anced.

We define a set Y consisting of the number of samples of each species. This set has c
elements, in which the ith element is ni. The notation of the nth maximum and minimum
value in Y is max(Y , n), min(Y , n).

Instead of training the DNN model M directly on D, we create a fold f and train the
model on this fold. Folds are established by randomly collecting min(Y) samples of each
species and placing them in f . However, if the difference ε between the minimum and nth
minimum value in Y is small, then we collect min(Y , n) samples of each species and place
them into f , except we take all samples from a species containing a number of samples
between min(Y , 1) and min(Y , n− 1).

These perceptions lead us to come up with the MCMB procedure to divide samples
into folds. First, we determine Min-Class in Y , which is MCargmin(Y , 1). Then, we form
a set S = {ni ∈ Y : ni ≤ ε + Y [MC]} containing elements in Y that are close to MC and
determine Max-Bound of S, which is MBmax(S). For all species, we take min(MB, ni)
samples of species i in Y and place them in f . In practice, ε is determined by an excess
ratio k ∈ [0, 1] to Y [MC], which is k · Y [MC]. This ratio aims to guarantee that the number
of samples in the “Max-Bound” species cannot be more than 2 times greater than MC to
avoid high imbalance distribution on f .

Algorithm 1 shows the algorithm of the YMufT strategy. The folds division process
proceeds until all samples are being divided. In this process, Atemp is a list containing
non-divided samples, and Y consists of the number of samples in Atemp. The MCMB

Appl. Sci. 2021, 11, 3331 9 of 27

procedure is only applied on Atemp. After establishing the 1st fold, dividable samples
are removed from Atemp. Additionally, all samples in species MC1 are being divided,
so Y [MC2] = 0. In the subsequent division, we select min(Y [i], MB2) samples for each
species i, except species MC2, for which we select min(B[i], MB2) samples from A, where
A is a list containing all samples in D and B is a set containing the number of samples in
species yi in the original training dataset.

Generally, given the dth fold division process, assume the MCMB procedure re-
turns M. We randomly select min(Yd[i], MBd) if species i has non-divided samples or
min(B[i], MBd) if all samples in species i have already been divided. Figure 8 illustrates
the YMufT strategy with five species. With k = 0.5, YMufT divides this data into four folds.

By applying the MCMB procedure, all samples of minority species are divided into
the first few folds. We randomly re-select these samples at the next folds while choosing
non-divided samples of the majority species and appending them to those folds. This
action means that samples of minority species are selected more frequently, and the model
may focus on learning the feature characteristics of those species, hence reducing the degree
of bias toward majority species.

Algorithm 1. Algorithm of the yielding multi-fold training (YMufT) strategy.

YMufT(D, c, k)
input D : A dataset has samples xi with corresponding species yi. c: Number of species in D. k: An excess ratio, k ∈ [0, 1].
output List of folds F

Step 1
Initialize A has c rows, A[i] =

{(
xi

j, yi
j

)∣∣∣xi ∈ yi

}
Initialize B, B[i]← |yi| .
Initialize Atemp ← A, Y ← B, an empty list F .

Step 2

While ∃m ∈ N,Y [m] > 0 do:
Initialize an empty fold fi

MC ← arg
+

min(Y) //Select the species has the smallest positive value in Y .
ε← k · Y [MC] //Determine the maximum possible boundary.
inbou← {Y [·] : Y [·] ≤ ε + Y [MC]} //List of species that lay in the boundary.
MB← max(inbou) //Select the maximum value.

For i1 to c do:
If Y [i] > 0 :

nt = min(Y [i], MB)
Si ⊆ Atemp[i], |Si| = nt //Randomly select nt samples from Atemp[i].

fi.append(Si)
Atemp[i]← Atemp[i]\Si //Delete these nt samples in Atemp[i].
Y [i]← Y [i]− nt

Else:
nt = min(B[i], MB)

Si ⊆ A[i], |Si| = nt //Randomly select nt samples from A[i].
fi.append(Si)

F .append(fi)
Step 3 Return F .

Appl. Sci. 2021, 11, 3331 10 of 28

𝑆𝑖 ⊆ 𝐴temp[𝑖], |𝑆𝑖| = 𝑛𝑡 //Randomly select 𝑛𝑡 samples from 𝐴temp[𝑖].

𝑓𝑖 . append(𝑆𝑖)

𝐴temp[𝑖] ⟵ 𝐴temp[𝑖]\𝑆𝑖 //Delete these 𝑛𝑡 samples in 𝐴temp[𝑖].

𝒴[𝑖] ← 𝒴[𝑖] − 𝑛𝑡

Else:

𝑛𝑡 = min(𝐵[𝑖], 𝑀𝐵)

𝑆𝑖 ⊆ 𝐴[𝑖], |𝑆𝑖| = 𝑛𝑡 //Randomly select 𝑛𝑡 samples from 𝐴[𝑖].

𝑓𝑖 . append(𝑆𝑖)

ℱ. append(𝑓𝑖)

Step 3 Return ℱ.

Figure 8. Illustration of the YMufT strategy, with 𝑘 = 0.5. The original dataset contains 5 species: A, B, C, D, and E.

Assume a list ℱ contains 𝑞 folds. We have the following two definitions:

Definition 2. A training period is when the model trains all 𝑞 folds consecutively from the first

fold 𝑓1 to the last fold 𝑓𝑞.

Definition 3. A training loop is a process in which the model trains a fold on a finite loop.

In the YMufT training strategy, we argue that training a model with 𝛼 loops on 𝑃

periods is not beneficial because the number of samples in each fold is much smaller than

𝑁𝑡𝑟𝑎𝑖𝑛, leading to overfitting if 𝛼 is set too high. After capturing the characteristics of the

samples, the model may converge quickly in later periods, leading to poor generalizabil-

ity. To deal with this problem, we reduce 𝛼 in later periods. We assign a finite sequence
(𝛼𝑘)𝑘=1

𝑃 , indicating the number of training loops 𝛼𝑘 in the 𝑘𝑡ℎ training period, and en-

sure that 𝛼1 ≥ 𝛼2 ≥ ⋯ ≥ 𝛼𝑃. After the completion of 𝑃 training periods, the total num-

ber of times the loading samples are calculated is given by Formula (4)

𝑁𝑌𝑀𝑢𝑓𝑇 = ∑ (𝛼𝑘 ⋅ ∑ (⌊
|𝑓𝑖|

𝑛𝑏
⌋ ⋅ 𝑛𝑏)

𝑞

𝑖=1

)

𝑃

𝑘=1

 (4)

≈ ∑ (𝛼𝑘 ⋅ ∑(|𝑓𝑖|)

𝑞

𝑖=1

)

𝑃

𝑘=1

 (5)

= ∑ 𝛼𝑘

𝑃

𝑘=1

⋅ ∑(|𝑓𝑖|)

𝑞

𝑖=1

 (6)

where 𝑛𝑏 is the number of batches and |𝑓𝑖| indicates the number of samples in fold 𝑓𝑖.

In the conventional training method, if we train the model on 𝒟 for 𝑒𝑝𝑠 epochs and the

Figure 8. Illustration of the YMufT strategy, with k = 0.5. The original dataset contains 5 species: A, B, C, D, and E.

Assume a list F contains q folds. We have the following two definitions:

Appl. Sci. 2021, 11, 3331 10 of 27

Definition 2. A training period is when the model trains all q folds consecutively from the first
fold f1 to the last fold fq.

Definition 3. A training loop is a process in which the model trains a fold on a finite loop.

In the YMufT training strategy, we argue that training a model with α loops on P
periods is not beneficial because the number of samples in each fold is much smaller than
Ntrain, leading to overfitting if α is set too high. After capturing the characteristics of the
samples, the model may converge quickly in later periods, leading to poor generalizability.
To deal with this problem, we reduce α in later periods. We assign a finite sequence (αk)

P
k=1,

indicating the number of training loops αk in the kth training period, and ensure that
α1 ≥ α2 ≥ . . . ≥ αP. After the completion of P training periods, the total number of times
the loading samples are calculated is given by Formula (4)

NYMu f T =
P

∑
k=1

(
αk ·

q

∑
i=1

(⌊
| fi|
nb

⌋
· nb
))

(4)

≈
P

∑
k=1

(
αk ·

q

∑
i=1

(| fi|)
)

(5)

=
P

∑
k=1

αk ·
q

∑
i=1

(| fi|) (6)

where nb is the number of batches and | fi| indicates the number of samples in fold fi. In the
conventional training method, if we train the model on D for eps epochs and the number
of batches is nb, the total number of times the loading samples are calculated is given by
Formula (7).

