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Abstract: Recently, ray tracing techniques have been highly adopted to produce high quality images
and animations. In this paper, we present our design and implementation of a real-time ray-traced
rendering engine. We achieved real-time capability for triangle primitives, based on the ray tracing
techniques on GPGPU (general-purpose graphics processing unit) compute shaders. To accelerate the
ray tracing engine, we used a set of acceleration techniques, including bounding volume hierarchy,
its roped representation, joint up-sampling, and bilateral filtering. Our current implementation
shows remarkable speed-ups, with acceptable error values. Experimental results shows 2.5–13.6
times acceleration, and less than 3% error values for the 95% confidence range. Our next step will be
enhancing bilateral filter behaviors.

Keywords: ray tracing; acceleration; bilateral up-sampling

1. Introduction

The usefulness of computer graphics in various fields has long been emphasized since
its origin [1,2]. Ray tracing is a graphics method, based on the individual optical path
tracing to get realistic illustrations, as shown in Figure 1. More precisely, this method traces
millions of rays (or optical paths), which are intersecting, scattering, and reflecting on
object surfaces, with a huge amount of computations [3,4]. Mainly due to its computation
cost, it is considered as nearly impossible to carry it out on run time [5,6].

With the need for the immediate visualization, graphics processors were demanded
to be specialized in the traditional rasterization technique, consuming conspicuously lower
resources than the ray tracing in the cost of low precision [7,8].

Figure 1. Example pictures of the traditional rasterization and the ray-traced rendering.

In contrast, rasterization cannot compute optical phenomena such as scattering and/or
reflection, resulting in comparatively unrealistic illumination as a result. Research has been
made to overcome this drawbacks, introducing novel ideas such as image-based lighting,
irradiance probe, pre-processed global illumination, and more [9–11]. More recently, hybrid
methods using both rasterization and ray tracing technique have been introduced to qualify
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the demands for truthful illumination and is still an ongoing topic; screen-space global
illumination, voxel-based global illumination, and photon mapping are a few of them [12–16].

In this paper, we present our research and implementation of the real-time ray-traced
rendering engine, tackling the previously known to be bound to the pre-rendering domain.
We introduce the real-time implementation of a triangle primitive, based the ray tracing
method on the top of the GPGPU compute shader, along with optimization and light ap-
proximation techniques. We also present the solutions to the detailed issues, which we
encountered during its design and implementation.

2. Related Works

In computer graphics field, interactive realistic graphics results have long been pur-
sued [17,18]. Ray tracing is one of them, but it has only recently been applied and commer-
cialized due to its immense computing cost in real-time. Since it considers global illumination
environment, rather than the traditional local illumination settings, the ray tracing is one of
the global illumination and/or indirect illumination methods [6,19]. It enables the rendering
pipeline to achieve more realistic graphics rendering, as shown in Figure 1.

Ray tracing is actually rendering an image by recursively tracing optical paths from
the viewer’s eye to virtual light sources per pixel [5]. It considers reflection, refraction, and
scattering to ultimately compose the luminosity upon the ray’s surface contact [20]. From its
accelerated implementation point of view, we should consider two different aspects: global
object management for the efficient ray-object intersection checks, and accelerated reflection
computing at the intersection points.

Reflection computing is again macroscopically divided into two parts: specular and
diffuse. The specular reflection is a regular reflection on a mirror-like surface, and the diffuse
reflection is a light scattering occurred on a rough surface, as shown in Figure 2.

specular reflection diffuse reflection

Figure 2. Differences between the specular and diffuse reflections: specuclar reflections occur on
mirror-like surfaces, while diffuse reflections shows light scattering effects.

Theoretically, the rays can be traced infinitely, to get the huge number of reflected
bounces. In contrast, practical implementations limits the reflection computing to get real-
time results. The two major factors of the real-time reflection computing is: ray bouncing
count and ray sampling count. These factors are also related to the final quality of the ray
traced rendering images [6,20].

Specular reflection is highly associated with the ray bouncing count, which refers to how
much will the single ray bounce between the object surfaces. Likewise, diffuse reflection
is associated with the ray sampling count referring to how many rays will be fired on the
reflection points. The sampling attribute also affects the anti-aliasing quality of the image,
since it is actually one of the super-sampling methods.

