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Abstract: Random numbers are widely employed in cryptography and security applications. If the
generation process is weak, the whole chain of security can be compromised: these weaknesses
could be exploited by an attacker to retrieve the information, breaking even the most robust im-
plementation of a cipher. Due to their intrinsic close relationship with analogue parameters of the
circuit, True Random Number Generators are usually tailored on specific silicon technology and are
not easily scalable on programmable hardware, without affecting their entropy. On the other hand,
programmable hardware and programmable System on Chip are gaining large adoption rate, also in
security critical application, where high quality random number generation is mandatory. The work
presented herein describes the design and the validation of a digital True Random Number Generator
for cryptographically secure applications on Field Programmable Gate Array. After a preliminary
study of literature and standards specifying requirements for random number generation, the design
flow is illustrated, from specifications definition to the synthesis phase. Several solutions have been
studied to assess their performances on a Field Programmable Gate Array device, with the aim to
select the highest performance architecture. The proposed designs have been tested and validated,
employing official test suites released by NIST standardization body, assessing the independence
from the place and route and the randomness degree of the generated output. An architecture
derived from the Fibonacci-Galois Ring Oscillator has been selected and synthesized on Intel Stratix
IV, supporting throughput up to 400 Mbps. The achieved entropy in the best configuration is greater
than 0.995.

Keywords: random; number; generator; TRNG; FPGA; entropy; NIST; Fibonacci; Galois; FiGaRO

1. Introduction: Random Number Generation for Security

With the increasing number of connected-devices the information security is becoming
more important than ever before [1]. A large number of security operations, also in less
conventional fields such as smart grids [2], require random numbers to protect the confi-
dentiality, integrity and authenticity of the exchanged information. Secure cryptographic
keys creation, nonces generation in authentication protocols and digital signatures require,
in fact, unpredictable numbers [3].

In stream cyphers the key cannot be reused multiple times, then, the key must be a
random bitstream which must never be repeated, hence the name One Time Pad. In block
cyphers the key is reused in every encryption or decryption operation but, it must be
necessarily chosen randomly. Random numbers are also widely used for the prevention of
replay attacks. A countermeasure for such attacks is represented by the digest authentica-
tion mechanism [4], a challenge-response protocol which requires the generation of a new
nonce for every tentative of authentication. Random numbers are fundamental also for
the security of digital signature algorithms [5] and can be employed for the improvement
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of passwords security in user authentication contexts (e.g., One Time Passwords). A True-
Random Bit (or Number) Generator (TRBG or TRNG) exploits physical phenomenons to
acquire random data (with high entropy) from unpredictable sources, such as thermal noise
and jitter. Depending on the nature of the entropy source, the randomness can be generated
either in the analogue world (e.g., noise or sensors [6]) or in the digital world (e.g., Jitter).
There are also examples in literature [7] of Cryptographically Secure Pseudo-Random
Number Generator (CSPRNG); such circuits, however, requires a TRNG to work. Due to
their intrinsic close relationship with analogue parameters of the circuit, True Random
Number Generators are usually tailored on specific silicon technology and are not easily
scalable on programmable hardware, without affecting their entropy.

Several relevant contributions reviewed the state of the art, both from a
mathematical [8] and an architectural [9] point of view; however, the available infor-
mation addresses the problem at a high level, not focusing on particular technologies,
such as Field Programmable Gate Arrays (FPGAs). On the other hand, programmable
hardware and programmable System on Chip are gaining large adoption rate, also in a
security-critical application, where high-quality random number generation is mandatory.
Digital TRNGs can be implemented using logic gates only, exploiting digital sources of
randomness, such as supply voltage noise [10,11] metastability [12–14] and jitter [15–17]:
the area footprint, in this case, is dramatically reduced by the absence of analogue circuitry
and the consequent possibility of mapping all the design in digital standard-cell.

In this paper, we will focus on all-digital TRNGs, to investigate on which one is more
optimized for Field Programmable Gate Array (FPGA) technology. The main contributions
will be the introduction of an experimental methodology to evaluate entropy and place and
route independence for TRNGs on FPGA. Up to the authors’ knowledge, this contribution
is the first to apply such a methodology to the available TRNG architecture. Thanks to that,
we have been able to give our other major contribution: the selection of the best TRNG
for FPGA architecture, as a trade-off between complexity, entropy and place and route
independence. We also analyze the design space, demonstrating how the performance of
the TRNG vary within the possible configurations. Such a solution is then compared to
the state-of-the-art, demonstrated to be in line in terms of throughput with comparable
entropy and complexity.

We analyzed a wide family of digital TRNGs, which can be summarized in Table 1.

Table 1. Digital True-Random Number Generators (TRNGs) in literature.

Ref. Architecture Physical Phenomena Preliminary
Generating Entropy Observation

[18] Transition Effect Ring Oscillator (TERO) Latches oscillatory metastability Small bandwidth, large dependence on placing

[19] Metastable Ring Oscillators (Meta-RO) Analogue metastability of inverter gates PLL required, dependence on placing

[20] Fibonacci Ring Oscillator (FiRO) Jitter and Metastability Good independence from placing

[20] Galois Ring Oscillator (GaRO) Jitter and Metastability Good independence from placing

[21] Fibonacci-Galois Ring Oscillator (FiGaRO) Jitter and Metastability
Independence from placing, higher entropy
and robustness respect to single Fibonacci and
Galois Oscillator

The Fibonacci-Galois Ring Oscillator (FiGaRO) TRNG is assessed to be the most
suitable for the FPGA implementation and is therefore further investigated in terms of
performances and resource utilization.