Nconve =

⌊
|D|
nb

⌋
· nb · eps ≈ |D| · eps (7)

To ensure that the YMufT training strategy results in faster training than conventional
training methods, we solve inequality (8).

NYMu f T ≤ Nconve (8)

⇔
P

∑
k=1

αk ·
q

∑
i=1

(| fi|) ≤ |D| · eps (9)

Since we can determine q, | fi|, |D| and the number of epochs eps used in conventional
training, we only need to define the sequence (αk)

P
k=1 that satisfies inequality (8). If we

choose this sequence as consecutive natural numbers beginning with 1, inequality (8)
becomes

P

∑
k=1

αk ·
q

∑
i=1

(| fi|) ≤ |D| · eps (10)

⇔ P(P + 1)
2

·
q

∑
i=1

(| fi|) ≤ |D| · eps (11)

⇔ P2 + P− 2|D| · eps

∑
q
i=1(| fi|)

≤ 0 (12)

Based on Vieta’s formulas, the left-hand side in inequality (12) has one positive
solution. We select the natural number P ∈

[
1, −1+

√
∆

2

]
to satisfy (8), in which

∆ = 1 +
8|D| · eps

∑
q
i=1(| fi|)

(13)

Appl. Sci. 2021, 11, 3331 11 of 27

To assure the maximum possible value of P is at least 1, we need to solve inequal-
ity (14):

−1 +
√

∆
2

≥ 1 (14)

⇒ 1 +
8|D| · eps

∑
q
i=1(| fi|)

≥ 9 (15)

⇔ eps ≥ ∑
q
i=1(| fi|)
|D| (16)

which means that the number of epochs in a conventional training method must be greater
than or equal to the ratio between the total number of samples in q folds and the total
number of samples in the training set.

5. Experiments
5.1. Performance Metrics

We applied the metrics described in [23] to evaluate the performance of the con-
ventional and YMufT strategies for training of a DNN model on an imbalanced dataset.
Suppose the evaluation dataset D contains m images of c species. Assume Ri ⊂ D is the
set of images classified as species ci, then

• True Positive (TPi): The number of images in Ri that are classified correctly.
• False Positive (FPi): The number of images in Ri that are classified incorrectly.
• False Negative (FNi): The number of images of species ci that are incorrectly classified

as not being ci.

We define the overall performance using four metrics: Accuracy, Precision, Recall, and
F1 score.

• Accuracy: The percentage of images in D that are correctly classified.

Accuracy =
∑c

i=1 TPi

m
(17)

• Precision: The average percentage of images predicted to belong to species ci that are
correctly classified, across all c species.

Precision =
1
c

c

∑
i=1

TPi
TPi + FPi

(18)

• Recall: The average percentage of images in ci that are correctly classified across all
c species.

Recall =
1
c

c

∑
i=1

TPi
TPi + FNi

(19)

• F1 score: The harmonic means of precision and recall. This metric is suitable for
measuring the performance of training strategies on an imbalanced dataset.

F1 score = 2 · Precision · Recall
Precision + Recall

(20)

In addition, we measured precision and recall on every species to estimate the behavior
of minority and majority species.

5.2. Training of DNN Models

We trained the DNN models using the Keras library on an Ubuntu 16.04.5 LTS Linux
server, Intel(R) Core(TM) i9-7900X CPU @ 3.30 GHz, 125 GB RAM. The graphics processing
unit is a 12 GB NVIDIA TITAN V with CUDA 10.1. We selected 3 DNN models for the
experiment. These models have different architectures, and capture species characteristics
in different ways.

Appl. Sci. 2021, 11, 3331 12 of 27

• Mobilenet [38]. This model architecture uses depthwise and pointwise convolution to
learn an object’s features. There are fewer parameters in the model than in traditional
convolution operators. Mobilenet is the lightest of the 3 DNN models. We used
Mobilenet version 1, which has nearly 3.5 million trainable parameters.

• Resnet [39]. This is a deep residual learning model in which a shortcut connection is
added between two blocks of convolutional layers, allowing information from one
layer to flow directly to another layer. We used the 50-layer Resnet model that has
over 24 million trainable parameters.

• NASNet [40]. This model architecture is generated by using Neural Architecture
Search to build a network from the ImageNet dataset. We used the mobile version of
NASNet, which has over 4.5 million trainable parameters.

We applied transfer learning, and used parameters trained on the ImageNet dataset as
the initial parameters to train the model. We fine-tuned all three models by adding a fully
connected layer of length 256, batch normalization, ReLU, and a Softmax layer. The input
RGB image for the three models was 128× 128, normalized to the range [0, 1]. Stochastic
Gradient Descent was used as the optimization method with a learning rate of 0.001. We
applied these model configurations on both strategies to enable a fair comparison between
the conventional and YMufT strategies, except that the batch size varied depending on the
model and dataset. Table 1 show the batch sizes for each model and dataset, which were
applied for both training approaches.

Table 1. Batch size according to model and dataset.

CNU PlantVillage (Large) PlantVillage (Small) PlantSeedlings

Mobilenet 128 32 32 128
Resnet 32 16 16 32

NASNet 16 8 8 16

We evaluated model performance on two small datasets (small PlantVillage and
PlantSeedlings) by applying 5-fold cross-validation and 2 data augmentation techniques,
random rotation, and random zoom. We used the YMufT strategy and divided the training
set into folds. Due to the small number of samples in each fold, we duplicated the images
in each fold four times in PlantSeedlings and three times in the small PlantVillage dataset
to avoided overfitting when training the model using those folds. On two large datasets
(CNU Weeds and large PlantVillage), we randomly selected 60% of each species’ images for
training, 20% for validation, and 20% for testing. We used no data augmentation techniques
in the training set.

We applied a sequence of consecutive numbers (αk)
P
k=1 as the training loop on P

periods, which required us to select a value of P that satisfied inequality (16). Table 2
shows the total number of samples in the folds (2nd column) and the training set (3rd
column) with k = 0.5. The ratio in the 4th column indicates that use of eps ≥ 8 when
training the model in the conventional training method guarantees that P ≥ 1. We trained
the DNN models using the conventional training method on 50 epochs in CNU Weeds
and PlantVillage, and 100 epochs on the PlantSeedlings dataset. We chose the maximum
possible natural number T that satisfies inequality (16), as shown in Table 3.

Table 2. Total number of samples in the folds and training set.

q
∑

i=1
(| fi|) |D| ∑

q
i=1(| fi|)
|D|

CNU 271,713 125,081 2.17
PlantVillage (large) 80,124 36,895 2.17
PlantVillage (small) 329,721 44,360 7.43

PlantSeedlings 28,296 4431 6.39

Appl. Sci. 2021, 11, 3331 13 of 27

Table 3. Number of training periods, P.

CNU PlantVillage (Large) PlantVillage (Small) PlantSeedlings

P 6 6 3 5

In the conventional training method, we validated the model on every epoch. In
YMufT, we made every training loop through all periods. The number of times the model
is validated in YMufT is calculated using expression (21). Table 4 shows the number of
validations in the conventional and YMufT strategies. As shown in this table, the YMufT
strategy required more time to validate the model than the conventional training strategy,
except on the PlantSeedlings dataset.

q · P(P + 1)
2

(21)

Table 4. Number of times the model was validated in the conventional and YMufT strategies.

CNU PlantVillage (Large) PlantVillage (Small) PlantSeedlings

Conventional 50 50 50 100
YMufT 315 231 156 90

5.3. Computational Complexity

Two factors affect the processing time of both approaches: The training and validation
time of the model. Assume that the model finishes training, without validation, at time Tt,
and the time it takes to validate the model is Tv. We estimated the total time T for training
and validation of the model using Formula (22)

T = Tt + vTv (22)

where v is the number of times the model was validated. In the conventional training
method, v equals the number of epochs, while in YMufT, v was calculated using For-
mula (21).

Figure 9 shows the number of times, Tv, the model was validated. Only Resnet on the
CNU Weeds dataset ran faster than Mobilenet. On the other datasets, Mobilenet was the
fastest at validating a model, followed by Resnet and NASNet. Figure 10 compares Tt and
T when training a model using the conventional method and YMufT strategy. In every
case, YMufT required slightly less time to train a model than the conventional method.
However, the increase in the number of validations meant that the YMufT strategy took
more time to complete the training process, except on the PlantSeedlings dataset.

