
applied  
sciences

Article

Bearing Fault Diagnosis Approach under Data Quality Issues

Ashraf AlShalalfeh 1 and Laith Shalalfeh 2,*

����������
�������

Citation: AlShalalfeh, A.; Shalalfeh,

L. Bearing Fault Diagnosis Approach

under Data Quality Issues. Appl. Sci.

2021, 11, 3289. https://doi.org/

10.3390/app11073289

Academic Editors: Alessandro

P. Daga and Luigi Garibaldi

Received: 15 February 2021

Accepted: 31 March 2021

Published: 6 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Mechanical Engineering Department, Higher Colleges of Technology, Al Ain P.O. Box 17155, UAE;
ashalalfeh@hct.ac.ae

2 Energy Engineering Department, German Jordanian University, Amman 11180, Jordan
* Correspondence: laith.shalalfeh@gju.edu.jo

Abstract: In rotary machinery, bearings are susceptible to different types of mechanical faults,
including ball, inner race, and outer race faults. In condition-based monitoring (CBM), several
techniques have been proposed in fault diagnostics based on the vibration measurements. For this
paper, we studied the fractal characteristics of non-stationary vibration signals collected from bearings
under different health conditions. Using the detrended fluctuation analysis (DFA), we proposed a
novel method to diagnose the bearing faults based on the scaling exponent (α1) of vibration signal at
the short-time scale. In vibration data with high sampling rate, our results showed that the proposed
measure, scaling exponent, provides an accurate identification of the health state of the bearing. At
the end, we evaluated the performance of the proposed method under different data quality issues,
data loss and induced noise.

Keywords: bearing; vibration; diagnostic; non-stationarity; detrended fluctuation analysis; fractal
characteristics; scaling exponent; data anomalies; Gaussian noise

1. Introduction

The machine health monitoring (MHM) of rotary machinery plays a big role in re-
ducing the shutdown time and keeping excellent working conditions of the machinery
assets. MHM records and analyzes the raw vibrational data signals gathered by means of
accelerometers. Then, it extracts the useful features from the measurements and converts
them to proper actions applied to the machinery through condition-based maintenance.

Fault diagnostic techniques can be classified into signal-based, model-based, and
hybrid methods. The signal-based methods depend mainly on the raw data extracted
from the machinery by sensors. So, the detection of machine faults is carried out through
different analysis techniques applied on the extracted data. The main advantage of this
method is that the mathematical modeling for the physical setup is not needed and classical
signal processing techniques can be exploited in noise reduction and feature extraction.
These methods include several diagnostic techniques in the time and frequency domains,
including kernel density estimation (KDE), root mean square (RMS) [1], crest factor (CF) [2],
Kurtosis [3,4], Fast Fourier transform [5], wavelet transform [6], and wavelet packet trans-
form (WPT) [7]. The main challenge is the stage of preprocessing the raw vibration
measurements to attenuate noise and extract the original signal.

Secondly, the model-based methods are based on developing a mathematical model
simulating the behavior of the mechanical system under study. Applying this approach
on any system is directly dependent on the real system model and its outputs. In this
approach, the dynamic response is collected from the system under faulty and normal
operating conditions [8–10]. Then, a comparison between the output response parameters
and simulated data can help in assessing the condition of the mechanical component. The
main drawback of this approach is the difficulty of building accurate models under the
different uncertainties associated with any system running in a noisy environment.

Due to the constraints associated with these approaches, a mixture of the two ap-
proaches was proposed as a hybrid method. The hybrid methods are known to be reliable
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and robust methods compared to other diagnostic techniques. In these methods, one
or more diagnostic techniques are integrated to leverage the strength of the different
integrated methods [11]. Some of the hybrid diagnostic methods are neuro-fuzzy [12],
artificial neural network and support vector machines [13], and modified empirical mode
decomposition [14].