The rest of the work is organized as follows. In Section 2 we give some definitions
about the figures of merit we will use in the rest of the article, then we present the set of
digital ring oscillators we evaluated. In Section 3 we present a method to evaluate TRNG
randomness on FPGA technology; such a method is then used to select the best architecture,
as a trade-off between entropy and complexity. In Section 4 the selected entropy source
is further characterized following the NIST guidelines and FPGA implementation results
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are shown for the selected random number generator. Finally, in Section 5 we conclude
this work.

2. All-Digital True Random Number Generators
2.1. Information Content and Entropy

This section aims to introduce some concepts about the theory of information to define
a metric to compare different TRNGs. Let X be a random variable with probability mass
function pX , the self-information or information content of an event x is defined as:

IX(x) = −logpX(x) = log
1

pX(x)
(1)

This quantity is a measure of how much an event is likely to be the outcome of
a random experiment on variable X. From this equation a duality arises between the
information content of an event and its probability: the more an event is rare, the more
information it carries with it. Usually, the logarithmic base 2 is used and the unit measure
is a bit. The most probable outcome carries less information since it is the most likely result
of the random experiment.

Given a stochastic information source (the random experiment), the entropy is a
measure of the average number of bits of information contained in the raw data. Shan-
non entropy measure, HS, of a random experiment is defined as the expectation of
the self-information:

HS = E[IX(x)] = −∑
i

pX(i)log2 pX(i) (2)

Another measure of the entropy is Min-Entropy. The name contains the prefix Min be-
cause it is the strictest definition of entropy available. Min-Entropy of a random experiment
X is defined as the minimum value of the self information:

Hmin = min[I(x)] = mini[−log2(pi)]

= −log2[maxi(pi)]
(3)

Min-Entropy is expressed in bits and poses an upper-bound estimation on the ability
of the attacker to predict the result. A property of Min-Entropy is that it is never larger
than the Shannon Entropy and it is the same if X has a uniform probability mass function.

2.2. Digital TRNGs

This section presents an overview of the main architectures proposed in the literature
to implement all-digital Random Number Generators (RNGs), focusing on those suitable
for FPGA technology.

2.2.1. Transition Effect Ring Oscillator

The Transition Effect Ring Oscillator (TERO) [18,22] acquires randomness by exploiting
oscillatory metastability of latches. Its structure is depicted in Figure 1. Analysing the
behaviour of the circuit for different input values, it can be observed that if rst = 1,
output ports of the latch, b1 and b2, are stuck at zero and a stable state is reached with
a1 = a2 = ctrl. If rst = 0, AND gates act as bypass gates and the loop is composed by,
depending on the inputs of XOR gates, two buffers and two inverters or four buffers.
In both cases, a stable state is reached since inverting elements are always of even number.

When ctrl transitions from low to high or high to low, a1 and a2 are inverted and
this generates an oscillation that runs inside the feedback loop until the latch stabilizes
to a steady-state. This behaviour is called oscillatory metastability and has been widely
addressed in [23]. Oscillatory metastability can be observed in latches with more than two
gates and a feedback chain with delay elements. Taking into account intrinsic noise in
semiconductors, the number of oscillation for each transition at ctrl input results to be a
random variable.
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Entropy is accumulated by counting the number of oscillations and a single bit is
produced for each ctrl transition: a logical 1 is generated if the number of oscillations at the
output ports, b1 and b2, is odd; a logical 0 is generated if the number of oscillations at the
output ports, b1 and b2, is even; For this purpose, an asynchronous counter placed at the
output of the TERO structure may be used: just one T flip-flop is enough to discriminate
between odds and even oscillations, leading to a rather compact entropy element. However,
oscillatory metastability behaviour is not particularly fast: in [18] the author proposes a
ctrl period equal to 4 µs, which translates in a throughput of 250 kbps. Particular attention
must be paid to the routing, especially in the balance between loop branches. As stated
in [23], an asymmetry in propagation delays of the feedback branches helps to reduce
the resolving time: this implies the possibility of reaching higher throughputs but also a
probable loss of quality due to the reduced standard deviation of the random variable that
models oscillations. These considerations strongly depend on the technology in which the
TERO element will be built.

Figure 1. Transition-Effect Ring Oscillator.

2.2.2. Metastable Ring Oscillator

Metastable Ring Oscillator (Meta-RO) [19] is another variant of a ring oscillator that
harvests entropy from analogue metastability of inverter gates. A CMOS inverter reaches a
metastable state if its output is short-circuited to the input with a closed switch. In this con-
figuration, the output voltage oscillates around a metastable level due to a superimposed
noise contribution. The complete circuit is depicted in Figure 2. The oscillator operation
evolves through different phases:

• Initialization: the oscillator is brought into metastable state with mux_sel = 0. The
metastable voltage is perturbed by low amplitude noise.

• Transition: signal mux_sel transitions to logical 1 and the ring is recomposed. The low
amplitude noise is amplified by inverters. The ring starts in a random state.

• Sampling: once the oscillator stabilizes to full-logic levels, sampling can take place
using a D flip-flop. To accurately control the sampling instant, the author proposes to
generate clk from the signal mux_sel using a delay line.

Figure 2. Metastable Ring Oscillator.