Appl. Sci. 2021, 11, 3331 14 of 28

Table 4. Number of times the model was validated in the conventional and YMufT strategies.

 CNU PlantVillage (Large) PlantVillage (Small) PlantSeedlings

Conventional 50 50 50 100

YMufT 315 231 156 90

5.3. Computational Complexity

Two factors affect the processing time of both approaches: The training and valida-

tion time of the model. Assume that the model finishes training, without validation, at

time 𝑇𝑡, and the time it takes to validate the model is 𝑇𝑣. We estimated the total time 𝑇

for training and validation of the model using Formula (22)

𝑇 = 𝑇𝑡 + 𝑣𝑇𝑣 (22)

where 𝑣 is the number of times the model was validated. In the conventional training

method, 𝑣 equals the number of epochs, while in YMufT, 𝑣 was calculated using For-
mula (21).

Figure 9 shows the number of times, 𝑇𝑣, the model was validated. Only Resnet on the

CNU Weeds dataset ran faster than Mobilenet. On the other datasets, Mobilenet was the

fastest at validating a model, followed by Resnet and NASNet. Figure 10 compares 𝑇𝑡 and

𝑇 when training a model using the conventional method and YMufT strategy. In every

case, YMufT required slightly less time to train a model than the conventional method.

However, the increase in the number of validations meant that the YMufT strategy took

more time to complete the training process, except on the PlantSeedlings dataset.

Figure 9. Total validation time of each of the models on the four different datasets.

Figure 9. Total validation time of each of the models on the four different datasets.

Appl. Sci. 2021, 11, 3331 14 of 27

Appl. Sci. 2021, 11, 3331 14 of 28

Table 4. Number of times the model was validated in the conventional and YMufT strategies.

 CNU PlantVillage (Large) PlantVillage (Small) PlantSeedlings

Conventional 50 50 50 100

YMufT 315 231 156 90

5.3. Computational Complexity

Two factors affect the processing time of both approaches: The training and valida-

tion time of the model. Assume that the model finishes training, without validation, at

time 𝑇𝑡, and the time it takes to validate the model is 𝑇𝑣. We estimated the total time 𝑇

for training and validation of the model using Formula (22)

𝑇 = 𝑇𝑡 + 𝑣𝑇𝑣 (22)

where 𝑣 is the number of times the model was validated. In the conventional training

method, 𝑣 equals the number of epochs, while in YMufT, 𝑣 was calculated using For-
mula (21).

Figure 9 shows the number of times, 𝑇𝑣, the model was validated. Only Resnet on the

CNU Weeds dataset ran faster than Mobilenet. On the other datasets, Mobilenet was the

fastest at validating a model, followed by Resnet and NASNet. Figure 10 compares 𝑇𝑡 and

𝑇 when training a model using the conventional method and YMufT strategy. In every

case, YMufT required slightly less time to train a model than the conventional method.

However, the increase in the number of validations meant that the YMufT strategy took

more time to complete the training process, except on the PlantSeedlings dataset.

Figure 9. Total validation time of each of the models on the four different datasets.

Appl. Sci. 2021, 11, 3331 15 of 28

Figure 10. Comparison of elapsed time between the conventional method and YMufT strategy.

5.4. Results

5.4.1. CNU Weeds Dataset

Figure 11 shows the learning curves of the 3 models trained by the conventional and

YMufT strategies. In contrast to the smooth training curve of the conventional method,

the training curve of YMufT had a sawtooth appearance, which reflected the transitions

between folds. When the model began to converge, sawtooth marks appeared when it

learned features from samples in one fold on a few training loops but then changed to a

new fold with new samples. In this case, the model first showed a drop in performance

but then began generalizing on the next training loop. Notice that later folds contained

many species that already appeared on previous folds, which helped the model not de-

crease in performance to the same extent and made it easier to converge. After a few pe-

riods, the amplitude of each sawtooth was reduced and the model started to converge

throughout many folds.

Figure 10. Comparison of elapsed time between the conventional method and YMufT strategy.

Appl. Sci. 2021, 11, 3331 15 of 27

5.4. Results
5.4.1. CNU Weeds Dataset

Figure 11 shows the learning curves of the 3 models trained by the conventional and
YMufT strategies. In contrast to the smooth training curve of the conventional method,
the training curve of YMufT had a sawtooth appearance, which reflected the transitions
between folds. When the model began to converge, sawtooth marks appeared when it
learned features from samples in one fold on a few training loops but then changed to a
new fold with new samples. In this case, the model first showed a drop in performance but
then began generalizing on the next training loop. Notice that later folds contained many
species that already appeared on previous folds, which helped the model not decrease in
performance to the same extent and made it easier to converge. After a few periods, the
amplitude of each sawtooth was reduced and the model started to converge throughout
many folds.

The model converged at the 10th validation in the conventional strategy; this was
faster than in the YMufT strategy, which required 60 validations to converge. However, as
illustrated by the overall performance scores in Figure 12, use of YMufT led to a higher
F1 score, while the accuracy was approximately the same as that seen with conventional
training. Figure 13 shows a comparison of the precision, recall, and F1 scores by species
between the YMufT and conventional training strategies. In this figure, the species are
arranged in ascending order, based on the ratio of the number of samples in a species to
the maximum number of samples.

On Mobilenet, although YMufT did not have a clear advantage in terms of precision,
it showed improved recall on minority species over the conventional training strategy
while maintaining recall on majority species. Thus, the F1 score slightly increased on
minority species. In Resnet, YMufT showed an advantage in terms of precision over the
conventional training strategy on minority species but remained imprecise in terms of
recall. Still, the F1 score of minority species was slightly better than that of the conventional
training method. In NASNet, although the overall F1 score using YMufT was marginally
higher than that of the conventional strategy, recall on minority species did not improve.
Only precision showed a clear advantage of YMufT on minority species, which resulted in
a slight improvement in F1 score on minority species.

Appl. Sci. 2021, 11, 3331 16 of 28

The model converged at the 10th validation in the conventional strategy; this was

faster than in the YMufT strategy, which required 60 validations to converge. However,

as illustrated by the overall performance scores in Figure 12, use of YMufT led to a higher

F1 score, while the accuracy was approximately the same as that seen with conventional

training. Figure 13 shows a comparison of the precision, recall, and F1 scores by species

between the YMufT and conventional training strategies. In this figure, the species are

arranged in ascending order, based on the ratio of the number of samples in a species to

the maximum number of samples.

On Mobilenet, although YMufT did not have a clear advantage in terms of precision,

it showed improved recall on minority species over the conventional training strategy

while maintaining recall on majority species. Thus, the F1 score slightly increased on

minority species. In Resnet, YMufT showed an advantage in terms of precision over the

conventional training strategy on minority species but remained imprecise in terms of

recall. Still, the F1 score of minority species was slightly better than that of the conven-

tional training method. In NASNet, although the overall F1 score using YMufT was

marginally higher than that of the conventional strategy, recall on minority species did

not improve. Only precision showed a clear advantage of YMufT on minority species,

which resulted in a slight improvement in F1 score on minority species.

 Mobilenet Resnet NASNet

Convention

YMufT

Figure 11. Performance of models trained on the CNU Weeds dataset using the conventional training strategy (upper

row) and the YMufT strategy (lower rows).

Figure 12. Overall performances on the CNU Weeds test set.

Figure 11. Performance of models trained on the CNU Weeds dataset using the conventional training strategy (upper row)
and the YMufT strategy (lower rows).

Appl. Sci. 2021, 11, 3331 16 of 27

Appl. Sci. 2021, 11, 3331 16 of 28

The model converged at the 10th validation in the conventional strategy; this was

faster than in the YMufT strategy, which required 60 validations to converge. However,

as illustrated by the overall performance scores in Figure 12, use of YMufT led to a higher

F1 score, while the accuracy was approximately the same as that seen with conventional

training. Figure 13 shows a comparison of the precision, recall, and F1 scores by species

between the YMufT and conventional training strategies. In this figure, the species are

arranged in ascending order, based on the ratio of the number of samples in a species to

the maximum number of samples.

