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Abstract: In this paper, the vibration analysis of a partially constrained layer damping plate subjected
to moving loads is investigated. In addition, the first four order damping loss factor of the system
is optimized with the location of partially constrained layer damping as a design variable. The
equations of motion of a partially constrained layer damping plate are derived through the Lagrange
equation based on first order shear deformation theory (FSDT). Next, using an extended Rayleigh–
Ritz solution together with the penalty method expresses the unknown displacement terms, and the
differential quadrature method is proposed to obtain the dynamic response of the system in the time
domain. A multi-population genetic algorithm (MPGA) is employed to deal with the optimization of
the damping loss factor of a partially constrained layer damping plate. To ensure the accuracy of the
method presented in this study, the numerical results are comprehensively verified by experiments
and open literature. The optimization results show that the damping loss factor increases when the
position of the patch is close to the constraint boundary, and the best strategy is to optimize the low
order damping loss factor of the system under moving loads. It is believed that the research results
are of interest to engineering science.

Keywords: partially constrained layer damping; dynamic response; optimization; moving loads

1. Introduction

Damping technology is one of the important methods to reduce the vibration and
improve the performance of many engineering structures. The traditional passive damping
method is to attach a viscoelastic damping material and a restraint layer to the controlled
object. It has the advantages of a simple structure, easy implementation, wide control fre-
quency, stability, reliability and low cost. It has been paid attention to by many researchers
for many years. Partially constrained layer damping (PCLD) consists of a patch bonded to
the structure to be damped. The patch is formed of a viscoelastic layer, constrained by a
stiff layer covering part of the structure.

The mechanical and damping properties of sandwich structures have been studied for
decades. Kerwin [1] proposed a sandwich structure consisting of a middle layer (damping
layer) and an upper and lower layer (constrained layer) and investigated the damping factor
of a sandwich plate. Mead et al. [2] derived the sixth order differential governing equation
of a three-layer sandwich beam and studied the forced vibration of the beam by using the
method of Di Taranto. Johnson et al. [3] applied the finite element method to predict the
modal damping ratios in three-layer laminates. Lall et al. [4] analyzed the damping and
vibration characteristics of a partially covered plate with a simple supported based on the
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Rayleigh–Ritz method. Cupial et al. [5] studied the free vibration of a rectangular sandwich
plate with a viscoelastic layer by using the first order shear deformation theory (FSDT).
Wang et al. [6] proposed the Galerkin method to analyze a sandwich plate. Banerjee et al. [7]
presented an accurate dynamic stiffness model for a three-layered sandwich beam to study
the free vibration characteristics of the beam. Ferreira et al. [8] investigated the dynamic
problem of the sandwich laminated plates based on a layerwise finite element model, and
the dynamic behavior of the model was validated by the public literature. Khalfi et al. [9]
dealt with the harmonic and transient responses of a partially constrained layer damping
plate. Hernandez et al. [10] studied the effects of the uncertainties of viscoelastic sandwich
structures in passive and hybrid control strategies on their modal parameters. It can be seen
from the above statement that many studies have focused on linear models. Some studies
on nonlinear models have also been carried out. Kazeminia et al. [11] studied the realization
of the variational iteration method in the Korteweg-de-Vries equation for actual and high-
order nonlinear equations. Fazeli et al. [12] proposed the homotopy perturbation method to
obtain explicit solutions to nonlinear fourth-order parabolic equations. Kazeminia et al. [13]
proposed semi-analytical solutions of nonlinear differential equations with boundary value
problems based on general Lagrangian multipliers. Zahedi et al. [14] presented a nonlinear
dynamic response model of a screen machine which was described by nonlinear coupled
differential equations and excited by a self-resonant control system. The nonlinear model
has higher calculation accuracy, but it will increase the complexity and calculation time.
Therefore, the nonlinear model is difficult to apply to engineering.

The optimization of the sandwich structures has also been studied in recent years. For
such sandwich structures with constrained damping layers, many literatures focus on the
optimization of damping loss factors or the dynamic response. The design variables opti-
mized for these sandwich structures include material parameters, coverage area, thickness,
location of the constrained damping layer and structure weight. Mantena et al. [15] investi-
gated the optimal constrained viscoelastic tape to maximize damping in laminated beams.
Marcelin et al. [16] studied the optimal damping of beams constrained by a damping layer
based on an efficient finite element model. Ro [17] dealt with the optimal placement strate-
gies of the active constrained layer damping to minimize the total weight of the damping
treatment by using the modal strain energy method. Zheng et al. [18] carried out the opti-
mization of the constrained layer damping treatment to minimize the vibration response of
cylindrical shells, which are considered to transverse force excitation. Lepoittevin et al. [19]
developed an optimization algorithm to optimize the loss factor of a segmented constrained
layer damping beam. Zheng et al. [20] investigated the optimization of a constrained layer
damping layout on the plates using a topology optimization tool. Kumar et al. [21] proposed
a new 0–3 viscoelastic composite layer and the layer is arranged by an optimization algorithm.
NAKRA [22] investigated the damping effectiveness of a partially covered plate, which in-
clude multi-parameter optimization techniques. Meanwhile, due to the rapid development of
computers, many novel algorithms have been developed, such as genetic algorithm, neural
network algorithm and so on. Some researchers applied these algorithms to optimize the
sandwich structures and acquired good results. Marcelin et al. [23] dealt with the optimal
damping of a sandwich beam covered by one or several portions and the optimization prob-
lem is solved by using a genetic algorithm. Zheng et al. [24] studied an optimization model to
minimize the vibrational energy of a sandwich beam and employed a genetic algorithm-based
penalty function to obtain the optimal solutions. Araújo et al. [25] considered the constrain
optimization of the damping characteristics to maximize the damping loss factors based on
the Feasible Arc Interior Point Algorithm. Hou et al. [26] applied a genetic algorithm with a
large-scale mutation method to optimize the modal loss factor; the design variables include
the thicknesses of the constrained layer and the viscoelastic layer and the shear modulus of the
viscoelastic. Pathan et al. [27] proposed a real-coded constrained genetic algorithm to optimize
the damping behavior of composite laminates. Sun et al. [28] employed a multiple population
genetic algorithm to find the best coating location of a cantilever titanium plate, which aims
to obtain the maximum modal loss factor. Gao et al. [29] applied a multi-objective genetic
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algorithm to solve the multi-objective function of the hard-coating blisk. From the above
discussion, it can be found that many researchers have done some work on the optimization
of the damping loss factor of the sandwich structure based on some optimization algorithms.
However, the optimal damping loss factor with the constrained damping layer position as the
design variable is rare. This paper deals with the optimal location of the constrained damping
layer of a sandwich plate to maximize the damping loss factor by using a multi-population
genetic algorithm (MPGA).