2.2.3. Fibonacci and Galois Ring Oscillators

Before presenting Fibonacci and Galois Ring Oscillators, it is worthwhile to introduce
concepts about Linear Feedback Shift Registers, whose structures inspired these True-
Random Bit Generators (TRBGs). A Linear Feedback Shift Register (LFSR) is a shift register
with a feedback network, usually a XOR tree, which feeds the input with a linear function of
the current internal state. The degree m of the LFSR equals the length of shift register itself.
Two different architectures of LFSR, Fibonacci and Galois, are pictured in Figures 3 and 4.
In the former, the outputs of the D flip-flop (DFF), which are closed in retro-action by
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the switches, are XORed together and connected to the serial input of the shift register.
The latter presents a different concept: if fr−i is 0 (switch opened), DFFi feeds DFFi+1 as in
a normal shift register operation; on the contrary, if fr−i is 1 (switch closed), the output of
DFFi is XORed with the serial output of the shift register to create the input for DFFi+1.
In both cases, the feedback function is controlled by the switches fi, that are conventionally
closed if fi = 1 or opened if fi = 0. These values can be seen as coefficients of a polynomial:
the characteristic polynomial of the LFSR.

P(x) = 1 + f1x + f2x2 + +̇ fmxm (4)

Since the new state depends only on the previous one and the number of states is
finite (they are, in fact, bounded by the length of the Shift Register), every LFSR outputs a
periodic pattern.

Figure 3. Fibonacci Linear Feedback Shift Registers.

Figure 4. Galois Linear Feedback Shift Register.

It is possible to generate pseudo-random sequences with an LFSR that has a much
bigger period than the length of the output sequence. Nevertheless, no entropy is ever
generated inside an all-deterministic circuit like this one and it is simple to prove that LFSRs
show neither prediction nor backtracking resistance. A change in these two architectures
was introduced in [24], where two new TRNG architectures were presented: Fibonacci
Ring Oscillators (FiROs) and Galois Ring Oscillators (GaROs).

FiRO is derived from its homonym LFSR architecture, substituting all D flip-flops with
inverters, as shown in Figure 5. Since all synchronous elements are removed, the circuit is
fully asynchronous and evolves in a stochastic fashion. Randomness is introduced by the
dependency of the delay of the inverter from temperature and supply voltage: as these
parameters vary, both for noise and environmental changes, the ring evolves with different
output patterns, resulting in a chaotic and unpredictable signal. Additional randomness
can be acquired during the sampling phase: the violation of setup and hold times can lead
to metastability of the sampling unit. FiRO is made up by r inverter elements cascaded
so that everyone (except the last one) creates the input for the next inverter. Feedback
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function is defined, as in LFSR, by the coefficients fi, which can be represented with the
characteristic polynomial:

P(x) =
r

∑
i=0

fixi with f0 = fr = 1 (5)

To ensure enough randomness, it is important to avoid fixed points, so that oscillation
never stops. No fixed-points are present if these two conditions are satisfied1:{

P(x) = (x + 1)h(x)
h(1) = 1

(6)

GaRO is derived from Galois LFSR structure, again substituting all D flip-flops with
inverters, as shown in Figure 6. The same considerations made with FiRO on the stochastic
evolution of this circuit hold. GaROs are made up by r inverters cascaded so that each
inverter output is the input of a XOR gate which forms the input of the next inverter.
The feedback function can be represented with the characteristic polynomial:

P(x) =
r

∑
i=0

fixi with f0 = fr = 1 (7)

The conditions for GaROs not to have fixed points are the following:{
P(1) = 0
r is odd

(8)

Both FiROs and GaROs feature an AND gate able to stop the oscillation and reduce
power consumption when entropy is not required.

Figure 5. Fibonacci Ring Oscillator with enable port.

Figure 6. Galois ring oscillator with enable port.

2.2.4. FiGaRO True Random Number Generator

As suggested in [24], the randomness, as well as robustness, can be further increased
by XOR-ing the outputs of a Fibonacci Ring Oscillator and a Galois Ring Oscillator. The
structure formed by XORing FiRO and GaRO is named as a FiGaRO structure. Figure 7
shows an example of a FiGaRO structure as specified in [24] composed of four FiRO and
four GaRO connected using a XOR tree. The lengths of the two oscillators minus one should
preferably be mutually prime to maximize the period of the corresponding pseudorandom
sequence and to reduce coupling effect. Besides, it is suggested that the lengths differ only
by one, where the even length corresponds to the Fibonacci ring oscillator.
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FiRO #0
State Sampled

FiRO #3
State Sampled

GaRO #0
State Sampled

GaRO #3
State Sampled

1
Sampling

1

1

1

1

Figure 7. Fibonacci-Galois Ring Oscillator (FiGaRO) four elements architecture.

3. True Random Number Generators Design and Evaluation on FPGA Technology
3.1. Methods for FPGA Technology-Based TRNGs Analysis

As addressed in previous sections, a TRNG exploits various noise sources to produce a
random output. This characteristic implies that the testing functionality of these devices is
not straightforward. Register Transfer Level (RTL) functional simulations are not suitable,
since their incapability of resolving a combinational loop which is present in almost every
state of the art TRNG. Post-layout simulations can do this, but metastability events, which
are a fundamental part of the entropy harvesting process, lead to the propagation in
the sampling chain of an undefined logic state (X). Analogue simulation tools provide
functionalities for time-domain noise analysis and it is possible to find in literature articles
where these are used for Application-Specific Integrated Circuit (ASIC) simulation of a
TRNG [19]. Nevertheless, our main target for the implementation is the FPGA and no
models are provided by vendors to test the dynamical behaviour of a noise dependant
combinational loop. For these reasons, testing has been necessarily carried out in hardware.
Our testing strategy focused on the direct extraction of a set of random values on the FPGA,
which are then transmitted to an external computer for processing and evaluation.