On Mobilenet, although YMufT did not have a clear advantage in terms of precision,

it showed improved recall on minority species over the conventional training strategy

while maintaining recall on majority species. Thus, the F1 score slightly increased on

minority species. In Resnet, YMufT showed an advantage in terms of precision over the

conventional training strategy on minority species but remained imprecise in terms of

recall. Still, the F1 score of minority species was slightly better than that of the conven-

tional training method. In NASNet, although the overall F1 score using YMufT was

marginally higher than that of the conventional strategy, recall on minority species did

not improve. Only precision showed a clear advantage of YMufT on minority species,

which resulted in a slight improvement in F1 score on minority species.

 Mobilenet Resnet NASNet

Convention

YMufT

Figure 11. Performance of models trained on the CNU Weeds dataset using the conventional training strategy (upper

row) and the YMufT strategy (lower rows).

Figure 12. Overall performances on the CNU Weeds test set.

Figure 12. Overall performances on the CNU Weeds test set.

Appl. Sci. 2021, 11, 3331 17 of 28

Figure 13. Precision, recall, and F1 score by species on the CNU Weeds dataset. The blue bars indicate the ratio between

the number of samples of a species and the maximum number of samples in all species.

5.4.2. Large PlantVillage

The learning curves in Figure 14 show a shorter sawtooth than the CNU Weeds da-

taset because of the lack of variety in samples in the large PlantVillage dataset. In a given

training fold, despite prior knowledge from the previous folds, the samples were not

significantly different, which help the model converge quickly.

As with the CNU Weeds dataset, the model converged on the first few validations

faster than YMufT, which needed 60 validations to converge. Figure 15 shows the out-

standing overall performance of YMufT in Mobilenet. Training Mobilenet in this dataset

using the YMufT strategy resulted in an overall performance that was superior to those of

Resnet and NASNet. The learning curves of the two latter models show more oscillation,

illustrating the difficulty in generalizing sample characteristics in this dataset.

In Figure 16, minority classes showed a slight improvement in precision and recall

using Mobilenet trained by the YMufT strategy. This improvement led to an increase in

F1 score in those classes. In contrast, YMufT showed inappreciable improvement on

minority classes in terms of precision and recall, making the F1 score lower than that of

the conventional training method.

Figure 13. Precision, recall, and F1 score by species on the CNU Weeds dataset. The blue bars indicate the ratio between the
number of samples of a species and the maximum number of samples in all species.

5.4.2. Large PlantVillage

The learning curves in Figure 14 show a shorter sawtooth than the CNU Weeds dataset
because of the lack of variety in samples in the large PlantVillage dataset. In a given training
fold, despite prior knowledge from the previous folds, the samples were not significantly
different, which help the model converge quickly.

Appl. Sci. 2021, 11, 3331 17 of 27
Appl. Sci. 2021, 11, 3331 18 of 28

 Mobilenet Resnet NASNet

Convent.

YMufT

Figure 14. Performance when models were trained on the large PlantVillage dataset, using the conventional training

(upper row) and YMufT strategies (lower rows).

Figure 15. Overall performance on the large PlantVillage test set.

Figure 14. Performance when models were trained on the large PlantVillage dataset, using the conventional training (upper
row) and YMufT strategies (lower rows).

As with the CNU Weeds dataset, the model converged on the first few validations
faster than YMufT, which needed 60 validations to converge. Figure 15 shows the out-
standing overall performance of YMufT in Mobilenet. Training Mobilenet in this dataset
using the YMufT strategy resulted in an overall performance that was superior to those of
Resnet and NASNet. The learning curves of the two latter models show more oscillation,
illustrating the difficulty in generalizing sample characteristics in this dataset.

Appl. Sci. 2021, 11, 3331 18 of 28

 Mobilenet Resnet NASNet

Convent.

YMufT

Figure 14. Performance when models were trained on the large PlantVillage dataset, using the conventional training

(upper row) and YMufT strategies (lower rows).

Figure 15. Overall performance on the large PlantVillage test set.

Figure 15. Overall performance on the large PlantVillage test set.

In Figure 16, minority classes showed a slight improvement in precision and recall
using Mobilenet trained by the YMufT strategy. This improvement led to an increase
in F1 score in those classes. In contrast, YMufT showed inappreciable improvement on
minority classes in terms of precision and recall, making the F1 score lower than that of the
conventional training method.

5.4.3. Small PlantVillage

Figure 17 shows the learning curves of the 3 models trained on the small PlantVillage
dataset. Unlike the large dataset, the validation curves of Resnet and NASNet trained using
the conventional training method showed a large degree of oscillation. Specifically, Resnet
was unable to converge. In contrast, the training and validation curves of the models
trained using the YMufT strategy converged quickly after 20 validation times, which was
faster than those of the models trained using the conventional method. The amplitudes of
the sawtooth markings were also smaller than those on the large dataset.

Appl. Sci. 2021, 11, 3331 18 of 27

Appl. Sci. 2021, 11, 3331 18 of 28

 Mobilenet Resnet NASNet

Convent.

YMufT

Figure 14. Performance when models were trained on the large PlantVillage dataset, using the conventional training

(upper row) and YMufT strategies (lower rows).

Figure 15. Overall performance on the large PlantVillage test set.

Appl. Sci. 2021, 11, 3331 19 of 28

Figure 16. Precision, recall, and F1 score on each class in the large PlantVillage dataset. The blue bars indicate the ratio of

the number of samples of a class to the maximum number of samples in all classes.

5.4.3. Small PlantVillage

Figure 17 shows the learning curves of the 3 models trained on the small PlantVillage

dataset. Unlike the large dataset, the validation curves of Resnet and NASNet trained using

the conventional training method showed a large degree of oscillation. Specifically, Resnet

was unable to converge. In contrast, the training and validation curves of the models

trained using the YMufT strategy converged quickly after 20 validation times, which was

faster than those of the models trained using the conventional method. The amplitudes of

the sawtooth markings were also smaller than those on the large dataset.

Figure 18 shows the average overall performance on 5-fold cross-validation. The

performance of the model trained using YMufT was far superior to that of the model

trained using the conventional training strategy. In general, Mobilenet and Resnet

showed good performance on this dataset. As shown in Figure 19, all three models

showed high precision, recall, and F1 scores in most minority classes when the models

were trained those models using the YMufT strategy.

 Mobilenet Resnet NASNet

Convent.

YMufT

Figure 17. Performance of models trained on the small PlantVillage dataset, using the conventional training (upper row)

and YMufT strategies (lower rows).

Figure 16. Precision, recall, and F1 score on each class in the large PlantVillage dataset. The blue bars indicate the ratio of
the number of samples of a class to the maximum number of samples in all classes.

Appl. Sci. 2021, 11, 3331 19 of 28

Figure 16. Precision, recall, and F1 score on each class in the large PlantVillage dataset. The blue bars indicate the ratio of

the number of samples of a class to the maximum number of samples in all classes.

5.4.3. Small PlantVillage

Figure 17 shows the learning curves of the 3 models trained on the small PlantVillage

dataset. Unlike the large dataset, the validation curves of Resnet and NASNet trained using

the conventional training method showed a large degree of oscillation. Specifically, Resnet

was unable to converge. In contrast, the training and validation curves of the models

trained using the YMufT strategy converged quickly after 20 validation times, which was

faster than those of the models trained using the conventional method. The amplitudes of

the sawtooth markings were also smaller than those on the large dataset.

Figure 18 shows the average overall performance on 5-fold cross-validation. The

performance of the model trained using YMufT was far superior to that of the model

trained using the conventional training strategy. In general, Mobilenet and Resnet

showed good performance on this dataset. As shown in Figure 19, all three models

showed high precision, recall, and F1 scores in most minority classes when the models

were trained those models using the YMufT strategy.

 Mobilenet Resnet NASNet

Convent.

YMufT

Figure 17. Performance of models trained on the small PlantVillage dataset, using the conventional training (upper row)

and YMufT strategies (lower rows).

Figure 17. Performance of models trained on the small PlantVillage dataset, using the conventional training (upper row)
and YMufT strategies (lower rows).

Figure 18 shows the average overall performance on 5-fold cross-validation. The
performance of the model trained using YMufT was far superior to that of the model
trained using the conventional training strategy. In general, Mobilenet and Resnet showed
good performance on this dataset. As shown in Figure 19, all three models showed high

Appl. Sci. 2021, 11, 3331 19 of 27

precision, recall, and F1 scores in most minority classes when the models were trained
those models using the YMufT strategy.