In addition, the dynamic behavior of structures under moving loads is also the focus
of the engineering field, especially bridges, roads and mechanical engineering. Fryba [30]
proposed several analytical solutions on the moving loads problem. Gbadeyan et al. [31]
considered a theory that has arbitrary end support and is under an arbitrary number of
masses to obtain the dynamic response of beams and rectangular plates. Kim et al. [32]
investigated the dynamic response of a plate on a viscous Winkler foundation under
moving loads of varying amplitudes and developed a formulation by using a triple Fourier
transform and a double Fourier transform. Wu [33] concerned the dynamic behavior of
a rectangular plate under curvilinear moving loads based on the finite element method
(FEM), which transforms all the external loads into equivalent forces on corresponding
nodes. Lee et al. [34] studied the dynamic analysis of composite plates under multi-moving
loads based on a third order shear deformation theory (TSDT) and applied the 7-DOF finite
element model to analyze the vibration problem. Ghafoori et al. [35] finished the dynamic
characteristic of angle-ply laminated composite plates subjected to moving loads based on
a first-order theory and employed the Newmark method to solve the equations of motion
by integrating in the time domain. Amiri et al. [36] dealt with the vibration analysis of a
Mindlin plate under a moving mass based on the first order deformation theory and used
the direct separation of variables and the eigenfunction expansion method to transform the
three basic variables into a series (the eigenfunction of plate free vibration). Esen et al. [37]
proposed a new element to analyze the transverse vibration of the plates under moving
loads. Malekzadeh et al. [38] carried out the dynamic response of a functionally graded
plate in a thermal environment under a moving load by using FEM with Newmark’s time
integration scheme. Song et al. [39] applied the Rayleigh–Ritz solution to investigate the
dynamic behavior of the sandwich plate under moving loads.

From the above statement, the dynamic responses of plates under moving loads attract
many researchers. Currently, there is little research on the dynamic response of a partially
constrained layer damping plate under moving loads. Furthermore, the relationship
between the optimization of damping and the dynamic response of plates under moving
loads is still unknown. This study investigated the dynamic response analysis of a thin
plate with partially constrained layer damping optimization under the moving loads for
various boundary conditions.

In this paper, a numerical dynamic model of a partially covered plate under moving
loads was established based on the Lagrange equation. The trigonometric function and
power function were adopted for achieving a fast and accurate convergence. The differen-
tial quadrature method is used to solve the time domain of the system with high precision.
The MPGA is employed to deal with the optimization of damping loss factors with the
location of partially constrained layer damping as the design variable. The experimental
verification of the optimization results is completed. Then, the optimization problem is
analyzed by discussing the coverage of different sizes and different boundaries. Finally,
the relationship between the optimization of the damping loss factor and the dynamic
response is performed.

2. Theoretical Formulation
2.1. Model of Partially Covered Plate under Moving Loads

As shown in Figure 1, a partially covered cantilever plate consists of three layers,
which are the b-base layer, d-damping layer and c-constrained layer. In this paper, the
external force is assumed as a moving concentrated force, which moves from point A to
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point B in a constant velocity vF. In Figure 1a, the small green point in the black circle
means the force is perpendicular to the paper and toward the outside. The direction of the
force is also clearly depicted from the left view in Figure 1b. The path of the external force,
denoted by a red dotted line, is parallel to the o-x axis. The boundary constraint is imposed
by some spring supports with very high stiffness. In this study, the following widely
adopted assumptions [1] are raised to derive the energy expression of the sandwich plate:

(a) For the base plate and constrained plate, the effect of rotatory inertia and normal
stresses along the thickness are taken to be negligibly small.

(b) The normal to the undeformed middle surface remains straight, and the normal to
the deformed middle surface is unstretched in length.

(c) The transverse displacement at a section is considered not to vary along the thick-
ness and the longitudinal displacements are assumed to vary linearly along the thickness.

(d) No slip occurs at the interfaces between different layers.
(e) The damping layer is only subjected to shear stress and the modulus of the vis-

coelastic material is considered to be complex; Gd = Gd × (1 + jβ), where β is the loss factor
of the viscoelastic material and j is the imaginary unit.

Figure 1. Model of system; (a) front view; (b) left view.

2.2. Governing Equation

In order to accurately describe the motion of the sandwich plate, nine displacement
components, namely w, uc, ud, ub, vc, vd, vb, γxz,d, and γyz,d are required. Subscripts c,
d, and b represent the constraining layer, damping layer and base plate, respectively. w,
u, and v represent the displacement along the o-z axis, o-x axis, and o-y axis, respectively.
γ is the shear strain in the damping layer and its subscripts represent the shear plane,
where the first subscript denotes the direction of the strain. Figure 2 shows the longitudinal
displacement of the sandwich plate in the x-z plane. Based on assumptions c and d, the
following relationship can be obtained

uc +
hc
2 w,x = ud + hd

2 (γxz,d − w,x)

ub − hb
2 w,x = ud − hd

2 (γxz,d − w,x)
(1)
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where w,x represents the partial derivative of w with respect to x (w,x = ∂w
∂x ); hc, hd, and hb

are thicknesses of the constrained layer, damping layer and base plate, respectively. From
Equation (1), ud, vd, γxz,d, and γyz,d can also be expressed as

ud = uc+ub
2 + hc+hb

4 w,x, vd = vc+vb
2 + hc+hb

4 w,y
γxz,d = uc−ub

hd
+ h

hd
w,x, γyz,d = vc−vb

hd
+ h

hd
w,y

(2)

where h = hd+(hc+ hb)/2, w,y represents the partial derivative of w with respect to y
(w,y = ∂w

∂y ).

Figure 2. Displacement of the sandwich plate in x-z plane.