In the test campaign reported in this section, we carried out a test on the already
presented RNG architectures (TERO, Meta-RO, FIRO, GARO and FiGaRO). The objective
of this test campaign is to find the best architecture for FPGA, where the figure of merit
is the randomness of the outputs. Working on the FPGAs, we tried to test different
placement techniques for the hardware, to find an architecture whose entropy was not
affected by the placement of the hardware within the FPGA. The evaluation of distribution
uniformity is carried out quantitatively at first examination. The selected RNG will then
be tested with the NIST entropy assessment test suite to evaluate precisely its quality.
Performances of some devices may be influenced by different placing and routing in the
FPGA device. Where necessary, constraints have been created in the FPGA development
tool to address these issues: employing Design Partition and LogicLock features the placing
and routing of a single TRNG element mapped into a restricted number of Logic Array
Blocks (LABs) have been saved, to be recallable multiple times and positioned in different
cells controlled by the user. Such constraints can be easily ported in any FPGA development
tool. By doing so, it has been possible to test different floor-plan configurations and extract
more accurate results.

3.2. Candidate Solutions
3.2.1. Transition Effect Ring Oscillator (TERO)

To test the TERO presented in Section 2.2.2 it is necessary to evaluate the number
of oscillation the latch performs every time the ctrl signal toggles. To do so, a 10-bit
asynchronous counter has been placed at the output of the device. Using a 10-bit counter
instead of a single T Flip flop, not only we determine if the number of oscillations is odd or
even: it is possible to check the exact number of oscillations. The expected outcome is to find
a distribution of the number of oscillations similar to the ones showed in [25,26]. The actual
output random variable is a binary variable which equals one if the amount of oscillation
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is an odd number or zero if it is an even number. Samples can be regarded as independent
since TERO outputs a single bit for every restart, zeroing possible dependencies between
successive samples. Instances, where numbers of oscillations are more spread, provide
lower differences between ones and zeros, i.e., a higher entropy. We placed multiple TEROs
on the FPGA with the same internal placing and routing, constrained into a single group
of 10 Adaptive Logic Modules (ALMs). This saved element has been positioned multiple
times, to test whether the observed behaviour depended or not from placing inside the
FPGA device. From each TERO a sequence of 10,000 numbers of oscillations has been
extracted and histograms of these values have been plotted. Figure 8 reports the number
of oscillations occurred before having the output of the latch stable, in 8 different TERO
elements. As shown, the histograms of the number of oscillations are very different from
one element to another: some, like TERO 5, almost have a fixed number of oscillations,
while others, like TERO 4, show a more complex plot. This variability was also found
in [26]. The authors in [26,27] claim that routing and placing dependency is the main
disadvantage of TERO. Techniques for overcoming this issue have been implemented
in [27] on a Xilinx FPGA. However, the feasibility of such techniques strongly depend on
the target platform and prevents the realization of a TRNG portable on different FPGAs.

Figure 8. Number of oscillations histogram for 105 trigger events for Transition Effect Ring Oscillator (TERO) True-Random
Number Generator (TRNG).

3.2.2. Meta-Ring Oscillator (Meta-RO)

Meta-RO necessitates of a reliable delay line between the activation signal and the
sampling clock. This delay can be obtained employing a PLL, which has been configured
to produce the enable signal at the same frequency of the clock signal (100 MHz) with
a phase shift of −1 ns. In our case, the PLL used is hardware primitive of the FPGA.
Unlike TERO, in Meta-RO elements, the number of oscillations is not significant for the
output statistic. Because of this, the testing proceeded in a slightly different way: eight
instances of the same locked Meta-RO element have been positioned in different LABs and
the parallel output value, interpreted as an 8-bit unsigned number (Sample Value, 0–255),
has been evaluated, as showed in Figure 9. This test has been repeated multiples times,
generating new bitstreams to understand dependencies from placing and routing. Every
run has acquired 131,072 samples from eight parallel Meta-RO elements. Figure 10 shows
histograms of the output values: even if the figures of merit of the oscillator itself can be
considered satisfying (as shown in [28]), data are far from being uniformly distributed
and the sawtooth shape highlights a predominance of zeros over ones, which reflects in
low-quality output.
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Figure 9. Sampling strategy for Meta-RO assessment.

Figure 10. Output values histograms for eight parallel Meta-RO elements.

3.2.3. FiRO and GaRO

Several feedback polynomials can be selected in case of FiRO and GaRO. One of
the possible choices is the one presented in [20] where all the FiRO and GaRO feedback
networks are individually tested into Intel FPGA Cyclone V technology for oscillators
lengths respectively equal to 10 and 11. Polynomials identified as best-in-class in [20] have
been chosen for the implementation of the entropy source, and state sampling support has
also been added, to sample not just the final inverter but all the internal states of the TRNG.
Figures 11 and 12 show the structure of FiRO GaRO, both with state sampling.

Figure 11. Fibonacci Ring Oscillator with state sampling. The output bus is XORed together to form
a 1-bit output in the higher level.

Figure 12. Galois Ring Oscillator with state sampling. The output bus is XORed together to form a
1-bit output in the higher level.
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The first iteration of the test consisted of instantiating four FiRO and four GaRO
with the feedback configurations reported below, and reading their 8-bit parallel output
131,072 times. Please note that F stands for FiRO and G for GaRO.

pF
0 (x) = 1 + x + x2 + x3 + x5 + x6 + x7 + x8 + x9 + x10 (9)

pF
1 (x) = 1 + x + x2 + x3 + x4 + x6 + x7 + x10 (10)

pF
2 (x) = 1 + x + x2 + x3 + x4 + x5 + x6 + x10 (11)

pF
3 (x) = 1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x9 + x10 (12)

pG
0 (x) = 1 + x2 + x3 + x5 + x6 + x7 + x9 + x11 (13)

pG
1 (x) = 1 + x2 + x3 + x5 + x6 + x7 + x8 + x11 (14)

pG
2 (x) = 1 + x2 + x3 + x4 + x5 + x7 + x9 + x11 (15)

pG
3 (x) = 1 + x2 + x3 + x4 + x5 + x6 + x9 + x11 (16)

No particular constraints are given for the sampling frequency and the placing and
routing. Comparing the acquisition run depicted in Table 2 with the ones acquired for
Meta-RO, it is evident the reduced bias confirmed by the ones and zeros count.