The ray bouncing is known to be significantly cost-effective than the ray sampling
since it occurs seldom in the actual rendering environment; five to six bounces is more
than enough in most rendering cases. Ray sampling, on the other hand, is the major reason
why ray tracing lacks performance in real-time rendering all the time; due to its nature of
omni-directional light scattering, not enough ray sampling will produce disturbingly noisy
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illumination as a result. Figure 3 depicts the performance and precision of the implemented
diffuse reflection.

1 spp
3 ms

3 spp
8 ms

5 spp
14 ms

10 spp
27 ms

50 spp
148 ms

100 spp
336 ms

Figure 3. Results of different ray sampling counts: High samples per pixel (spp) values give high
quality images, with large amount of computing time (in msec).

In our implementation, these ray bouncing counts and ray sampling counts can be
controlled to compromise the final image quality and also the processing speed.

Another aspect of the ray tracing computation is the global object management. Ray
casting is the fundamental steps for performing the ray-object interactions. It is actually a
procedure of ray collision checking in the virtual space [21,22]. The simplest form of ray
casting is to compare all the primitives (or graphics objects) against the ray, taking the time
complexity of O(n) against n objects in the scene. This per-ray operation therefore ought
to get costly as the scene gets populated with more objects, leading the programmers to
import the acceleration structure to reduce the cost down to logarithmic as a necessary
step [23].

Two major methods lie for the ray casting acceleration structures: kd-tree and Bounding
Volume Hierarchy (BVH) [24–27]. As an example, in Figure 4, a set of triangles labeled
with alphabets from A to F denotes the primitives in the scene. The kd-tree is one of the
axis-aligned space partitioning methods which divides the current space into two separate
child spaces recursively, to construct a binary tree, as shown in Figure 4b.

Bounding Volume Hierarchy (BVH), on the other hand, is also a binary tree, but it
constructs a tree based on geometric objects, as shown in Figure 4c. The kd-tree recursively
divides the space into half, while the BVH tree recursively groups the graphics primitives
and spaces. Note that the child volumes of the BVH structure can be partially overlapped.
Recently, benchmarks show that BVH implementations are much better than traditional
kd-tree structures [27,28], and we also adopt the BVH structure as our major data structure.

Recent advancement of graphics hardware has allowed a great leap towards real-time
ray-traced rendering [17,18]. Nvidia’s latest graphics processing units RTX series are the
first runner of its kind; it supports real-time ray tracing with its specialized architecture [29].
While the RTX shows an astounding accomplishment, its technical features are rigidly
bound to its physical hardware support.

There are attempts to achieve real-time ray tracing support without utilizing special-
ized hardware, better accustomed to welcome much general graphics processor owners.
One of its latest and outstanding attempt is by Unreal Engine 4, the commercial game engine
serviced since 2014 [30]. Its ray-traced global illumination feature can run without RTX
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feature limitation. However, its ray-tracing pipeline is built-in to the engine, leaving us no
freedom of customizing the illumination method.
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Figure 4. Visualization of two major acceleration methods.

3. Design

We naturally performs the ray-object intersection checks first, and then, the ray reflection
computing. In the case of the global-space ray-object intersections, we adopt the Bounding
Volume Hierarchy (BVH) as our major data structure. The details will be followed.

Figure 5 demonstrates the overall architecture of our ray tracing engine. Building the
BVH tree takes two steps: per static model construction and scene comprehensive construction.
At the beginning, we pre-generate BVH data for static models, referring to the graphical
models which do not move or deform its shape in run time. This way we can avoid
BVH tree generation overhead on the run. In the next step, we generate a comprehensive
BVH tree advantaging from the pre-generated model BVH trees. This procedure is later
discussed in Sections 3.1 and 3.2.
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static models
BVH construction

scene comprehensive
BVH construction

G-buffer rendering

half-resolution
ray tracing

joint up-sampling
with bilateral filters

send results to display
real-time animation

on the screen

Figure 5. Overview of our ray tracing engine.

The rest of the part is all performed on the GPU compute shaders and is based on the
ray-tracing upsampling method [26]. We compute normal vectors, depth values, and material
attributes just as in a deferred rendering pass and followed by the ray-traced illumination
approximation. The final rendering composition of the scene is displayed through the
frame buffer, and we loop back to the scene comprehensive BVH construction for the
next frame until termination. An in-depth explanation of this ray-tracing procedure is in
Section 3.3.