Appl. Sci. 2021, 11, 3331 20 of 28

Figure 18. Average overall performance of 5-fold cross-validation on the small PlantVillage dataset.

Figure 19. Precision, recall, and F1 score on each class in the small PlantVillage dataset. The blue bars indicate the ratio of

the number of samples of a class to the maximum number of samples in all classes.

5.4.4. PlantSeedlings Dataset

The learning curves in Figure 20 show that both the YMufT and conventional

training strategies helped the models converge quickly. In contrast, the validation curves

of models trained using YMufT converged at the first few validation times, except that

NASNet suffered from overfitting before the 30th validation, then quickly converged

later. Like on the small PlantVillage dataset, in Figure 21, YMufT was better than the

conventional training method in terms of accuracy, precision, recall, and F1 score. In

Figure 22, in most cases, use of YMufT served to increase precision, recall, and F1 score in

both minority and majority species.

Figure 18. Average overall performance of 5-fold cross-validation on the small PlantVillage dataset.

Appl. Sci. 2021, 11, 3331 20 of 28

Figure 18. Average overall performance of 5-fold cross-validation on the small PlantVillage dataset.

Figure 19. Precision, recall, and F1 score on each class in the small PlantVillage dataset. The blue bars indicate the ratio of

the number of samples of a class to the maximum number of samples in all classes.

5.4.4. PlantSeedlings Dataset

The learning curves in Figure 20 show that both the YMufT and conventional

training strategies helped the models converge quickly. In contrast, the validation curves

of models trained using YMufT converged at the first few validation times, except that

NASNet suffered from overfitting before the 30th validation, then quickly converged

later. Like on the small PlantVillage dataset, in Figure 21, YMufT was better than the

conventional training method in terms of accuracy, precision, recall, and F1 score. In

Figure 22, in most cases, use of YMufT served to increase precision, recall, and F1 score in

both minority and majority species.

Figure 19. Precision, recall, and F1 score on each class in the small PlantVillage dataset. The blue bars indicate the ratio of
the number of samples of a class to the maximum number of samples in all classes.

5.4.4. PlantSeedlings Dataset

The learning curves in Figure 20 show that both the YMufT and conventional training
strategies helped the models converge quickly. In contrast, the validation curves of models
trained using YMufT converged at the first few validation times, except that NASNet
suffered from overfitting before the 30th validation, then quickly converged later. Like
on the small PlantVillage dataset, in Figure 21, YMufT was better than the conventional
training method in terms of accuracy, precision, recall, and F1 score. In Figure 22, in most
cases, use of YMufT served to increase precision, recall, and F1 score in both minority and
majority species.

Appl. Sci. 2021, 11, 3331 20 of 27
Appl. Sci. 2021, 11, 3331 21 of 28

 Mobilenet Resnet NASNet

Convent.

YMufT

Figure 20. Performance of models trained on the PlantSeedlings dataset, using conventional training (upper row) and

YMufT strategies (lower rows).

Figure 21. Average overall performance of 5-fold cross-validation on the PlantSeedlings dataset.

Figure 20. Performance of models trained on the PlantSeedlings dataset, using conventional training (upper row) and
YMufT strategies (lower rows).

Appl. Sci. 2021, 11, 3331 21 of 28

 Mobilenet Resnet NASNet

Convent.

YMufT

Figure 20. Performance of models trained on the PlantSeedlings dataset, using conventional training (upper row) and

YMufT strategies (lower rows).

Figure 21. Average overall performance of 5-fold cross-validation on the PlantSeedlings dataset.

Figure 21. Average overall performance of 5-fold cross-validation on the PlantSeedlings dataset.

5.5. Analysis

Generally, on large datasets (CNU Weeds and large PlantVillage), training a model
using the YMufT strategy rather than the conventional training method made the validation
slower to converge. Still, the overall F1 score and the score on minor species improved,
while the F1 score was maintained on major species. Of the three models, NASNet achieved
the best performance on the CNU Weeds dataset, while Mobilenet was the optimal solution
on the large PlantVillage dataset.

On small datasets (small PlantVillage and PlantSeedlings), the models trained using
the YMufT strategy were faster to converge on validation than those trained using the
conventional training method. Furthermore, using the YMufT strategy, the overall perfor-
mance of the models and the performance on minor species were significantly improved
in comparison to the performance of the models trained using the conventional training
method. Mobilenet and Resnet were the optimal models on the small PlantVillage dataset,
and Resnet achieved the highest performance on the PlantSeedlings dataset.

Table 5 compares the YMufT strategy to other methods. On the CNU Weeds dataset,
the NASNet model trained using the YMufT strategy showed slightly lower performance
than the other 2 DNN models. On the large PlantVillage dataset, Mobilenet trained us-
ing YMufT was the optimal solution. On the two small datasets, DNN models trained
using YMufT were superior to other methods. The optimal models on the small PlantVil-
lage dataset were Mobilenet and Resnet. Resnet was also the optimal model on the
PlantSeedlings dataset.

Appl. Sci. 2021, 11, 3331 21 of 27

Appl. Sci. 2021, 11, 3331 21 of 28

 Mobilenet Resnet NASNet

Convent.

YMufT

Figure 20. Performance of models trained on the PlantSeedlings dataset, using conventional training (upper row) and

YMufT strategies (lower rows).

Figure 21. Average overall performance of 5-fold cross-validation on the PlantSeedlings dataset.

Appl. Sci. 2021, 11, 3331 22 of 28

Figure 22. Precision, recall, and F1 score on each species in the PlantSeedlings dataset. The blue bars indicate the ratio of

the number of samples of a species to the maximum number of samples in all species.

5.5. Analysis

Generally, on large datasets (CNU Weeds and large PlantVillage), training a model

using the YMufT strategy rather than the conventional training method made the vali-

dation slower to converge. Still, the overall F1 score and the score on minor species im-

proved, while the F1 score was maintained on major species. Of the three models,

NASNet achieved the best performance on the CNU Weeds dataset, while Mobilenet was

the optimal solution on the large PlantVillage dataset.

On small datasets (small PlantVillage and PlantSeedlings), the models trained using

the YMufT strategy were faster to converge on validation than those trained using the

conventional training method. Furthermore, using the YMufT strategy, the overall per-

formance of the models and the performance on minor species were significantly im-

proved in comparison to the performance of the models trained using the conventional

training method. Mobilenet and Resnet were the optimal models on the small PlantVil-

lage dataset, and Resnet achieved the highest performance on the PlantSeedlings dataset.

Table 5 compares the YMufT strategy to other methods. On the CNU Weeds dataset, the

NASNet model trained using the YMufT strategy showed slightly lower performance than

the other 2 DNN models. On the large PlantVillage dataset, Mobilenet trained using YMufT

was the optimal solution. On the two small datasets, DNN models trained using YMufT

were superior to other methods. The optimal models on the small PlantVillage dataset were

Mobilenet and Resnet. Resnet was also the optimal model on the PlantSeedlings dataset.

Figure 23 compares the number of images that were correctly classified using the

conventional training method but incorrectly classified using YMufT (CtYf) and vice

versa (CfYt). In all cases, use of YMufT effectively enhanced the models’ ability to classify

images in both minor and major species.

Table 5. Performance comparison between the YMufT strategy and other methods.

Dataset Method Accuracy Precision Recall F1 Score

CNU

YMufT, Mobilenet 0.9673 0.9602 0.9583 0.9591

YMufT, Resnet 0.9795 0.9720 0.9681 0.9698

YMufT, NASNet 0.9802 0.9721 0.9698 0.9708

2 models, product rule [23] 0.9844 0.9725 0.9768 0.9746

Large PlantVillage

YMufT, Mobilenet 0.9942 0.9930 0.9926 0.9928

YMufT, Resnet 0.9937 0.9921 0.9918 0.9919

YMufT, NASNet 0.9927 0.9910 0.9918 0.9914

Convention, Mobilenet 0.9922 0.9898 0.9902 0.9900

Convention, Resnet 0.9938 0.9925 0.9918 0.9921

Convention, NASNet 0.9937 0.9923 0.9920 0.9921

Small PlantVillage

YMufT, Mobilenet 0.9981 0.9970 0.9971 0.9970

YMufT, Resnet 0.9979 0.9967 0.9973 0.9970

YMufT, NASNet 0.9965 0.9944 0.9955 0.9949

SE-MobileNet [28] 0.9978 - - -

Resnet50 [29] 0.9959 - - -

DenseNet [29] 0.9975 - - -

Figure 22. Precision, recall, and F1 score on each species in the PlantSeedlings dataset. The blue bars indicate the ratio of the
number of samples of a species to the maximum number of samples in all species.