Based on assumptions (a) and (b), constrained layer and base plate are under plane
stress. The stain-displacement relationship is:

εx,c = uc,x − zw,xx, εy,c = vc,y − zw,yy
εx,b = ub,x − zw,xx, εy,b = vb,y − zw,yy
γxy,c = uc,y + vc,x − 2zw,xy, γxy,b = ub,y + vb,x − 2zw,xy

(3)

where w,xx, w,yy, w,xy represent the partial derivatives of w,x (w,y) with respect to x (y)

(w,xx = ∂2w
∂x2 , w,yy = ∂2w

∂y2 , w,xy = ∂2w
∂x∂y ). The corresponding constitutive relation is:

σx,c =
Ec

1−µ2
c

[
uc,x + µcvc,y − z

(
w,xx + µcw,yy

)]
σy,c =

Ec
1−µ2

c

[
uc,y + µcvc,x − z

(
w,yy + µcw,xx

)]
σx,b = Eb

1−µ2
b

[
ub,x + µbvb,y − z

(
w,xx + µbw,yy

)]
σy,b = Eb

1−µ2
b

[
ub,y + µbvb,x − z

(
w,yy + µbw,xx

)]
τxy,c =

Ec
2(1+µc)

(
uc,y + vc,x − 2zw,xy

)
τxy,b = Eb

2(1+µb)

(
ub,y + vb,x − 2zw,xy

)
τxz,d = Ed

2(1+µd)
γxz,d, τyz,d = Ed

2(1+µd)
γyz,d

(4)

where µ and E represent the Poisson ratio and elasticity modulus, respectively. For the
constrained layer, its strain energy Uc is:

Uc =
1
2

∫ b

a

∫ d

c

∫ hd/2

−hd/2

(
σx,cεx,c + σy,cεy,c + τxy,cγxy,c

)
dxdydz (5)

For the damping layer, based on assumption e, its strain energy Ud is:
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Ud =
1
2

∫ b

a

∫ d

c

∫ hd/2

−hd/2

(
τxz,dγxz,d + τyz,dγyz,d

)
dxdydz (6)

Substituting Equations (3) and (4) into Equations (5) and (6), Uc and Ud can be
expanded as:

Uc =
1
2

∫ b

a

∫ d

c


Echc
1−µ2

c

[
u2

c,x + v2
c,y + 2µcuc,xvc,y +

1−µc
2
(
uc,y + vc,x

)2
]

+ Ech3
c

12(1−µ2
c)

[
w2

,xx + w2
,yy + 2µcw,xxw,yy + 2(1− µc)w2

,xy

] dxdy (7)

Ud =
Gd

2h2
d

∫ b

a

∫ d

c

[
(uc − ub + w,xh)2 +

(
vc − vb + w,yh

)2
]
dxdy (8)

The strain energy of the base plate, Ub, can be expressed as:

Ub =
1
2

∫ L

0

∫ W

0


Ebhb
1−µ2

b

[
u2

b,x + v2
b,y + 2µbub,xvb,y +

1−µb
2
(
ub,y + vb,x

)2
]

+
Ebh3

b
12(1−µ2

b)

[
w2

,xx + w2
,yy + 2µbw,xxw,yy + 2(1− µb)w2

,xy

]
dxdy (9)

The total strain energy of the sandwich plate is:

U = Uc + Ud + Ub (10)

For the kinetic energy of the sandwich plate, the transverse inertia is only considered
and the total kinetic energy is:

T =
1
2

[∫ b

a

∫ d

c
(ρchc + ρdhd)

.
w2dxdy +

∫ L

0

∫ W

0
ρbhb

.
w2dxdy

]
(11)

where ρi (i = c, d and b) is the density for different layers. The potential energy of the
moving load can be expressed as:

W = WF + WM (12)

For moving mass, the force due to weight and inertia can be expressed as:

FM =
[
Mg + M

..
w(xM, yM, t)

]
δ(x− xM)δ(y− yM) (13)

where xF = vF × t, yF is a constant value and δ(.) denotes the Dirac delta-function. The
potential energy due to the weight and inertia of the moving load, can be written as:

WM = −
∫ L

0

∫W
0

[
Mg + M

..
w(xM, yM, t)

]
δ(x− xM)δ(y− yM)

..
w(x, y, t)dxdy

= −M
[
g +

..
w(xM, yM, t)

]
w(xM, yM, t)

(14)

As shown in Figure 1a, the external force can be expressed as:

Fq(x, y, t) = fq(t)δ(x− xF)δ(y− yF), q = x, y, z (15)

where xF = vF × t, yF is a constant value and δ(.) denotes the Dirac delta-function. The
work done by the external force, Fq, is given by:

WF = −
∫ L

0

∫W
0

[
w(x, y, t)Fz(x, y, t) + ub(x, y, t)Fy(x, y, t) + vb(x, y, t)Fx(x, y, t)

]
dxdy

= − fz(t)w(xF, yF, t) + fy(t)ub(xF, yF, t) + fx(t)vb(xF, yF, t)
(16)
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2.3. Rayleigh–Ritz Solution and Response

From Equations (7)–(9), (11) and (16), it can be seen that only five unknown parameters
are needed to obtain the total energy of the cutting system, namely, w, uc, ub, vc, vb.
In this paper, the Rayleigh–Ritz method (RRM) is used to approximately express the
displacement components. The N*N-terms Rayleigh–Ritz solutions for the problem are of
the following form:

w =
N
∑

i=1

N
∑

j=1
wij(t)ϕi(x)ψj(y),

ub =
N
∑

i=1

N
∑

j=1
pij(t)ϕi(x)ψj(y), vb =

N
∑

i=1

N
∑

j=1
qij(t)ϕi(x)ψj(y)

uc =
N
∑

i=1

N
∑

j=1
rij(t)ϕi(x)ψj(y), vc =

N
∑

i=1

N
∑

j=1
sij(t)ϕi(x)ψj(y)

(17)

where wij, pij, qij, rij, and sij are Ritz coefficients (or generalized modal coordinates) and
ϕi(x) and ψj(y) are admissible functions. It should be noted that, unlike conventional
Rayleigh–Ritz solutions, the admissible functions adopted here just satisfy a totally un-
constrained condition and Courant’s penalty method is used to handle constraints. As
shown in Figure 1, the clamped constraint in y = 0 is realized by some springs with high
stiffness, where translational springs are used to limit the transverse displacement, w, in
y = 0, and torsional springs are applied in y = 0 to limit the rotation, wy. To improve
the numerical stability and convergent rate following admissible functions, permitting
non-zero displacement and translation at both ends for a free-free beam are adopted.

x− direction : ϕi(x) =

{ ( x
L
)i−1, i = 1, 2, 3

cos (i−3)πx
L , i = 4, 5, . . . , N

y− direction : ψj(y) =

{ ( y
W
)j−1, j = 1, 2, 3

cos (j−3)πy
W , j = 4, 5, . . . , N

(18)

The advantage of this improvement in RRM is that it is not needed to find satisfied ad-
missible functions for different boundary conditions while the convergence of the solution
is improved.