The classical statistical methods are considered lengthy processes as they are required
to perform feature extraction along with classification. In addition, some of the bearing
fault features may be hidden in the data and they cannot be identified using the classical
methods. To expedite the fault diagnosis process and unravel the hidden features, several
machine learning (ML) approaches have been proposed successfully. These methods
include artificial neural networks (ANN) [15], k-nearest neighbors (KNNs) [16], fuzzy
cognitive networks (FCNs) [17], multi-agent system (MAS) approach using intelligent
classifiers [18], and support vector machine (SVM) [19]. By analyzing and learning from the
bearing data, ML methods can apply what they learned to make informed decisions about
bearing health. Most ML methods can identify and classify the bearing with a high accuracy
rate. However, some challenges, such as rolling element sliding, frequency interplay,
external vibration, and feature sensitivity, may result in inaccurate feature extraction and
classification [20].

Recently, deep learning (DL) has been used extensively in bearing fault diagnosis.
Based on neural networks (NN) and artificial intelligence (AI), the DL methods have better
performance [21] and automatic feature extraction [22] compared to other ML methods.
Convolutional neural network (CNN) can detect the defect by learning optimal filters and
extracting the best features from the raw vibration signals. It outperforms the classical
ML methods in accuracy and speed of feature extraction [23]. Moreover, auto-encoders’
approach is an unsupervised DL method that has better anti-noise characteristics in feature
extraction [24,25]. Other DL methods include deep belief network (DBN) [26], recurrent
neural network (RNN) [27], generative adversarial network (GAN) [28].

The detection of early stages of bearing degradation is feasible by tracking the changes
in the characteristics of the bearing measurements, including vibration, temperature, and
lubrication parameters. Evidently, these distinct changes could be symptoms of different
bearing faults (ball, inner race, and outer race). As part of fault diagnostics in bearings, it
is of great importance to extract the unique features associated with each of these faults.
These features could serve as fault classifiers based on the bearing measurements.

In the time domain, studying the statistical characteristics of the vibration measure-
ments is one of the reliable fault diagnostic techniques. Under the different fault conditions,
the vibration signals possess different statistical parameters (root mean square, kurto-
sis, skewness, etc.). In the literature, monitoring of these parameters has been exploited
extensively in identifying bearing faults at different success rates.

The statistical and fractal characteristics of the vibration signals can be inferred by
calculating the scaling (Hurst) exponent of these signals. The scaling exponent serves as a
measure of the level of long-range correlations in the time series. In general, the bearing
vibration signals are known to be non-stationary in nature [29]. Therefore, we exploited
the detrended fluctuation analysis (DFA) [30] in estimating the scaling exponents of the
vibration signals with sampling rates of 12,000 and 48,000 samples/s. The DFA is one
of the reliable methods in estimating the scaling exponents in non-stationary time series.
Based on the estimated scaling exponents, we proposed a novel diagnostic approach of the
different bearing faults. Our results showed that the proposed method can classify healthy
and faulted bearings at high accuracy rates using vibration signals with 48,000 samples/s.
On the other hand, it is not suitable to classify bearing faults in typical data acquisition
systems with low sampling rates (12,000 samples/s) due to inaccurate estimation of the
scaling exponent.
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2. Experimental Apparatus and Data Sets
2.1. Case Western Reserve University (CWRU) Testing Rig

The vibration data sets were provided by the Case Western Reserve University
(CWRU) bearing data center [31]. In the experiment, a testing rig was used to extract
the vibration signals from the bearings, as shown in Figure 1. The apparatus consisted
of an electric motor, torque transducer, a dynamometer, and tested bearings. A 1.491 kW
reliance electric motor drives a shaft that is connected by a coupling. On the driving shaft,
a torque transducer and encoder were mounted to measure speed and horsepower data.
Moreover, the vibration signals were gathered using accelerometers attached to the motor
housing using a magnetic base. Accelerometers were located at the 12 o’clock position at
both the drive end and fan end of the motor housing.