Table 5. Performance comparison between the YMufT strategy and other methods.

Dataset Method Accuracy Precision Recall F1 Score

CNU

YMufT, Mobilenet 0.9673 0.9602 0.9583 0.9591
YMufT, Resnet 0.9795 0.9720 0.9681 0.9698
YMufT, NASNet 0.9802 0.9721 0.9698 0.9708
2 models, product rule [23] 0.9844 0.9725 0.9768 0.9746

Large PlantVillage

YMufT, Mobilenet 0.9942 0.9930 0.9926 0.9928
YMufT, Resnet 0.9937 0.9921 0.9918 0.9919
YMufT, NASNet 0.9927 0.9910 0.9918 0.9914
Convention, Mobilenet 0.9922 0.9898 0.9902 0.9900
Convention, Resnet 0.9938 0.9925 0.9918 0.9921
Convention, NASNet 0.9937 0.9923 0.9920 0.9921

Small PlantVillage

YMufT, Mobilenet 0.9981 0.9970 0.9971 0.9970
YMufT, Resnet 0.9979 0.9967 0.9973 0.9970
YMufT, NASNet 0.9965 0.9944 0.9955 0.9949
SE-MobileNet [28] 0.9978 - - -
Resnet50 [29] 0.9959 - - -
DenseNet [29] 0.9975 - - -
ReLU [30] 0.9960 - - -
GoogleNet, transfer learning [31] 0.9935 0.9935 0.9935 0.9934
ResNet34, deep [32] 0.9967 - - -
Inception_v3 [32] 0.9976 - - -

Appl. Sci. 2021, 11, 3331 22 of 27

Table 5. Cont.

Dataset Method Accuracy Precision Recall F1 Score

PlantSeedlings

YMufT, Mobilenet 0.9637 0.9614 0.9587 0.9596
YMufT, Resnet 0.9718 0.9713 0.9672 0.9689
YMufT, NASNet 0.9682 0.9665 0.9643 0.9652
3 models, weighted linear
Combination (per-species) [23] 0.9704 0.9706 0.9659 0.9683

AgroAVNET 12 species [24] 0.9364 0.9300 0.9400 0.9300
ResNet-50 [25] 0.9621 0.9525 0.9583 0.9542
CFMNN [26] 0.9110 - - -
ResNet 50 [27] 0.9523 0.9500 0.9500 0.9500
MobileNetV2 [28] 0.9350 0.9400 0.9400 0.9300

Figure 23 compares the number of images that were correctly classified using the
conventional training method but incorrectly classified using YMufT (CtYf) and vice versa
(CfYt). In all cases, use of YMufT effectively enhanced the models’ ability to classify images
in both minor and major species.

Appl. Sci. 2021, 11, 3331 23 of 28

ReLU [30] 0.9960 - - -

GoogleNet, transfer learning [31] 0.9935 0.9935 0.9935 0.9934

ResNet34, deep [32] 0.9967 - - -

Inception_v3 [32] 0.9976 - - -

PlantSeedlings

YMufT, Mobilenet 0.9637 0.9614 0.9587 0.9596

YMufT, Resnet 0.9718 0.9713 0.9672 0.9689

YMufT, NASNet 0.9682 0.9665 0.9643 0.9652

3 models, weighted linear Combination

(per-species) [23]
0.9704 0.9706 0.9659 0.9683

AgroAVNET 12 species [24] 0.9364 0.9300 0.9400 0.9300

ResNet-50 [25] 0.9621 0.9525 0.9583 0.9542

CFMNN [26] 0.9110 - - -

ResNet 50 [27] 0.9523 0.9500 0.9500 0.9500

MobileNetV2 [28] 0.9350 0.9400 0.9400 0.9300

Figure 23. Number of images that were correctly classified using conventional training method but incorrectly classified

using YMufT (CtYf), and vice versa (CfYt).

To further explore the effectiveness of YMufT, we applied Grad-CAM [41] to visualize

the behavior of the models trained by the conventional method and YMufT strategy. Figure

24 shows examples of images that were incorrectly predicted by the models trained with the

conventional method but correctly classified by those trained using YMufT. On the CNU

Weeds dataset, YMufT helped the models focus on the leaf surface, while conventional

training was more focused on high-level features. Specifically, for the species Veronica persica

Poir. and Amaranthus powellii S.Watson, conventional training focused on the lower curve

Figure 23. Number of images that were correctly classified using conventional training method but incorrectly classified
using YMufT (CtYf), and vice versa (CfYt).

To further explore the effectiveness of YMufT, we applied Grad-CAM [41] to visualize
the behavior of the models trained by the conventional method and YMufT strategy.
Figure 24 shows examples of images that were incorrectly predicted by the models trained

Appl. Sci. 2021, 11, 3331 23 of 27

with the conventional method but correctly classified by those trained using YMufT. On the
CNU Weeds dataset, YMufT helped the models focus on the leaf surface, while conventional
training was more focused on high-level features. Specifically, for the species Veronica persica
Poir. and Amaranthus powellii S.Watson, conventional training focused on the lower curve
position, while YMufT concentrated on leaf veins and leaf blades. A similar phenomenon
also occurred on Ambrosia artemisiifolia L., Ipomoea coccinea L., and Chenopodium album L.
species. The only image from Chenopodium ficifolium Smith contains overlapping leaves, so
the YMufT strategy guided the model to localized areas around leaf centroids, while the
conventional training method focused on a lower region. Similar things happened on the
large PlantVillage dataset, such as for images of Cherry___healthy, Tomato___Late_blight,
Tomato___Bacterial_spot, Apple___Apple_scab, and Potato___Early_blight. For one image
of Pepper,_bell___Bacterial_spot, both methods focused on the leaf surface, but the YMufT
strategy mainly concentrated on the petiole region. Generally, on large datasets, YMufT
helped the model focus on the leaf surface to capture essential low-level features. In
contrast, the conventional training method focused on high-level features such as leaf
curves, which may not be significant in terms of species characteristics.

Appl. Sci. 2021, 11, 3331 24 of 28

position, while YMufT concentrated on leaf veins and leaf blades. A similar phenomenon

also occurred on Ambrosia artemisiifolia L., Ipomoea coccinea L., and Chenopodium album L. spe-

cies. The only image from Chenopodium ficifolium Smith contains overlapping leaves, so the

YMufT strategy guided the model to localized areas around leaf centroids, while the con-

ventional training method focused on a lower region. Similar things happened on the large

PlantVillage dataset, such as for images of Cherry___healthy, Tomato___Late_blight, Toma-

to___Bacterial_spot, Apple___Apple_scab, and Potato___Early_blight. For one image of

Pepper,_bell___Bacterial_spot, both methods focused on the leaf surface, but the YMufT

strategy mainly concentrated on the petiole region. Generally, on large datasets, YMufT

helped the model focus on the leaf surface to capture essential low-level features. In contrast,

the conventional training method focused on high-level features such as leaf curves, which

may not be significant in terms of species characteristics.

In contrast, both the conventional training and YMufT strategies concentrated on the

surfaces in images in the small PlantVillage dataset. Still, the heatmap color shown in Pota-

to___healthy, Apple___Cedar_apple_rust, and Tomato___Leaf_Mold indicated that YMufT

made the model pay more attention to the local area in the surface and reduced its attention

to patterns in the background. Other images show that the two methods displayed different

feature localization behavior. The conventional training method focused on the wide region

in the middle of the leaf in Corn___ Cercospora_leaf_spot Gray_leaf_spot, but the YMufT

strategy looked at micro-characteristics towards the top. In Corn___Northern_Leaf_Blight,

the small region near the middle was not sufficient to classify this image, so YMufT extended

the region towards both sides to collect additional essential features. Consider Pota-

to___Late_blight image: although both methods focused on the left half of the image, the

conventional method mainly focused on the upper and lower curve, while YMufT consid-

ered the inner region to capture essential features. In the PlantSeedlings dataset, low-quality

images, as well as the small shapes of parts of the weeds, meant that the model trained by the

conventional method suffered from difficulty in localizing the target weeds. This was true for

images of maize, black-grass, charlock, and sugar beet. However, the YMufT strategy guided

the model so that it localized the target properly, which increased the model’s performance.