For the cantilever sandwich plate described in Figure 1a, the additional strain energy
of the translational and rotational springs is:

Vspring =
4

∑
i=1

V(i) (19)

Here:

V(1) = 1
2 k(1)z,t

W
0 w2

∣∣
x=0dy + 1

2 k(1)z,r
∫W

0 w2
,x
∣∣
x=0dy + 1

2 k(1)x,t
∫W

0 u2
∣∣
x=0dy

+ 1
2 k(1)x,r

∫W
0 u2

,x
∣∣
x=0dy + 1

2 k(1)y,t
∫W

0 v2
∣∣
x=0dy + 1

2 k(1)y,r
∫W

0 v2
,x
∣∣
x=0dy

V(2) = 1
2 k(2)z,t

∫ L
0 w2

∣∣
y=0dx + 1

2 k(2)z,r
∫ L

0 w2
,y

∣∣∣
y=0

dx + 1
2 k(2)x,t

∫ L
0 u2

∣∣
y=0dx

+ 1
2 k(2)x,r

∫ L
0 u2

,y

∣∣∣
y=0

dx + 1
2 k(2)y,t

∫ L
0 v2

∣∣
y=0dx + 1

2 k(2)y,r
∫ L

0 v2
,y

∣∣∣
y=0

dx

V(3) = 1
2 k(3)z,t

∫W
0 w2

∣∣
x=Ldy + 1

2 k(3)z,r
∫W

0 w2
,x
∣∣
x=Ldy + 1

2 k(3)x,t
∫W

0 u2
∣∣
x=Ldy

+ 1
2 k(3)x,r

∫W
0 u2

,x
∣∣
x=Ldy + 1

2 k(3)y,t
∫W

0 v2
∣∣
x=Ldy + 1

2 k(3)y,r
∫W

0 v2
,x
∣∣
x=Ldy

V(4) = 1
2 k(4)z,t

∫ L
0 w2

∣∣
y=Wdx + 1

2 k(4)z,r
∫ L

0 w2
,y

∣∣∣
y=W

dx + 1
2 k(4)x,t

∫ L
0 u2

∣∣
y=Wdx

+ 1
2 k(4)x,r

∫ L
0 u2

,y

∣∣∣
y=W

dx + 1
2 k(4)y,t

∫ L
0 v2

∣∣
y=Wdx + 1

2 k(4)y,r
∫ L

0 v2
,y

∣∣∣
y=W

dx

(20)
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where kt and kr are stiffness coefficients of the translational and rotational springs, respec-
tively, and both of them take high value. Therefore, for this system, the Lagrangian is
L = T – U - V and the work done by nonconservative forces is WF. Using the Lagrange
equation, the governing equation of motion of the system can be given by:

M11 + M∗11 0 0 0 0
0 0 0 0

... 0 0 0
0 0

sym. · · · 0





..
w
..
p
..
q
..
r
..
s

+


C∗11 0 0 0 0

0 0 0 0
... 0 0 0

0 0
sym. · · · 0





.
w
.
p
.
q
.
r
.
s

 (21)

+


K11 + K∗11 + K′11 K12 K13 K14 K15

K22 + K′22 K23 K24 0
... K33 + K′33 0 K35

K44 K45
sym. · · · K55




w
p
q
r
s

 =


Fz(t)
Fx(t)
Fy(t)

0
0


where 0 is the N × N zero matrix, over-double-dot denotes double differentiation with
respect to time, w = [w11 w12 . . . w1N w21 . . . wNN]T, p = [p11 p12 . . . p1N p21 . . . pNN]T,
q = [q11 q12 . . . q1N q21 . . . qNN]T, r = [r11 r12 . . . r1N r21 . . . rNN]T, s = [s11 s12 . . . s1N s21
. . . sNN]T and

(M11 + M∗11)
..
w + C∗11

.
w +

(
K11 + K∗11 + K′11 + Kinv

)
w = Fz(t) (22)

Here:

Kinv =
[

K12 K13 K14 K15
]

K22 + K′22 K23 K24 0
K33 + K′33 0 K35

K44 K45
sym. K55

[ K12 K13 K14 K15
]T (23)

Equation (22) can also be written in the compact form:

M(t)
..
y(t) + C(t)

.
y(t) + K(t)y(t) = F(t) (24)

where y(t) = w(t) and F(t) = Fz(t) are displacement vector and force, and mass M(t), damping
C(t) and stiffness K(t) matrixes are of the order (N2 × N2). The detailed expansion formula
is shown in Appendix A. Mathematically, Equation (24) is a system of coupled ordinary
differential equations of second-order in time, which can be solved using various explicit or
implicit time step methods. In this study, Equation (24) is solved by using the differential
quadrature time integration scheme [39]. In addition, the natural frequency ω and the
damping loss factor η can be obtained by solving the eigenvalue Equation (24) when the
force is zero.

3. Optimization Problem
3.1. Optimization Process

In this section, the main research structure is shown in Figure 3. Firstly, the model
of the partially constrained damping plate under a moving load is established, and the
damping loss factor of the plate is optimized by multi-population genetic algorithms.
Secondly, the verification content is divided into two parts. The first part is to verify the
accuracy of the model through experiments and open literature. The second part is to verify
the accuracy of the optimization through the dynamic response of the partially constrained
damping plate. At this point, the accuracy of the model and algorithm are comprehensively
verified. In addition, there are some parts not shown in the structure, which is a discussion
of the influence of various parameters on the results.
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Figure 3. Research structure of this paper.