In this experiment, a dynamometer with an embedded electronic control unit was
used to apply different motor loads (0–2.237 kW). It is known as absorbing dynamometer
that acts like a load driven by the motor. The amount of applied torque was proportional
to the motor load that was managed via variable frequency drive through the control unit.
Therefore, the increase in motor load resulted in an increase in torque and a reduction in
shaft speed. The 0 kW motor load represented the no-loading condition and the shaft speed
was slightly slower than synchronous speed. However, under the three loading conditions
(0.746–2.237 kW), the shaft speed was less than the synchronous speed.

Figure 1. The experimental testing rig.

The tested bearings were steel, sealed, deep-groove ball bearings (SKF 6205-2RS JEM)
installed at the drive end of the motor. The ball bearing and its dimensions are shown in
Table 1. Each bearing had a limiting speed, 18,000 rpm, and a maximum basic dynamic
load, 14,800 N. Artificial fatigue cracks were seeded on the bearings using electro-discharge
machining (EDM), as shown in Figure 2. Faults with diameters, 0.18 mm and 0.53 mm,
were introduced on different bearings at the rolling element (ball), the inner race, and the
outer race. After seeding the bearings with faults, they were installed into the motor to test
them and record the vibration data sets.

Table 1. Ball bearing dimensions.

Bearing Model Bore (mm) Outside Diameter (mm) Width (mm) Ball Diameter (mm)

SKF 2605 JEM 24.89 51.82 14.99 7.87
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Figure 2. Defected bearings with different faults: (a) ball, (b) inner race, (c) outer race. [32].

2.2. CWRU Vibration Data Sets

The vibration data sets were collected from 28 bearings under normal and faulty
conditions, as shown in Table 2. There were four data sets collected from bearings under
normal condition. On the other hand, the remaining 24 data sets were collected from
bearings under minor faults, 0.18 mm, and severe faults, 0.53 mm. As explained earlier, the
tested bearing faults were ball, inner race, and outer race. In the experiment, the data sets
were measured using accelerometers connected to the motor drive end with the aid of a
magnetic base. The sampling rate of the data sets was 48,000 samples/s.

In Table 2, the provided rotational speed is an average speed measured during each
test. Regarding the measuring device, the speed was recorded via a tachometer installed on
the shaft. In this experiment, using a dynamometer and electronic control system, several
motor loads, 0–2.237 kW, were used to apply different torque loads on the shaft. Using
the control system, motor load remained approximately constant throughout each test.
Moreover, the small changes in motor load did not affect the radial load and they had a
minimal effect on shaft speed [33].

Table 2. Specifications of the different bearing faults.

Number of Data Sets Diameter (mm) Depth (mm) Motor Speed (rpm) Motor Load (kW)

Normal 4 - -

1797 0

1772 0.746

1750 1.491

1730 2.237

Minor faults
Ball (4)

Inner race (4)
Outer race (4)

0.18 0.28

1797 0

1772 0.746

1750 1.491

1730 2.237

Severe faults
Ball (4)

Inner race (4)
Outer race (4)

0.53 0.28

1797 0

1772 0.746

1750 1.491

1730 2.237
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3. Materials and Methods
3.1. DFA Method

The DFA method was introduced to study the long-range correlation in the DNA
nucleotides [30]. It is a powerful method in estimating the power low scaling, especially
in non-stationary time series. As a result of detrending in the DFA method, the present
non-stationary can be removed prior to estimating the scaling exponent (α). The method
has been used in assessing the correlation properties in various research fields.

The scaling exponent (α) provided a reliable measure of the stationarity and the
degree of long-range correlation in any time series. The time series was stationary when
the scaling exponent (α) was below 1. Moreover, the stationary time series could be either
anticorrelated (0 < α < 0.5), uncorrelated (α = 0.5), or long-range correlated (0.5 < α < 1).
In the anticorrelated series, the increases were likely to be followed by decrease, and vice
versa. On the other hand, in the long-range correlated series, the increases were expected
to be followed by further increase, and vice versa.