Examples include images of common wheat and cleavers.

Dataset Model Original Convention YMufT Original Convention YMufT

CNU

Mobilenet

Veronica persica Poir. Amaranthus powellii S.Watson

Resnet

Ambrosia artemisiifolia L. Chenopodium ficifolium Smith

NASNet

Ipomoea coccinea L. Chenopodium album L.

large

PlantVillage
Mobilenet

Figure 24. Cont.

Appl. Sci. 2021, 11, 3331 24 of 27
Appl. Sci. 2021, 11, 3331 25 of 28

Cherry___healthy Tomato___Late_blight

Resnet

Pepper,_bell___Bacterial_spot Tomato___Bacterial_spot

NASNet

Apple___Apple_scab Potato___Early_blight

small

PlantVillage

Mobilenet

Potato___healthy Apple___Cedar_apple_rust

Resnet

Corn___Cercospora_leaf_spot Gray_leaf_spot Tomato___Leaf_Mold

NASNet

Corn___Northern_Leaf_Blight Potato___Late_blight

PlantSeedlings

Mobilenet

Common wheat Maize

Resnet

Black-grass Charlock

NASNet

Cleavers Sugar beet

Figure 24. Grad-CAM visualization of models trained by the conventional method and YMufT strategy. The original

images were misclassified using the conventional method but classified correctly using YMufT. Below each original im-

age is the species name.

Figure 24. Grad-CAM visualization of models trained by the conventional method and YMufT strategy. The original images
were misclassified using the conventional method but classified correctly using YMufT. Below each original image is the
species name.

Appl. Sci. 2021, 11, 3331 25 of 27

In contrast, both the conventional training and YMufT strategies concentrated on the
surfaces in images in the small PlantVillage dataset. Still, the heatmap color shown in
Potato___healthy, Apple___Cedar_apple_rust, and Tomato___Leaf_Mold indicated that
YMufT made the model pay more attention to the local area in the surface and reduced
its attention to patterns in the background. Other images show that the two methods
displayed different feature localization behavior. The conventional training method fo-
cused on the wide region in the middle of the leaf in Corn___ Cercospora_leaf_spot
Gray_leaf_spot, but the YMufT strategy looked at micro-characteristics towards the top.
In Corn___Northern_Leaf_Blight, the small region near the middle was not sufficient to
classify this image, so YMufT extended the region towards both sides to collect additional
essential features. Consider Potato___Late_blight image: although both methods focused
on the left half of the image, the conventional method mainly focused on the upper and
lower curve, while YMufT considered the inner region to capture essential features. In
the PlantSeedlings dataset, low-quality images, as well as the small shapes of parts of the
weeds, meant that the model trained by the conventional method suffered from difficulty
in localizing the target weeds. This was true for images of maize, black-grass, charlock,
and sugar beet. However, the YMufT strategy guided the model so that it localized the
target properly, which increased the model’s performance. Examples include images of
common wheat and cleavers.

6. Conclusions

In this work, we presented YMufT, a strategy for training DNN models on imbalanced
datasets. Given an imbalanced dataset, YMufT divides the training set into multiple folds,
and the model trains these folds consecutively. We proposed an MCMB procedure to
divide samples from the training set into folds such that the model is trained on minority
species more often than majority species, thus reducing the bias toward majority species.
We developed a formula to determine the numbers of training loops and training periods.
The number of times training samples are loaded in the YMufT strategy is smaller or
approximately the same as that for the conventional training method. We used a sequence
of decreasing consecutive natural numbers, starting with the number of the training period,
as the number of training loops.

We experimented with our strategy on two large datasets (CNU and large PlantVillage)
and two small datasets (small PlantVillage and PlantSeedlings). Without considering
validation times that can be changed on purpose, on all types of weeds datasets, training
of the model using the YMufT strategy was faster than training using the conventional
training method. Despite a slight reduction in accuracy, YMufT produced an increase in the
overall F1 score and the F1 score on minor species on the in-the-wild CNU weeds dataset
(a large dataset). The F1 score was 0.9708 using the NASNet model. Similar results were
obtained on the plain large PlantVillage weeds dataset, for which Mobilenet showed the
best performance in terms of both accuracy (0.9942) and F1 score (0.9928). Use of YMufT
to train DNN models on small datasets results in better model performance than use of
conventional training methods. Mobilenet and Resnet were the optimal solutions for the
plain small PlantVillage weeds dataset, with an accuracy of 0.9981 and F1 score of 0.9970
for Mobilenet, and an accuracy of 0.9979 and F1 score of 0.9970 for Resnet. Resnet was also
the best-performing model on the in-the-wild PlantSeedlings dataset, with an accuracy of
0.9718 and an F1 score of 0.9689.

We used Grad-CAM to visualize and analyze the models’ behavior on large datasets.
YMufT guided the model to focus on learning essential features on the leaf surfaces, while
conventional training method led the model to pay attention to high-level features such as
leaf curves or leaf centroids, which might be insufficient to describe species characteristics.
On the small PlantVillage weeds dataset, both approaches concentrated on the leaf surface.
Still, YMufT made the model pay more attention to the local area on the surface and
reduced capture of patterns in the background. On the PlantSeedlings dataset, YMufT
guided the model to properly localize the weeds targets.

Appl. Sci. 2021, 11, 3331 26 of 27

Author Contributions: Conceptualization: P.T.B.; methodology: P.T.B., coding: V.H.T.; validation:
V.H.T.; formal analysis: P.T.B. and K.J.Y.; investigation: V.H.T.; writing: V.H.T., writing review: P.T.B.
and K.J.Y.; supervision: P.T.B. and K.J.Y.; project administration: K.J.Y., funding acquisition: K.J.Y.
and Y.G.H., Data curation (CNU dataset): Y.G.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the “Cooperative Research Program for Agriculture Sci-
ence and Technology Development (Project No. PJ01385501),” Rural Development Administration,
Republic of Korea.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: PlantVillage (large and small) [37], available at https://data.mendeley.
com/datasets/tywbtsjrjv/1 (accessed on 6 April 2021). PlantSeedlings [36], available at https:
//vision.eng.au.dk/plant-seedlings-dataset/ (accessed on 6 April 2021).

Acknowledgments: This work was carried out with the support of the “Cooperative Research
Program for Agriculture Science and Technology Development (Project No. PJ01385501),” Rural
Development Administration, Republic of Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maeda-Gutiérrez, V.; Galván-Tejada, C.E.; Zanella-Calzada, L.A.; Celaya-Padilla, J.M.; Galván-Tejada, J.I.; Gamboa-Rosales, H.;

Luna-García, H.; Magallanes-Quintanar, R.; Guerrero Méndez, C.A.; Olvera-Olvera, C.A. Comparison of Convolutional Neural
Network Architectures for Classification of Tomato Plant Diseases. Appl. Sci. 2020, 10, 1245. [CrossRef]

2. Shang, G.; Liu, G.; Zhu, P.; Han, J.; Xia, C.; Jiang, K. A Deep Residual U-Type Network for Semantic Segmentation of Orchard
Environments. Appl. Sci. 2021, 11, 322. [CrossRef]

3. Oh, S.-j.; Jung, M.-j.; Lim, C.; Shin, S.-c. Automatic Detection of Welding Defects Using Faster R-CNN. Appl. Sci. 2020, 10, 8629.
[CrossRef]

4. Cinbis, R.G.; Verbeek, J.; Schmid, C. Multi-fold mil training for weakly supervised object localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014.

5. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks.
Neural Netw. 2018, 106, 249–259. [CrossRef]

6. He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [CrossRef]
7. López, V.; Fernández, A.; García, S.; Palade, V.; Herrera, F. An insight into classification with imbalanced data: Empirical results

and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250, 113–141. [CrossRef]
8. Prati, R.C.; Batista, G.E.; Silva, D.F. Class imbalance revisited: A new experimental setup to assess the performance of treatment

methods. Knowl. Inf. Syst. 2015, 45, 247–270. [CrossRef]
9. Burnaev, E.; Erofeev, P.; Papanov, A. Influence of resampling on accuracy of imbalanced classification. Eighth Int. Conf. Mach. Vis.