3.2. Objective Function

Partially constrained layer damping composite plates are widely used to suppress
vibration, especially in civil and mechanical engineering. The damping loss factor is
one of the most important parameters of composite plates and varies with the position
of the constrained damping layer. The optimization goal of this study is to obtain the
optimal location for the patches (constrained damping layer) of different sizes to ensure the
maximum damping loss factor of the composite plate with partial constraining damping.
This optimization problem is described by the previously derived model. It can be seen
that the position coordinates (a, b, c, d) of the patch are defined as the design variables
shown in Figure 1. The length and width of the patch are PL and PW, respectively. In this
study, the size of the patch is a constant. Thus, the optimization objective function can be
formulated as:

max : f (x, y) = ηi, i = 1, 2, 3 . . .
s.t. : 0 ≤ x ≤ L− PL

0 ≤ y ≤W − PW

(25)

where ηi represents the loss factors and subscript i is the order of the loss factors. Optimiza-
tion variables x and y correspond to a and c, respectively.

3.3. Solution Methodology

In this study, the multi-population genetic algorithm (MPGA) is adopted to solve the
proposed optimization problem. MPGA is an excellent probability search algorithm for
global optimization. Based on the standard genetic algorithm (SGA), MPGA decomposes
the SGA into several subpopulations by the idea of multi-population parallel evolution and
increases the number of gene patterns by exchanging information among subpopulations
(usually the optimal individuals) to avoid immature convergence. Figure 4 shows the
algorithm structure of MPGA, where immigration represents the best individual replacing
the worst individual in the target population and selection represents the best individuals
in different groups being selected and stored in elite populations to ensure that the optimal
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individuals generated by various groups are not destroyed or lost. Therefore, MPGA solves
the shortcomings of SGA.

Figure 4. Structure of multi-population genetic algorithms.

The calculation process of MPGA can be described as:

1. Population initialization and expansion: N populations are initialized, each of which
has a binary chromosome, and the binary chromosome is transformed by the range of
values of the x, y variables as shown in Equation (25).

2. Fitness calculation: Fitness is applied to distinguish between individuals in a popula-
tion. In this study, the objective function value is the maximum damping loss factor,
so the objective function is employed as the fitness function. The larger the objective
function, the greater the fitness and the better the individual.

3. Selection: From the old population, good individuals are selected with a certain
probability to form a new population to reproduce the next generation of individuals.

4. Crossover and mutation: The crossover is the random selection of two individuals
from the population to, through the exchange and combination of two chromosomes,
produce new, excellent individuals. The mutation is to randomly select an individual
from the population and select a point in the individual to mutate to produce a
better individual.

5. Immigration: The immigration is to replace the worst individual in the target popula-
tion with the best individual in the original population, so as to achieve the goal of
multi-population co-evolution.

6. Convergence: MPGA determines the algorithm to terminate based on the elite popu-
lation. Then, the optimized variables (x, y) and damping loss factor η are obtained.

4. Result Analysis
4.1. Validation

In this section, the previously derived model and optimization algorithm will be
verified by comparing the data of the experiment and the open literature.

To verify the accuracy of the present method, an SSSS partially covered composite plate
is taken into account. The geometry and material properties of the simply supported square
composite plate are as follows: L = W = 0.4 m, hb = 0.005 m, hd = 0.0025 m, hc = 0.0005 m,
ρb = ρc = 7800 kg/m3, ρd = 2000 kg/m3, β = 0.38, Ec = Eb = 207.0 GPa, Gd = 4.0 MPa, and
µc = µb = 0.334. The partially covered plate with the patch location is shown in Figure 5.
The natural frequency and loss factor of the first mode for the partially covered composite
plate, as shown in Table 1, are compared with the numerical results of the open literature.
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It can be seen that the results obtained in this paper are in good agreement with those in
the literature [22]. This validation ensures the accuracy in analyzing the partially covered
sandwich plate. The position of the patch is on the center of the sandwich plate.

Table 1. First mode natural frequency and loss factor of the partially covered sandwich plate.

Patches Size
Natural Frequencies, rad/s Loss Factors

Present Method Nakra [22] Present Method Nakra [22]

PL = 0.15 PW = 0.15 930.90 930.80 0.00304 0.00300
PL = 0.39 PW = 0.06 952.07 952.10 0.00784 0.00770

Figure 5. Experimental composite plate.

As seen in Figure 5, a cantilever composite plate with a partially constrained damping
layer is used for modal testing. The material of the base plate and constrained layer are both
selected aluminum alloy 5052. The material of the damping layer is selected aluminum
foam. The material and geometric parameters of the composite plate are shown in Table 2.
The equipment employed for modal testing includes an impact hammer (PCB MIH03
with sensitivity of 10 mV/l bf) and an accelerometer (DYTRAN 3032A with sensitivity
10.00 mV/g). The signals are recorded with a data acquisition system supported by the
B&K corporation. The position coordinates, a, b, c, d, of the patch are 0.085, 0.085, 0.185, and
0.185, respectively. Table 2 shows the detailed parameters of the composite plate (material
and geometric) [40].

Table 2. Material and geometric parameters of composite plates.

Parameters Base Plate Damping Layer Constrained Layer

Length L/m 0.25 0.08 0.08
Width W/m 0.25 0.08 0.08
Height h/m 0.004 0.004 0.004

Density ρ/(g·cm−3) 2.72 0.60 2.72
Elasticity modulus /GPa 69.3 12 69.3

Poisson ratio µ 0.33 0.33 0.33
Loss factor η / 0.25 /
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After the collection and analysis of experimental data, the experimental and theoretical
calculation results are listed in Tables 3 and 4. It can be clearly seen that the difference
between the experiment, calculation and error results are also counted in the table. All the
errors are within the acceptable range, which fully shows the accuracy of the theoretical
model in this study.

Table 3. The first four order natural frequencies of the sandwich plate obtained by the presented
method and experiment (Hz).

Order Theoretical Calculation (T) Experiment Result (E) Error
|T−E|/E (%)

1 59.53 57.45 3.62
2 142.21 137.35 3.40
3 348.74 343.62 1.49
4 437.47 431.54 1.37

Table 4. The first four order damping loss factor of the sandwich plate obtained by the presented
method and experiment.