The non-stationary time series had a scaling exponent higher than 1. For α < 1, the
series had long-range correlation not following the power law. The steps to compute the
scaling exponent (α) of any time series, x(t), are summarized below:

(1) Compute the integrated time series, y(t), as shown in Equation (1).

y(t) =
t

∑
i = 1

(x(i)− x) (1)

(2) Divide the integrated series into equally spaced boxes with size of n. Inside each box,
detrend the series segment by subtracting it from its best linear fit, yn(t).

(3) Compute the fluctuation function, F(n), by calculating the RMS value of the detrended
time series for different box sizes, as shown in Equation (2).

F(n) =

√√√√ 1
N

N

∑
j = 1

[y(j)− yn]
2 (2)

(4) The scaling exponent (α) represents the slope of the best linear fit of the fluctuation
function on the log-log scale.

3.2. Crossover Phenomenon

The existence of two linear scaling regions in the log-log plot of the fluctuation
function is called the crossover. This phenomenon was first discovered in the heartbeat
time series [34]. Subsequently, the existence of crossover phenomenon was confirmed in
several real-world time series in diverse research fields. In [35], the authors showed that
the crossover in the DFA method could be a result of periodic trend in the time series.

In a correlated time series with additive periodic sinusoidal trend with a period of
T, the fluctuation function, F(n), can be written as the superposition of the fluctuation
function, FS(n), of the time series and the fluctuation function, FT(n), of the sinusoidal
trend, as shown in Equation (3).

|F(n)|2 = |FS(n)|2 + |FT(n)|2 (3)

The fluctuation function, F(n), exhibits a crossover phenomenon with two linear
regions. It can be shown that crossover occurs at the period of the sinusoidal trend
(n = T). As shown in Figure 3, at the short-time scale (n < T), the effect of the periodic
trend was dominant compared to the correlated series. Moreover, the fluctuation function
of the correlated series was dominant at the long-time scale (n > T) as the fluctuation
function of the periodic sinusoidal trend remained bounded at higher time scales.
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Figure 3. Crossover phenomenon in correlated time series: (a) correlated time series (scaling exponent (α) = 1.2);
(b) sinusoidal trend (time period (T) = 1256); (c) the correlated time series with a sinusoidal trend; (d) the fluctuation
function of the correlated series with a sinusoidal trend.

4. Results and Discussion
4.1. Fractal Characteristics of Vibration Signals

Using the DFA, the fractal characteristics of vibration signals can be inferred by
calculating scaling exponent. The bearing vibration data were collected as part of an
experiment conducted by the Case Western Reserve University. At a sampling rate of
48,000 samples/s, Figure 4 shows 1-second vibration measurements from bearings under
four different health conditions: no fault (normal), rolling element (ball), inner race, and
outer race faults.

Based on the measurements, the vibration signals in faulted bearings had higher
deviation compared to the normal ones. In the normal bearing, the vibration amplitude
varied between −0.2 m/s2 and 0.2 m/s2. However, the outer race-faulted bearing had
more severe deviations with vibration amplitude up to 6 m/s2. In the faulted bearings, the
ball fault had lower vibration amplitude compared to the other two faults (inner race and
outer race).

Figure 4. Vibration signals from bearings under different health conditions: (a) normal, (b) ball fault,
(c) inner race fault, (d) outer race fault.
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We applied the DFA method on the vibration signals from 28 bearings under three
health conditions, no fault (normal), minor fault (0.18 mm), and severe fault (0.53 mm). In
Figure 5, all the fluctuation functions show two scaling regions resulting from the crossover
phenomenon. At the short-time scale (3 < n < 17), the average scaling exponents of
vibration signals from bearings under normal state, minor faults, and severe faults were
1.39, 1.76, and 1.85, respectively. Therefore, the calculated scaling exponents (α1) indicated
non-stationarity (α > 1) and long-range correlation (α > 0.5) at the short-time scale. The
scaling exponents (α1) fell between 1 and 2 and they increased as we moved from normal
toward severely faulted bearings.