Table 2. FiRO-GaRO ones and zeros count in the output sequence.

FiRO Instance GaRO Instance

#0 #1 #2 #3 #0 #1 #2 #3

Count of zeros 64,463 62,237 62,336 62,624 6274 65,784 64,161 58,209
Count of ones 66,609 68,835 68,736 68,448 68,308 65,288 66,911 72,863

Difference −2146 −6598 −6400 −5824 −5544 496 −2750 −14,654

3.2.4. FiGaRO

The structure reported in Figure 7 has been used to form a single output bit, and it has
been replicated eight times to produce an 8-bit parallel output. From this structure higher
entropy is expected and this is confirmed by experimental results: the same number of
acquired samples, led to a more uniform distribution, as showed in Figure 13. As shown
in Table 3, there is a very good balance between the number of ones and zeros and biases
appear, to the first analysis, to be random and physiologic due to the limited dataset we
are considering.

Table 3. FiGaRO ones and zeros count in the output sequence

FiGaRO Instance

#0 #1 #2 #3 #4 #5 #6 #7

Count of zeros 65,543 65,716 65,256 65,512 65,566 65,777 65,335 65,678
Count of ones 65,529 65,356 65,816 65,560 65,506 65,295 65,737 65,394

Difference 14 360 −560 −48 60 482 −402 284
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Figure 13. Histograms of the first run and of the second run of acquisitions for the FiGaRO TRNG.

3.3. FiGaRO RNG Design

The FiGaRO architecture, already proved to overcome classical ring oscillators [21],
demonstrated to be the best among all the other presented oscillators in terms of entropy
for an FPGA device. Once selected the FiGaRO as an entropy source, we moved on the
design of the complete random number generator, which include also control sections
and health test circuits. Such a system has been then tested against the NIST test suite to
demonstrate its compliance with the relevant standard. In this chapter, we will illustrate
how the building blocks of RNG were designed in SystemVerilog and implemented in
FPGA technology. The RNG design must comprehend both the entropy harvesting device
(i.e., the TRNG), and health tests circuits.

3.3.1. Health Tests

In every entropy source, the statistical quality of the output must be continuously
tested to check if significant deviations are taking place, due to changed environmental
conditions, electric fields or side-channel attacks. To avoid situations where the entropy is
too low, it is mandatory to quickly diagnose a possible fault, inhibiting the output until the
quality is restored. As recommended by NIST in [29], two on-line health tests are needed
for an entropy source: the repetition count test and the adaptive proportion test, which are
described in the following.

The repetition count test triggers an alarm if the same output value is maintained too
many times in a row. To perform this test, a rate of false probability α must be chosen: the
higher is this rate, the lower number of repetitions will trigger the alarm. Once chosen α,
the number of repetitions which trigger an alarm is given by this formula:

n = 1 +
⌈
−log2(α)

H

⌉
(17)

A hardware that implements this test for binary sources is proposed hereafter: a shift
register continuously acquires the outputs of the entropy source and additional logic checks
if shift register’s parallel output is made up by only ones or only zeros. This implementation
is depicted in Figure 14.
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Figure 14. Hardware implementation of the repetition count test for a binary random source.

The adaptive proportion test is built to check if the frequency of occurrence of every
possible output value falls within a certain confidence interval. If an output occurs too
much frequently, it means that the statistical quality of the randomness source is lowered
and an alarm should be triggered. For binary outputs, the test must be performed on a
window of 1024 samples. The number of ones must be counted and compared to two
different values: if the count of ones exceeds a cut-off value C or is lower than (1024−C) an
alarm should be raised. Cut-off values are indicated by NIST as a function of the bitstream
entropy. Again, a hardware implementation, depicted in Figure 15 of this test is proposed.
A shift register of 1024 bit maintains the memory of the last output values and whenever a
new value comes in, its value is summed into an accumulator register, while the last value
is subtracted. By doing so, the accumulator always maintains the count of the number of
ones inside the observation window and two comparators can check if the frequency lies
inside the upper and lower thresholds.

Figure 15. Hardware implementation of the adaptive proportion test for a binary random source.

3.3.2. Overall RNG Architecture

Figure 16 shows the architecture of the proposed RNG. FiROs and GaROs, configured
as a FiGaRO, were selected as an entropy source. Our contribution to it is the inclusion
of the health test and the combination of a parametric number of stages, to increase the
throughput. Such architecture showed to be the most suitable for FPGA implementation
due to its independence from placing and routing into FPGA. The final design has been
parametrized to be customizable in several stages (i.e., the number of parallel TRNG):
one, two, four and eight elements with 1-bit output can be placed in parallel. Every stage
is referred to as a FiGaRO Stage, as showed in Figure 16. Please note that the number
of FiRO and GaRO placed in the same FiGaRO contributes on improving entropy and
reliability: indeed, if one or more oscillator gets stuck you can still have a working TRNG
since the single oscillators are XORed. On the other hand, the number of FiGaRO stages
placed in parallel has the only effect to increase the throughput, paying linearly in resource
consumption; entropy is not affected by this parameter. Every stage has the same structure:
multiple FiRO and GaRO elements can be XORed together to form a high entropy output,
with the feedback polynomial reported in Equations (9)–(16). Choosing different feedback
networks, the correlation between FiROs and GaROs within a FiGaRO stage is minimized.
This operation also ensures a higher degree of reliability of the Entropy Source, since various
contributions sum up together masking possible momentarily failures of some oscillators.
Besides, the number of FiRO and GaRO XORed in every stage has been parametrized
to choose between one FiRO and one GaRO (with polynomials Equations (9) and (13)),
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two FiRO and two GaRO (with polynomials Equations (9), (10), (13) and (14)), four FiRO
and four GaRO. Each FiGaRO Stage is accompanied by its health tests, implemented as
reported in Section 3.3.1. The error detector circuits signal to the user failures of the health
tests of each FiGaRO stage, so that the user can take countermeasures.