Order Theoretical Calculation
(T) (%)

Experiment Result (E)
(%)

Error
|T-E|/E (%)

1 0.196 0.188 4.23
2 0.139 0.132 5.30
3 0.087 0.092 5.43
4 0.060 0.056 7.14

4.2. Optimization of Patch Location on Damping Loss Factor

In this section, a numerical analysis is carried out to study the optimal patch loca-
tion for a sandwich plate with partial constraining damping in four different boundary
conditions (CFFF, CFCF, SFSF CGSF) and the first four order damping loss factors are
taken into account. There are four classical boundary conditions (F-free, S-simply sup-
ported, C-clamped and G-guided) in this paper. The basic parameters of MPGA are
shown in Table 5. The geometry and material properties are as follows: L = W = 0.4 m,
LP = WP = 0.08 m, hc = hb = hd = 0.005 m, ρb = ρc = 7800 kg/m3, ρd = 2000 kg/m3, Ec = Eb
= 207 GPa, Gd = 4 MPa, and β = 0.38.

Table 5. The parameters of multi population genetic algorithm (MPGA).

Parameters. Value

Number of individuals 40
Precision of variables 20

Population size 10
Cross probability 0.7

Mutation probability 0.05

Then the simulation results can be obtained according to the above conditions and
all calculations are done by using MATLAB software. For CFFF, it can be clearly seen that
the optimal location and vibration modes of the first four order are shown in Figure 6.
The blue square patch represents the constrained damping layer, and the numbers in
parentheses represent the coordinates of the lower left corner of the patch. The mode
shapes in Figure 6a–d correspond to the location of the patch. In fact, the location of the
patch has little effect on the mode shapes by comparison. Figure 6 indicates that the optimal
locations of each order are far from the fixed constraints. In practice, far away from the
fixed constraints, there is a greater dynamic response under external forces. Therefore,
it is a reasonable optimization result. The first four loss factors of a sandwich plate with
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partially constrained layer damping after optimizing the location of the patch are shown in
Table 6. In Table 6, bold numbers indicate the results of the loss factor optimization for the
corresponding order. With the increase in order, the loss factor decreases gradually and the
loss factor of the optimized target order is greater than others.

Figure 6. Optimal location of the patch for CFFF. (a) optimization for first order loss factor; (b) optimization for second
order loss factor; (c) optimization for third order loss factor; (d) optimization for fourth order loss factor.

Table 6. The first four loss factors after optimizing the location of the patch for CFFF.

Figure number 1st Order 2nd Order 3rd Order 4th Order

Figure 6a 0.04077 0.02864 0.01239 0.0011
Figure 6b 0.04069 0.03095 0.01353 0.0008
Figure 6c 0.04028 0.02753 0.01492 0.0125
Figure 6d 0.03946 0.02704 0.01451 0.0169
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Further, the same optimization is carried out for the other three boundary conditions
(CFCF, SFSF CGSF) and all optimization results are shown in Table 7. For the sake of
simplicity, only the coordinates of the patch and the target order loss factor are displayed
after optimization. Then, the influence of the boundary conditions on the optimization
of the damping loss factor can be analyzed, based on the simulation results. CFCF and
SFSF have almost the same patch optimization location, but the damping loss factor of
the former is always smaller than that of the latter. For CGSF, the optimal location of
the patches is always on the free boundary, which is similar to CFFF. Therefore, it can be
concluded that there will be a greater loss factor away from the constraint.

Table 7. The first four loss factors after optimizing the location of the patch for CFCF, SFSF, CGSF.

Boundary Coordinates of the Patch (x, y) and Loss Factors η

Condition 1st Order 2nd Order 3rd Order 4th Order

CFCF (0, 0.066) (0.32, 0.275) (0, 0.161) (0.32, 0.16)
0.00444 0.00433 0.00618 0.00248

SFSF (0, 0) (0, 0) (0.32, 0.16) (0, 0.16)
0.01338 0.00921 0.00780 0.00360

CGSF (0, 0.32) (0, 0.32) (0, 0.176) (0, 0.160)
0.00971 0.00759 0.00716 0.00335

The damping loss factor can be obtained by solving the eigenvalue of the dynamic
equation, which is related to the stiffness matrix and mass matrix of the system. The
location of the patch affects the local stiffness matrix, but the influence of local stiffness on
total stiffness is not clear. Therefore, it is not easy to theoretically analyze the reasons for
this result, and the best way to derive a general rule is from the simulation results.

4.3. Influence of Patch Size on Damping Loss Factor

As is known to all, the coverage area of the constrained damping layer of a sandwich
plate will affect the damping loss factor. The patches of different sizes can be optimized
to have different results. Therefore, the influence of the patch size on the damping loss
factor is investigated in this section. In order to study three factors of decreasing, increas-
ing and unchanged area, three kinds of patch sizes (0.04 m × 0.04 m, 0.16 m × 0.16 m,
0.16 m × 0.04 m) are taken into account. In addition, this section only discusses one case
under the CFFF condition and other parameters are the same as before. Optimization
results for patches of different sizes are shown in Table 8. From Table 8, it is obvious that
the loss factor increases with the increase in coverage area.

Table 8. Optimization results with different patch sizes for CFFF.

Patch Sizes
Coordinates of the Patch (x, y) and Loss Factors η

1st Order 2nd Order 3rd Order 4th Order

0.04 m × 0.04 m (0.144, 0.352) (0.182, 0.36) (0.309, 0.36) (0, 0.36)
0.01211 0.00969 0.00446 0.00576

0.16 m × 0.16 m (0.118, 0.217) (0.12, 0.24) (0.24, 0.24) (0, 0.24)
0.10625 0.07922 0.03744 0.03131

0.04 m × 0.16 m (0.181, 0.24) (0.212, 0.24) (0.36, 0.24) (0, 0.24)
0.04053 0.02566 0.01186 0.01455

4.4. Dynamic Response Analysis under Moving Loads
4.4.1. The Influence of Single Order Optimization on Dynamic Response

The purpose of optimizing the damping loss factor is to increase the absorption energy.
That is to say, the dynamic response of the system decreases when the external force is
applied. The focus of this paper is the dynamic response under moving loads. The load
(F = 981 N) moves along a line (yL = W/2) of the partially cover plate at 50 m/s. In this
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section, the dynamic response of the partially covered plate with four kinds of patch sizes
(0.04 m× 0.04 m, 0.08 m× 0.08m, 0.16 m× 0.16 m, 0.16 m× 0.04 m) for the CFFF condition
after the first four order damping optimization under a moving load is investigated. Other
parameters are the same as before. Figure 7a–d shows the dynamic responses of the center
point of the partially covered plate with four kinds of patch sizes. Blue, red, pink and
black solid lines represent the results of the first, second, third and fourth order damping
optimizations, respectively. As shown in Figure 7a–d, with the increase in the coverage
area, the dynamic response of the composite plate decreases accordingly. It shows that
increasing the coverage area will increase the stiffness and damping of the system so as to
resist the deformation caused by the moving force.