On the other hand, the second linear region was present at the long-time scale between
the windows (n), 7000 and 200,000. At the long-time scale, the average scaling exponents
of vibration signals from bearings under normal state, minor faults, and severe faults
were 1.07, 1.01, and 1.02, respectively. The scaling exponents (α2) of the vibration signals
were approximately distributed around 1 for all the bearings under the different health
conditions. That means the vibration signals possessed long-range correlation and behaved
similarly to white noise with scaling exponent close to 1.

Figure 5. Fluctuation functions (F(n)) of bearing vibration signals (48,000 samples/s): (a) normal
(black), (b) minor (green), and severe (red) ball faults, (c) minor (green) and severe (red) inner race
faults, (d) minor (green) and severe (red) outer race faults.

The fractal characteristics of the vibration signals could unravel the hidden features
associated with the different bearing faults. By studying these characteristics, we provided a
novel method to diagnose the health condition of the bearing based on its scaling exponents.
As shown in Figure 6, the scaling exponents (α1 and α2) of the bearings were plotted on
the x- and y-axes. The range of the scaling exponents (α2) at the long-time scale was the
same among normal and faulted bearings. That means the minor and severe faults posed
no effect on the vibration dynamics at the long-time scale.

On the other hand, the faulted bearings possessed higher scaling exponents (α1) at
the short-time scale compared to the normal ones. The normal bearings had smaller
scaling exponents (α1) distributed between 1.2 and 1.6. Moreover, the scaling exponents
increased gradually as the severity of the fault increased. At the short-time scale, the scaling
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exponents showed a shift from anticorrelation in normal bearings to long-range correlation
in faulted bearing. A promising application of our proposed method is the detection of
different bearing faults from the vibration signals by estimating the scaling exponents (α1)
at the short-time scale.

Figure 6. Scaling exponents of bearing vibration signals (48,000 samples/s) at short- and long-
time scales.

In the literature, DL methods have been used increasingly in fault detection and
diagnosis due to their high efficiency and accuracy. Specifically, several DL methods have
been proposed to diagnose bearing faults based on the CWRU data set [36]. The most
common methods include auto-encoders, convolutional neural networks (CNN), deep
belief networks (DBN), and generative adversarial networks (GAN). As shown in Table 3,
based on the selected classifier, these methods can diagnose bearing faults at different
accuracy rates: auto-encoders (83–99.8%), CNN (96.8–100%), DBN (84–99.6%), and GAN
(96–99.9%).

Table 3. Diagnostic performance of different deep learning methods.

Reference Method Hyperparameter Accuracy

[25] auto-encoders Gath-Geva (GG) 83.4%

[37] auto-encoders softmax 99.83%

[38] CNN rectified linear unit, softmax, and sub-sampling layer 96.75%

[39] CNN batch normalization, maxpool, rectified linear unit, dropout, and softmax 100%

[26] DBN sigmoid and rectified linear unit 84.2%

[40] DBN sigmoid 99.55%

[41] GAN sigmoid and softmax 96%

[42] GAN rectified linear unit and leaky rectified linear unit 99.93%
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In this paper, the scaling exponent (α1) was proposed as the input of two classification
approaches. In the first one, we aimed to classify the bearings as either healthy or faulty
based on scaling exponents from several 1000-sample vibration signals. Secondly, we
classified the severity of the fault into either minor or severe fault. The performance of the
scaling exponent (α1) as a binary classifier can be assessed using the confusion matrix and
receiver operating characteristic (ROC) curve. Specifically, we chose the overall accuracy,
as shown in Equation (4), to evaluate performance of the proposed method. The accuracy
quantified the performance by calculating the ratio of correctly predicted samples with
respect to the total number of samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

TP and TN are the number of correctly predicted positive and negative samples,
respectively. FP represents the number of positive samples that was classified incorrectly by
the method. In addition, FN denotes the number of negative samples that was misclassified.