FiGaRO Stage

FiRO #0

FiRO #3

GaRO #0

GaRO #3

XOR Tree

1

Healt Test

1

1

1

1

Random Out

Error code
parametric

parametric

FiGaRO 
Stage #7

Error Detector

FiGaRO 
Stage #0

Output Buffer1

1

parametric

FiGaRO 
Stage #7

Error Detector

FiGaRO 
Stage #0

Output Buffer1

1

8

TRNG

Figure 16. Overall architecture of the implemented FiGaRO Random Number Generator (RNG).

4. Implementation Results

The preliminary analysis presented in Section 3.2 was conducted qualitatively, focusing
primarily on evaluating the empirical results obtained from the different TRNG architectures.
Nevertheless, there was the necessity to validate the selected architecture using approved
tests which could output an affordable estimation of the entropy of this device.

4.1. FiGaRO RNG Entropy Measurement

To assess the quality of the output sequence generated by the Entropy Source, it was
necessary to evaluate the min-entropy per bit of the generated sequence using specific
tests. These tests are proposed and described in [29], while a test suite, based on these
specifications, was provided by NIST itself and is openly available in [30]. Two things were
investigated during these tests:

• The first one regards how the output quality depended on the number of elements
XORed together inside each FiGaRO stage. Ideally, the more elements were used,
the more the output quality was high but this depended on an assumption of device
independence, which had to be verified.

• The second one regards how the output quality depended on the sampling frequency.
Until this point sampling took place at 1 MHz but deriving a plot of entropy as a
function of frequency may have allowed us to make a trade-off between entropy
source throughput and output quality.

Before testing, data collection had to be carried out in a specific way. In particular, for
every test was provided a sequence of at least 1 million consecutive samples, called S:

S = [s0 s1 ... s999999] (18)

and a 1000 × 1000 restart matrix, called from now on R, constructed restarting the entropy
source 1000 times and populating every row with 1000 consecutive samples:

R =


S0

0 S0
1 S0

2 ... S0
999

S1
0 S1

1 S1
2 ... S1

999
...

...
...

...
...

S999
0 S999

1 S999
2 ... S999

999

 (19)

From R, two sequences were constructed: the row dataset, made up by the concatena-
tion of all the rows of R:

Rrow = [s0
0 ... S0

999 s1
0 ... S1

999 ... S999
0 ...S999

999] (20)
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The columns dataset, composed by the concatenation of all the rows of RT :

Rcol = [s0
0 ... S0

999 s0
0 ... S999

1 ... S0
999 ...S999

999] (21)

Once the dataset was constructed, it could be provided to the NIST statistical test suite
described in [29], to check the Independent and Identically Distributed (IID) assumption:
if the IID assumption was verified, the entropy assessment was greatly simplified, since
only one test (the most common value entropy estimate) needed to run.

Seven sampling frequencies were chosen for the frequency sweep:

f = [1, 2.5, 5, 10, 25, 50, 100]MHz (22)

Then all three configurations of a FiGaRO Stage, which provided the sequence under
test, were tested:

• 1 FiRO and 1 GaRO XORed together
• 2 FiRO and 2 GaRO XORed together
• 4 FiRO and 4 GaRO XORed together

This resulted in the acquisition of 21 different cases for each test run. For each case, it
was necessary to acquire 1,048,576 sequential samples and of a 1000 × 1000 restart matrix.
An IID claim was made for all the sequential sequences and NIST tests (permutation and
chi-square tests) confirmed this claim. The entropy awarded at the end of testing was:

Hmin = min(HI , HR, HC) (23)

where HI is the initial entropy estimate of the sequential dataset and HR and HC are
awarded to the restart dataset. Figure 17 shows Hmin values obtained in two runs of tests.
All configurations showed high quality quite independently from the sampling frequency,
with all entropies settling around 0.995. Since sometimes these types of results are presented
with Shannon metric of Entropy, a conversion from Hmin to HS is provided below.

Hmin ≈ 0.995→ max
i

(pi) = 2−Hmin

= 0.50173587425
(24)

Hs =− 2−Hmin log2(2
−Hmin)− (1− 2−Hmin)∗

log2(1− 2−Hmin) = 0.9999913
(25)

Please note that just the 1FiRO-1GaRO configuration had a slightly lower entropy level.
2FiRO-2GaRO and 4FiRO-4GaRO configuration were comparable in terms of entropy.

Figure 17. Entropy assessment results (two different runs of acquisition).
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4.2. Synthesis and Implementation Results

In Table 4 we present the implementation results obtained on a Stratix IV FPGA.
The synthesis operating frequency was fixed to 100 MHz, therefore each FiGaRO stage
contributed with 100 Mbps to the throughput; thus, we achieved a throughput of 400 Mbps
for a four stage oscillator and 800 Mbps for an eight stage oscillator. The results are shown
varying the number of FiGaRO stages and the configuration. The obtained numbers
showed, as expected, that the resources usage grew linearly with both these parameters.