2015, 9875, 987521. [CrossRef]
10. Cao, K.; Wei, C.; Gaidon, A.; Arechiga, N.; Ma, T. Learning imbalanced datasets with la-bel-distribution-aware margin loss. In

Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.
11. Chawla, N.V. Data mining for imbalanced datasets: An overview. In Data Mining and Knowledge Discovery Handbook; Springer:

Boston, MA, USA, 2009; pp. 875–886.
12. Zhang, C.; Tan, K.C.; Li, H.; Hong, G.S. A Cost-Sensitive Deep Belief Network for Imbalanced Classification. IEEE Trans. Neural

Netw. Learn. Syst. 2018, 30, 109–122. [CrossRef]
13. González, S.; García, S.; Li, S.T.; Herrera, F. Chain based sampling for monotonic imbalanced classifica-tion. Inf. Sci. 2019, 474,

187–204. [CrossRef]
14. Liu, Y.; Wang, Y.; Ren, X.; Zhou, H.; Diao, X. A classification method based on feature selection for imbalanced data. IEEE Access

2019, 7, 81794–81807. [CrossRef]
15. Shu, J.; Xie, Q.; Yi, L.; Zhao, Q.; Zhou, S.; Xu, Z.; Meng, D. Meta-weight-net: Learning an explicit mapping for sample weighting.

In Advances in Neural Information Processing Systems; Springer: Boston, MA, USA, 2019; pp. 1919–1930.
16. Nejatian, S.; Parvin, H.; Faraji, E. Using sub-sampling and ensemble clustering techniques to improve per-formance of imbalanced

classification. Neurocomputing 2018, 276, 55–66. [CrossRef]
17. Kang, Q.; Shi, L.; Zhou, M.; Wang, X.; Wu, Q.; Wei, Z. A Distance-Based Weighted Undersampling Scheme for Support Vector

Machines and its Application to Imbalanced Classification. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4152–4165. [CrossRef]
18. Lemnaru, C.; Potolea, R. Imbalanced classification problems: Systematic study, issues and best practices. Int. Conf. Enterp. Inf.

Syst. 2011, 102, 35–50.

https://data.mendeley.com/datasets/tywbtsjrjv/1
https://data.mendeley.com/datasets/tywbtsjrjv/1
https://vision.eng.au.dk/plant-seedlings-dataset/
https://vision.eng.au.dk/plant-seedlings-dataset/
http://doi.org/10.3390/app10041245
http://doi.org/10.3390/app11010322
http://doi.org/10.3390/app10238629
http://doi.org/10.1016/j.neunet.2018.07.011
http://doi.org/10.1109/tkde.2008.239
http://doi.org/10.1016/j.ins.2013.07.007
http://doi.org/10.1007/s10115-014-0794-3
http://doi.org/10.1117/12.2228523
http://doi.org/10.1109/TNNLS.2018.2832648
http://doi.org/10.1016/j.ins.2018.09.062
http://doi.org/10.1109/ACCESS.2019.2923846
http://doi.org/10.1016/j.neucom.2017.06.082
http://doi.org/10.1109/TNNLS.2017.2755595

Appl. Sci. 2021, 11, 3331 27 of 27

19. Jia, F.; Lei, Y.; Lu, N.; Xing, S. Deep normalized convolutional neural network for imbalanced fault classifi-cation of machinery
and its understanding via visualization. Mech. Syst. Signal. Process. 2018, 110, 349–367. [CrossRef]

20. Dong, Q.; Gong, S.; Zhu, X. Imbalanced deep learning by minority class incremental rectification. IEEE Trans. Pattern Anal. Mach.
Intell. 2018, 41, 1367–1381. [CrossRef] [PubMed]

21. Mullick, S.S.; Datta, S.; Das, S. Generative Adversarial Minority Oversampling. In Proceedings of the IEEE International
Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1695–1704.

22. Lin, E.; Chen, Q.; Qi, X. Deep reinforcement learning for imbalanced classification. Appl. Intell. 2020, 50, 2488–2502. [CrossRef]
23. Trong, V.H.; Gwang-Hyun, Y.; Vu, D.T.; Jin-Young, K. Late fusion of multimodal deep neural networks for weeds classification.

Comput. Electron. Agric. 2020, 175, 105506. [CrossRef]
24. Chavan, T.R.; Nandedkar, A.V. AgroAVNET for crops and weeds classification: A step forward in auto-matic farming. Comput.

Electron. Agric. 2018, 154, 361–372. [CrossRef]
25. Rahman, N.R.; Hasan, A.M.; Shin, J. Performance Comparison of Different Convolutional Neural Network Architectures for Plant

Seedling Classification. In Proceedings of the 2020 2nd International Conference on Advanced Information and Communication
Technology (ICAICT), Dhaka, Bangladesh, 28–29 November 2020.

26. Chavan, T.R.; Nandedkar, A.V. A convolutional fuzzy min-max neural network. Neurocomputing 2020, 405, 62–71. [CrossRef]
27. Gupta, K.; Rani, R.; Bahia, N.K. Plant-Seedling Classification Using Transfer Learning-Based Deep Con-volutional Neural

Networks. Int. J. Agric. Environ. Inf. Syst. 2020, 11, 25–40. [CrossRef]
28. Chen, J.; Zhang, D.; Suzauddola, M.; Nanehkaran, Y.A.; Sun, Y. Identification of plant disease images via a squeeze-and-excitation

MobileNet model and twice transfer learning. IET Image Process. 2021, 15, 1115–1127. [CrossRef]
29. Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease

identification. Comput. Electron. Agric. 2019, 161, 272–279. [CrossRef]
30. Too, E.C.; Yujian, L.; Gadosey, P.K.; Njuki, S.; Essaf, F. Performance analysis of nonlinear activation func-tion in convolution

neural network for image classification. Int. J. Comput. Sci. Eng. 2020, 21, 522–535.
31. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016, 7,

1419. [CrossRef] [PubMed]
32. Brahimi, M.; Arsenovic, M.; Laraba, S.; Sladojevic, S.; Boukhalfa, K.; Moussaoui, A. Deep Learning for Plant Diseases: Detection

and Saliency Map Visualisation. In Human and Machine Learning, Human–Computer Interaction Series; Springer: Cham, Switzerland,
2018; pp. 93–117.

33. Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [CrossRef]
34. Khan, S.H.; Hayat, M.; Bennamoun, M.; Sohel, F.A.; Togneri, R. Cost-Sensitive Learning of Deep Feature Representations from

Imbalanced Data. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3573–3587. [CrossRef]
35. Zou, Q.; Xie, S.; Lin, Z.; Wu, M.; Ju, Y. Finding the Best Classification Threshold in Imbalanced Classification. Big Data Res. 2016,

5, 2–8. [CrossRef]
36. Giselsson, T.M.; Dyrmann, M.; Jorgensen, R.N.; Jensen, P.K.; Midtiby, H.S. A Public Image Database for Benchmark of Plant

Seedling Classification Algorithms. arXiv 2017, arXiv:1711.05458.
37. J, A.P.; Gopal, G. Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network. Mendeley

Data 2019. [CrossRef]
38. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Adam, H. Mobilenets: Efficient convolutional neural

networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
40. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recogni-tion. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
41. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

http://doi.org/10.1016/j.ymssp.2018.03.025
http://doi.org/10.1109/TPAMI.2018.2832629
http://www.ncbi.nlm.nih.gov/pubmed/29993438
http://doi.org/10.1007/s10489-020-01637-z
http://doi.org/10.1016/j.compag.2020.105506
http://doi.org/10.1016/j.compag.2018.09.021
http://doi.org/10.1016/j.neucom.2020.04.003
http://doi.org/10.4018/IJAEIS.2020100102
http://doi.org/10.1049/ipr2.12090
http://doi.org/10.1016/j.compag.2018.03.032
http://doi.org/10.3389/fpls.2016.01419
http://www.ncbi.nlm.nih.gov/pubmed/27713752
http://doi.org/10.1186/s40537-019-0192-5
http://doi.org/10.1109/tnnls.2017.2732482
http://doi.org/10.1016/j.bdr.2015.12.001
http://doi.org/10.17632/tywbtsjrjv.1

	Introduction
	Related Works
	Datasets
	PlantSeedlings Dataset
	Small PlantVillage Dataset
	CNU Weeds Dataset
	Large PlantVillage Dataset

	Methodology
	Experiments
	Performance Metrics
	Training of DNN Models
	Computational Complexity
	Results
	CNU Weeds Dataset
	Large PlantVillage
	Small PlantVillage
	PlantSeedlings Dataset

	Analysis

	Conclusions
	References