In the first approach, we calculated the scaling exponents (α1) from the vibration
signals collected from healthy and faulted bearings. Moreover, each scaling exponent was
calculated from a vibration signal of 1000 samples. The scaling exponent distributions
of all the vibration signals are shown in Figure 7a. Using ROC curve, we evaluated the
performance of our classification method by calculating the area under curve (AUC). In
general, the AUC values range from 0.5 (random prediction) to 1 (perfect prediction). As
shown in Figure 7b, the AUC was equal to 1, which indicates that our method can identify
healthy and faulted bearings correctly without any misclassifications. In Figure 7c, we
have the overall accuracy of the proposed method at different cutoff values. It seems that
the highest accuracy, 100%, was achieved at scaling exponent cutoff of 1.63.

Figure 7. (a) Scaling exponent (α1) distributions of bearing vibration signals (1000 samples each) collected from healthy and
faulted bearings. (b) Receiver operating characteristic (ROC) curve for the proposed method. (c) Accuracy vs. cutoff plot.

In the second approach, we focused on the classification of bearings with minor or
severe faults based on the scaling exponent (α1). Similarly, the scaling exponents were
calculated over several 1000-sample vibration signals. As shown in Figure 8, we computed
the scaling exponent distributions of the faulted bearings with minor or severe faults. Based
on ROC and accuracy curves, the method had high prediction capability of identifying
fault severity with AUC of 0.9. Moreover, the overall accuracy of this approach was 85%
and it was achieved at α1 = 1.91.
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Figure 8. (a) Scaling exponent (α1) distributions of bearing vibration signals (1000 samples each) collected from faulted
bearings. (b) ROC curve for the proposed method. (c) Accuracy vs. cutoff plot.

For this paper, we focused our analysis on vibration signals with high sampling rate,
48,000 samples/s. Clearly, the high sampling rate provided better visibility of the vibration
signal dynamics. Therefore, our approach is capable of diagnosing bearing faults with high
accuracy rates, 85% and 100%, as shown in Table 4. The other CWRU data sets had lower
sampling rate, 12,000 samples/s, recorded during the three bearing faults. As a result of
low sampling rate, the fluctuation functions had smaller linear regions at the short- and
long-time scales, as shown in Figure 9. Therefore, it was not possible to estimate the scaling
exponents (α1 and α2) accurately. Moreover, it is clear from Figure 10 that the classification
of different bearing faults was more challenging and less accurate.

In Figure 11, we evaluate the diagnostic performance of the proposed method by calcu-
lating the scaling exponent (α1) from vibration signals at sampling rate of 12,000 samples/s.
Using ROC and accuracy curves, it is shown that accuracy of diagnosing minor and severe
faults was 65% at scaling exponent (α1) equal to 1.33.

Table 4. Diagnostic performance of the proposed method using detrended fluctuation analysis (DFA).

Classification Sampling Rate (Samples/s) Cutoff AUC Accuracy

Healthy and faulted bearings 48,000 1.63 1 100%

Bearing faults into minor and severe faults 48,000 1.91 0.9 85%

Bearing faults into minor and severe faults 12,000 1.33 0.66 65%

Figure 9. Fluctuation functions (F(n)) of bearing vibration signals (12,000 samples/s): (a) minor (green) and severe (red)
ball faults; (b) minor (green) and severe (red) inner race faults; (c) minor (green) and severe (red) outer race faults.
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Figure 10. Scaling exponents of bearing vibration signals (12,000 samples/s) at short- and long-
time scales.

Figure 11. (a) Scaling exponent (α1) distributions of bearing vibration signals (1000 samples each) collected from faulted
bearings. (b) ROC curve for the proposed method. (c) Accuracy vs. cutoff plot.