Table 4. TRNG implementation results on Stratix IV Field Programmable Gate Array (FPGA).

FiGaRO Configuration Comb. Logic
Stages ALUTs Regs

8 1FiRO 1GaRO 291 186
8 2FiRO 2GaRO 571 354
8 4FiRO 4GaRO 1140 698

4 1FiRO 1GaRO 148 106
4 2FiRO 2GaRO 288 190
4 4FiRO 4GaRO 572 358

2 1FiRO 1GaRO 76 62
2 2FiRO 2GaRO 146 104
2 4FiRO 4GaRO 288 188

1 1FiRO 1GaRO 40 40
1 2FiRO 2GaRO 75 61
1 4FiRO 4GaRO 146 103

Considering also the results achieved in terms of entropy, we observed the following:

• 1FiRO-1GaRO Configuration was the one with smaller area footprint but also
the worst entropy;

• 2FiRO-2GaRO and 4FiRO 4GaRO were comparable in terms of entropy;
• System robustness to possible stuck in the oscillation grew linearly with the number

of FiRO and GaRO composing a FiGaRO stage;
• Resources usage grew linearly with the number of FiRO and GaRO composing a

FiGaRO stage;
• The throughput of the system grew linearly with the number of FiGaRO stages

in parallel;
• Resources usage grew linearly with the number of FiGaRO stages in parallel;

Table 5 shows a comparison between our work and other TRNGs implemented on
FPGA platforms. Please note that we did not implement the reported design but we relied
on the results presented in the cited works. For the same reason and for conciseness, we do
not report the architectural details of the design here; they can be accessed by consulting the
cited works. Unfortunately the available works relied on different FPGA technology nodes:
this made unfair the comparison in terms of bit rate, as newer technologies obviously
are able to reach higher clock speeds. However, the rest of the metrics were not directly
affected by the technology node. Moreover, most of the proposed solutions (e.g., the Self-
Timed Rings (STRs) based one) were not limited by the technology but rather than entropy
harvesting method: the clock frequency was limited well under the maximum available
values to preserve the randomness quality. The overall comparison gave however an
indication on the achievable throughput of random numbers, together with the randomness
quality (entropy).
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Table 5. Comparison among the proposed TRNG with other TRNG implementations on FPGA.

TRNG Type Platform LUTs Registers Bit Rate (Mbps) Entropy

This work
(4 Stages, 2FiRO-2GaRO) FiGaRO

Intel
Stratix IV 288 190 400 0.995

[31] ES
Xilinx

Spartan 6 10 5 1.15
0.997

(Shannon Entropy)

[32] RO
Xilinx

Virtex 2 – – 2.5 0.97

[33] RO—PDLs
Xilinx

Spartan-3A 528 177 6 0.9993

[34] STRs
Xilinx

Virtex 6 32 48 4 –

[27] TERO
Xilinx
Artix 7 40 29 1.91

0.9993
(Shannon Entropy)

[35] STRs
Xilinx

Virtex 6 56 19 100 –

[36] GaRO
Xilinx
Artix 7 50 79 280

0.998
(Shannon Entropy)

In [27] the authors demonstrate that the TERO is highly dependent on the origin
of placement; therefore, they introduce a particular TERO (TC-TERO) which overcome
this issue, at the price of employing FPGA dependent primitives, loosing therefore the
technology independence. The authors in [34] proposed an implementation based on Co-
herent Sampling (CS) phenomenon using Self-Timed Rings (STRs) instead of the commonly
employed Ring Oscillators (ROs). The authors demonstrated the portability of the design
and they achieved an extremely compact design, but the bit-rate remained limited due
to the low sampling frequency. In fact, the design has been synthesized at 1 MHz on a
Xilinx Virtex 6 FPGA, and the authors declare that higher sampling frequencies might
degrade the randomness quality. On the contrary, as shown in Figure 17, in our proposed
solution entropy is stable with frequency variations. The design proposed in [31] is based
on the Edge Sampling (ES) technique and achieves the lowest resource consumption. The
throughput remains limited to 1.15 Mbps and 1.07 Mbps respectively on Xilinx Spartan-6
FPGA and Intel Cyclone V FPGAs, with a Shannon entropy of 0.997; according to the
authors, this entropy cannot be achieved for higher frequency without dedicated post-
processing circuits. The works in [32,33] employed RO as entropy sources. In particular, the
authors in [33] incorporated Programmable Delay Lines (PDLs) to generate a large variety
of the oscillations and to introduce jitter, achieving high entropy. Even if the achieved
entropy is remarkable, the resource utilization is not negligible and moreover the result
is highly influenced by the operating frequency, which is a limitation not present in our
proposed TRNG. In [35], authors presents another STRs-based implementation. The Bit
Rate to resource ratio is much greater than the one presented in [34]; however, it is difficult
to further compare them due to the lack of measured entropy. Finally, in [36], authors
propose a very competing solution in terms of entropy, complexity and resource usage.
The disadvantage here comes from the fact that the sole employment of GaRO makes
the oscillator more susceptible to faults respect to the FiGaRO approach [24]. Our work
showed a very high throughput with a resource consumption in line with other works, and
a high level of entropy per bit. Additionally, our implementation can therefore be adapted
to the user needs easily, paying a resource utilization fee linearly with the required level of
robustness and the required bandwidth. For what concerns entropy, we recommend to use
the 1FiRO-1GaRO configuration only for a resource optimized scenario, otherwise since
the required hardware is still limited, it is possible to achieve higher entropy with the other
two configurations.
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4.3. NIST Statistical Test Suite