From Figure 7a–d, with the increase in the order of the optimized damping loss factor,
the dynamic response of the system increases accordingly. From the optimization point of
view, the best optimization strategy is to optimize the damping loss factor with a smaller
order. It may be related to the dominant position of the low order loss factor in the system.
At the same time, it will be found that this strategy will not change as the coverage size
changes. Therefore, it can be concluded that no matter what the coverage size, the dynamic
response of the system always decreases with the decrease in the order of the optimal
damping loss factor.

Figure 7. Dynamic response of the partially covered plate with different patch sizes after first four order damping loss
factor optimization for CFFF. (a) 0.04 m × 0.04 m; (b) 0.08 m × 0.08 m; (c) 0.16 m × 0.04 m; (d) 0.16 m × 0.16 m.
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4.4.2. Dynamic Response of the Partially Covered Plate for Various Boundary Conditions

Under three boundary conditions (CFCF, SFSF CFSG), the response of the sandwich
plate with an optimized first four order damping loss factor under moving loads is studied
in this section. The load (F = 981 N) moves along a line (yL = W/2) of the partially covered
plate at 50 m/s and the size of the patch is 0.08 m × 0.08 m. Other parameters are the same
as before. Figure 8a–c shows the dynamic responses of the center point of the partially
covered plate with patch size 0.08 m × 0.08 m after the first four order damping loss factor
optimizations for CFFF, SFSF, CFSG. Blue, red, pink and black solid lines represent the
results of the first, second, third and fourth order damping optimizations, respectively.

From Figure 8a–c, it is easy to see that the response of the system will decrease with
the enhancement of boundary constraints. Meanwhile, the best optimization strategy is
consistent with Section 4.4.1. Therefore, it can be concluded that the dynamic response of
the system will decrease with the decrease in the order of the optimal damping loss factor,
regardless of the boundary conditions of the system.

Figure 8. Dynamic response of partially covered plate with patch size 0.08 m × 0.08 m after the first four order damping
loss factor optimizations for CFFF, SFSF, CFSG. (a) CFCF; (b) SFSF; (c) CFSG.
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5. Conclusions

In this paper, the model of a partially covered plate under moving loads was estab-
lished based on the Lagrange equation, and the optimization of the location of the patch is
investigated by means of the proposed model. The main contributions of this study are
listed as follows:

(1) The governing equations of the model are derived based on the first-order shear
deformation theory, and the weight and inertia of the moving force are all taken into
account. In order to make the convergence faster and more accurate, the trigonometric
function and power function are used in the admissible function. At the same time,
differential quadrature is used to solve the time domain of the system, which has high
precision. Then, the numerical results are comprehensively verified by experiments and
open literature. The error between the experimental and theoretical results is within the
acceptable range. This proves the accuracy and convergence of the model proposed in this
paper, and carries out the subsequent optimization research based on this model.

(2) In order to obtain the optimal damping loss factor, the problem is transformed as:
the maximum damping loss factor is obtained when the local coverage size is constant.
Therefore, this paper adopts a multi population genetic method, which has a high global
optimization ability. The objective of the optimization function is the damping loss factor
of the system, and the design variable is the coordinate of the patch (a, b, c, d). The result of
the optimization shows that the location of the patch is close to the boundary of constraint,
and the damping loss factor is larger. This can provide a good reference for engineering
and academics.

(3) The time-domain response of the partially covered plate under the moving load is
investigated after optimization in this paper. The influence of single order optimization
on the damping loss factor and various boundary conditions can be seen through the
comparison of optimization results under the different boundary conditions and coverage
areas. It can be concluded that in order to reduce the dynamic response of the system under
a moving load, the best optimization strategy is to optimize the lower order damping
loss factor.

The method developed in this study is suitable for guiding the design of partially
covered plates in engineering, and can give consideration to calculation accuracy and
speed. The method is only limited to the calculation of linear materials. With nonlinear
materials, it is difficult to ensure the accuracy of the results.
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Appendix A

M11,uv =
∫ L

0

∫ W

0
ρbhb ϕm ϕnψiψjdxdy +

∫ b

a

∫ d

c
(ρchc + ρdhd)ϕm ϕnψiψjdxdy (A1)

M∗11,uv = Mϕm(vMt)ϕn(vMt)ψi(yM)ψj(yM) (A2)

C∗11,uv = 2MvM ϕm(vMt)ϕn,x(vMt)ψi(yM)ψj(yM) (A3)

K11,uv = Ech3
c

12(1−µ3
c)

∫ b
a

∫ d
c

 ϕm,xx ϕn,xxψiψj + 2(1− µc)ϕm,x ϕn,xψi,yψj,y+
ϕm ϕnψi,yyψj,yy+

µc
(

ϕm,xx ϕnψiψj,yy + ϕm ϕn,xxψi,yyψj
)

dxdy

+Gdh2

h2
d

∫ b
a

∫ d
c
[
ϕm,x ϕn,xψiψj + ϕm ϕnψi,yψj,y

]
dxdy

+
Ebh3

b
12(1−µ3

b)

∫ L
0

∫W
0

 ϕm,xx ϕn,xxψiψj + 2(1− µb)ϕm,x ϕn,xψi,yψj,y+
ϕm ϕnψi,yyψj,yy+

µb
(

ϕm,xx ϕnψiψj,yy + ϕm ϕn,xxψi,yyψj
)

dxdy

(A4)

K∗11,uv = Mv2
M

[
ϕm(vMt)ϕn,xx(vMt)ψi(yM)ψj(yM)
+ϕm,xx(vMt)ϕn(vMt)ψi(yM)ψj(yM)