4.2. Effect of Data Anomalies on the Fractal Characteristics of Vibration Signals

In the real-world environment, vibration measurements are susceptible to data quality
issues during the data acquisition stage. So, we devoted this section to study the effect of
these issues on estimating the fractal characteristics of vibration measurements. Here, we
focused on the impact of induced noise and data loss on the estimated scaling exponents of
the vibration signals under different health conditions.

4.3. Vibration Signals with Induced Noise

The vibration data may contain measurement errors and noise as a result of experi-
mental measurements. The level of induced noise depends on the application and the used
measuring device. In the vibration measurements, the additive noise followed a Gaussian
distribution [43,44]. To study the effect of the noise on the performance of the Detrended
Fluctuation Analysis (DFA) and the proposed method, we considered an additive zero-
mean white Gaussian noise with a variable standard deviation (σ) to simulate the different
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levels of the noise. For each noise level, we calculated the signal-to-noise ratio (SNR) as the
ratio of the vibration signal power to the power of the noise.

For this paper, the scaling exponent (α1) was proposed as a new diagnostic parameter
of the bearing health. So, we focused here on the effect of the induced noise on the estimated
scaling exponent. At each SNR, we calculated the scaling exponents (α1) of the vibration
signals (induced by noise) from bearings under the three health conditions (normal, minor
fault, and severe fault). Subsequently, we calculated the mean relative errors in the scaling
exponent versus the corresponding SNR, as shown in Figure 12. In normal bearings, the
relative errors in the scaling exponent remained below 10% for all the SNRs higher than
9 dB. However, the faulted bearings had mean relative errors in the scaling exponent below
10% for SNR ≥ 12 dB. From Figure 12, it is clear that the white Gaussian noise had a
negligible effect on the estimated scaling exponents for SNR ≥ 18 dB.

Figure 12. Relative errors in the scaling exponent (α1) due to induced noise in the bearing vibration signals: (a) normal,
(b) ball fault, (c) inner race fault, (d) outer race fault.

4.4. Vibration Signals under Data Loss

As part of the condition-based monitoring of mechanical systems, incomplete or
missing vibration measurements may occur as a result of sensor failure, communication
failure, or storage size restrictions [45,46]. To assess the limitation of data loss on the
proposed method, we evaluated the effect of different percentages of data loss on the
estimated scaling exponents (α1). The data loss was simulated by randomly removing the
data samples from the original vibration signal.

At each data loss percentage, we calculated the relative errors in the scaling exponent
(α1) of vibration signals from the different bearings. In Figure 13, we plot the mean relative
errors in the scaling exponent versus the corresponding data loss percentage. It seems that
the relative errors increased gradually as the data loss percentage increased. For a data loss
percentage up to 15%, the means of the relative errors for all the bearings were below 10%.
We concluded that the proposed diagnosis method is resilient and robust against low data
loss percentages up to 15%.

Figure 13. Relative errors in the scaling exponent (α1) due to data loss in the bearing vibration signals: (a) normal, (b) ball
fault, (c) inner race fault, (d) outer race fault.
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5. Conclusions

In this paper, we studied the fractal characteristics of bearing vibration signals from
CWRU data set using DFA method. Our results showed that vibration signal from faulted
bearing had higher scaling exponent (α1) at the short scale compared to normal bearing.
Based on the estimated scaling exponent, we proposed a novel method to detect bearing
faults and classify their severity. The proposed method can predict faulted bearing with an
accuracy rate of 100% using high sampling rate vibration data. We believe that the scaling
exponent (α1) can be adopted as a novel classifier of different bearing faults. One of the
limitations of the proposed method is low sampling rate of vibration data. It seems that the
proposed method is not suitable for typical data acquisition systems at low sampling rate.

It was shown that the proposed method is resilient against the common data quality
issues, induced noise and data loss, in the real-measurement environment. It seems that
the relative error in scaling exponent remained below 10% in the case of acceptable SNR
and data loss levels. In the future, we intend to apply the proposed diagnostic approach on
the other benchmark vibration data sets to test the capability of this approach in identifying
the bearing faults under different operating conditions.
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