The quality of the designed entropy source was assessed by the commonly used NIST
800.22 statistical test suite [37]. It consisted of 15 type of tests which were performed to
assess the performance of TRNGs. Such tests were carried out for the proposed FiRO-
GaRO configurations (i.e., 1FiRO-1GaRO, 2FiRO-2GaRO and 4FiRO-4GaRO) at 50 MHz
and 100 MHz. A total of 320 sequences with a length of 1 Gbit were collected and tested
for each configuration. The parameters of each test were set following the NIST recom-
mendations [37]. In Table 6 the results obtained with a 50 MHz sampling rate are shown,
while in Table 7 we present the results with a 100 MHz sampling rate. Both tests refer to
the implementation of the aforementioned Stratix IV FPGA. The statistical p-value should
be greater than 0.01 if the test item was passed and the proportion of passed sequences
to total sequences should be larger than 0.980. All tests were considered passed as they
scored above the threshold. The entropy level demonstrated itself to be similar in all the
cases, with the 1FiRO-1GaRO configuration achieving slightly lower entropy levels.

Table 6. NIST 800.22 Statistical Test Results with 50 MHz of Sampling Rate. * Worst case reported for tests with
multiple outcomes.

1FiRO-1GaRO 2FiRO-2GaRO 4FiRO-4GaRO
Test Name p-Value Proportion p-Value Proportion p-Value Proportion

Frequency 0.578763 0.987 0.959132 0.993 0.676097 0.984
BlockFrequency 0.701879 0.987 0.880335 0.990 0.540457 0.987

CumulativeSums * 0.392456 0.990 0.637119 0.987 0.001732 0.987
Runs 0.656634 0.996 0.141256 0.984 0.103676 0.996

LongestRun 0.656634 0.993 0.360699 0.990 0.005789 0.993
Rank 0.585209 0.987 0.839722 0.996 0.202944 0.981
FFT 0.794626 0.978 0.171276 0.990 0.930752 0.993

NonOverlappingTemplate * 0.515367 0.978 0.752361 0.978 0.019520 0.975
OverlappingTemplate 0.280017 0.990 0.124566 0.990 0.727346 0.981

Universal 0.371101 0.981 0.437274 0.984 0.875539 0.978
ApproximateEntropy 0.800471 0.993 0.103676 0.996 0.817667 0.990
RandomExcursions * 0.590375 0.980 0.063657 0.974 0.522989 0.984

RandomExcursionsVariant * 0.652733 0.976 0.153309 0.969 0.511916 0.973
Serial * 0.817667 0.978 0.017156 0.993 0.408942 0.984

LinearComplexity 0.553147 0.993 0.758528 0.993 0.656634 0.981

Table 7. NIST 800.22 Statistical Test Result with 100 MHz of Sampling Rate. * Worst case reported for tests with
multiple outcomes.

1FiRO-1GaRO 2FiRO-2GaRO 4FiRO-4GaRO
Test Name p-Value Proportion p-Value Proportion p-Value Proportion

Frequency 0.794626 0.996 0.739918 0.996 0.034455 0.993
BlockFrequency 0.103676 1 0.320988 0.993 0.199580 0.987

CumulativeSums * 0.880335 0.996 0.701879 0.990 0.355569 0.993
Runs 0.971267 0.981 0.695458 0.987 0.109597 0.990

LongestRun 0.365877 0.981 0.990440 0.987 0.708280 0.987
Rank 0.490727 0.990 0.011333 0.993 0.081137 0.993
FFT 0.880335 0.981 0.235285 0.990 0.235285 0.987

NonOverlappingTemplate * 0.969045 0.978 0.177264 0.978 0.392456 0.978
OverlappingTemplate 0.746157 0.990 0.250878 0.981 0.460664 0.987

Universal 0.288780 0.978 0.048716 0.975 0.414525 0.993
ApproximateEntropy 0.521600 0.993 0.371101 0.993 0.213309 0.990
RandomExcursions * 0.120558 0.985 0.825505 0.980 0.247472 0.985

RandomExcursionsVariant * 0.673507 0.980 0.334538 0.990 0.144153 0.985
Serial * 0.546791 0.990 0.297739 0.990 0.202944 0.981

LinearComplexity 0.502986 0.984 0.148968 0.987 0.159799 0.990
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5. Conclusions

This work presented an analysis of existing TRNGs and a methodology to assess which
one can be claimed to be the best option in terms of entropy and robustness to placing mis-
match. We illustrated the design flow of such TRNG for FPGA, from architecture definition
to implementation, testing and performance evaluation. The testing phase focused on the
entropy source, evaluating different state-of-the-art TRNG circuits in FPGA technology
and testing their output quality. We proposed a design of a very robust entropy source,
employing multiple FiROs and GaROs, which showed the best performances between all
tested elements in terms of entropy on FPGA devices. The architecture has been validated
with NIST Entropy Assessment Suite on FPGA platform, with an estimated Min-Entropy
approximately equal to 0.995 bit per output bit, in line with state-of-the-art literature results.
Such a value proved to oscillate negligibly for different sampling frequencies and configu-
rations. The entropy source configuration is selectable at synthesis time, accordingly to
user necessities concerning latency and area, using specific parameters which control the
number of stages as well as the number of oscillators in every stage. We illustrate how the
hardware parameters ( number of stages and composition of each stage) varies throughput
and robustness, without affecting significantly the entropy. In particular, we achieved an
overall throughput of 400 Mbps for a four stage FiGaRO oscillator, 100 Mbps per stage,
which is in line with the state of the art concerning entropy and complexity and it is an
advancement with the throughput. The absence of particular constraints on placing and
routing guarantees a wide range of technology targets or different operating conditions.
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