]
(A5)

K′11,uv = K′(1)11,uv + K′(2)11,uv + K′(3)11,uv + K′(4)11,uv (A6)

K′(1)11,uv = k(1)z,t ϕm(0)ϕn(0)
∫ W

0
ψiψjdy + k(1)z,r ϕm,x(0)ϕn,x(0)

∫ W

0
ψiψjdy (A7)

K′(2)11,uv = k(2)z,t ψi(0)ψj(0)
∫ L

0
ϕm ϕndx + k(2)z,r ψi,y(0)ψj,y(0)

∫ L

0
ϕm ϕndx (A8)

K′(3)11,uv = k(3)z,t ϕm(L)ϕn(L)
∫ W

0
ψiψjdy + k(3)z,r ϕm,x(L)ϕn,x(L)

∫ W

0
ψiψjdy (A9)

K′(4)11,uv = k(4)z,t ψi(W)ψj(W)
∫ L

0
ϕm ϕndx + k(4)z,r ψi,y(W)ψj,y(W)

∫ L

0
ϕm ϕndx (A10)

K12,uv = −Gdh
h2

d

∫ b

a

∫ d

c
ϕm,x ϕnψiψjdxdy (A11)

K13,uv = −Gdh
h2

d

∫ b

a

∫ d

c
ϕm ϕnψi,xψjdxdy (A12)

K14,uv =
Gdh
h2

d

∫ b

a

∫ d

c
ϕm,x ϕnψiψjdxdy (A13)

K15,uv =
Gdh
h2

d

∫ b

a

∫ d

c
ϕm ϕnψi,xψjdxdy (A14)

K22,uv =
Ebhb

1− µ2
b

∫ L

0

∫ W

0

[
ϕm,x ϕn,xψiψj +

1− µb
2

ϕm ϕnψi,yψj,y

]
dxdy +

Gd

h2
d

∫ b

a

∫ d

c
ϕm ϕnψiψjdxdy (A15)

K′22,uv = K′(1)22,uv + K′(2)22,uv + K′(3)22,uv + K′(4)22,uv (A16)

K′(1)22,uv = k(1)x,t ϕm(0)ϕn(0)
∫ W

0
ψiψjdy + k(1)x,r ϕm,x(0)ϕn,x(0)

∫ W

0
ψiψjdy (A17)

K′(2)22,uv = k(2)x,t ψi(0)ψj(0)
∫ L

0
ϕm ϕndx + k(2)x,r ψi,y(0)ψj,y(0)

∫ L

0
ϕm ϕndx (A18)

K′(3)22,uv = k(3)x,t ϕm(L)ϕn(L)
∫ W

0
ψiψjdy + k(3)x,r ϕm,x(L)ϕn,x(L)

∫ W

0
ψiψjdy (A19)

K′(4)22,uv = k(4)x,t ψi(W)ψj(W)
∫ L

0
ϕm ϕndx + k(4)x,r ψi,y(W)ψj,y(W)

∫ L

0
ϕm ϕndx (A20)
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K23,uv =
Ebhb

1− µ2
b

∫ L

0

∫ W

0

[
µb ϕm,x ϕnψiψj,y +

1− µb
2

ϕm ϕn,xψi,yψj

]
dxdy (A21)

K24,uv = −Gd

h2
d

∫ b

a

∫ d

c
ϕm ϕnψiψjdxdy (A22)

K33,uv =
Ebhb

1− µ2
b

∫ L

0

∫ W

0

[
ϕm ϕnψi,yψj,y +

1− µb
2

ϕm,x ϕn,xψiψj

]
dxdy +

Gd

h2
d

∫ b

a

∫ d

c
ϕm ϕnψiψjdxdy (A23)

K′33,uv = K′(1)33,uv + K′(2)33,uv + K′(3)33,uv + K′(4)33,uv (A24)

K′(1)33,uv = k(1)y,t ϕm(0)ϕn(0)
∫ W

0
ψiψjdy + k(1)y,r ϕm,x(0)ϕn,x(0)

∫ W

0
ψiψjdy (A25)

K′(2)33,uv = k(2)y,t ψi(0)ψj(0)
∫ L

0
ϕm ϕndx + k(2)y,r ψi,y(0)ψj,y(0)

∫ L

0
ϕm ϕndx (A26)

K′(3)33,uv = k(3)y,t ϕm(L)ϕn(L)
∫ W

0
ψiψjdy + k(3)y,r ϕm,x(L)ϕn,x(L)

∫ W

0
ψiψjdy (A27)

K′(4)33,uv = k(4)y,t ψi(W)ψj(W)
∫ L

0
ϕm ϕndx + k(4)y,r ψi,y(W)ψj,y(W)

∫ L

0
ϕm ϕndx (A28)

K35,uv = −Gd

h2
d

∫ b

a

∫ d

c
ϕm ϕnψiψjdxdy (A29)

K44,uv =
Echc

1− µ2
c

∫ b

a

∫ d

c

[
ϕm,x ϕn,xψiψj +

1− µc

2
ϕm ϕnψi,yψj,y

]
dxdy +

Gd

h2
d

∫ b

a

∫ d

c
ϕm ϕnψiψjdxdy (A30)

K45,uv =
Echc

1− µ2
c

∫ b

a

∫ d

c

[
µc ϕm,x ϕnψiψj,y +

1− µc

2
ϕm ϕn,xψi,yψj

]
dxdy (A31)

K55,uv =
Echc

1− µ2
c

∫ b

a

∫ d

c

[
ϕm ϕnψi,yψj,y +

1− µc

2
ϕm,x ϕn,xψiψj

]
dxdy +

Gd

h2
d

∫ b

a

∫ d

c
ϕm ϕnψiψjdxdy (A32)

Fz,k(t) = −Mgϕi(xM)ψj(yM) + fz(t)ϕi(xF)ψj(yF) (A33)

Fx,k(t) = fx(t)ϕi(xF)ψj(yF) (A34)

Fy,k(t) = fy(t)ϕi(xF)ψj(yF) (A35)

In Equations (A1)–(A35), u = m + ( i− 1)×N, v = n + (j− 1)×N and k = j + (i − 1) × N,
where i, j, m and n = 1, 2, . . . , N.
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