3.1. BVH Tree Construction

Bounding Volume Hierarchy is one of the well-known hierarchical approaches to the
ray tracing acceleration structures, which handles the operation at a significantly lower
cost than without it [23]. It stores the scene data into a binary tree where primitives are
recursively wrapped in the bounding volumes, ultimately composing one unified volume
on the root of the tree. After its construction, the ray can then traverse down the tree
checking intersections with the bounding volume at each node, excluding the primitives
which are not in the active ones.

Fast and efficient Boundary Volume Hierarchy tree construction is another interesting
aspect of its design. Analysis of its approach is still ongoing despite its aged foundation
and is recently aimed at building an inexpensive and dynamic structure for its practical
usage [23]. Nonetheless, we implemented a simple bottom-up breadth-first tree generation
valuing simpleness over completeness.

We pair the primitives close to each other’s centroid, leaving a list of single-depth
tree nodes, which has the primitives as the child. We then recursively pair the nodes
again with the closest centroid, building the tree bottom to top, until it reaches the root
node where there are no more nodes to be paired. Figure 6 visualizes this bottom-up
breath-first approach.
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Figure 6. A simple 2D example of the bottom-up breath-first tree construction: closer objects are
paired until the whole space is processed into the tree.

Although this algorithm provides an efficient enough BVH tree to be traversed, its
unstable construction time is a drawback. It has the worst time complexity of O(2nn3),
dramatically lowering the performance as the number of primitives n increases.

To speed up this process, we exploited Lauterbach’s Morton code method [31]. The
space-awareness characteristics of the Morton code, which is also known as the z-order
curve, allows us to organize the primitives in the octree hierarchy [28,32]. Primitives are
first binned into the z-ordered array indexed by their centroid. Figure 7 explains this
z-ordering sequence with a sample 2D quad-tree representation.

0 1

2 3

4 5

6 7

8

9

10 11

12 13

14 15

(a) a z-order curve

binned primitives

0array indices 1 3 5 6 8 11 13 15

(b) its binning sequence

Figure 7. A z-order sequence marked on the 2D quad-tree representation, and its corresponding
Morton-ordered binning sequence.

Once all the primitives are grouped, we generate BVH trees for each bin and merge
them to create one complete tree for the model. This greatly reduces the overhead of
closest centroid searching with neglectable precision loss. Our experimental results will be
presented in Section 4.

The constructed tree is now transferred to the video memory (VRAM) and hundred
millions of rays are evaluated with the compute shader. We found the roped BVH structure
to be optimal when sending the tree data to GPU [28,32]; it ensures stackless traversal by
storing a skip pointer instead of the parent-sibling tree structure. Figure 8 demonstrates the
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creation of an example roped BVH, in a step by step manner [33,34]. Blue lines represent
the tree traversal in the left-to-right order, while red arrows represent skip pointers where
iteration will skip to when the current volume is not hit. After linking the nodes by the
traversal order, we convert the tree into an array and send it to the GPU as a texture. The
tree will be traversed with the code in Pseudocode 1.

Pseudocode 1. Pseudo code for the Roped BVH tree traversal.

i = 0
while i < bvh.size():

if bvh[i] is a primitive:
perform and record the ray-object intersection check

else if the ray does not hit the bounding volume of bvh[i]:
i += bvh[i].skip_index

else:
i++

B

D E

H I J K

C

F G

L M N O

A

(a) original BVH tree

terminate

B

D E

H I J K

C

F G

L M N O

A

(b) link nodes in order of traversal with skip pointer

A 15 B 7 D 3 H 1 I 1 E 3 J 1 K 1

C 7 F 3 L 1 M 1 G 3 N 1 O 1

node index jump if miss

(c) converted to a one-dimensional array

Figure 8. Constructing the roped BVH tree: blue lines denote the left-to-right traversal, while red
arrows show the skip pointers.

3.2. Dynamic Object Handling

Generating a BVH tree for the entire scene is still a hard work if there are millions of
primitives to render. We might have scenes with many duplicate models such as trees in
the forest or houses in the town. To reduce such overhead, we generate two types of BVH
trees: per-static model construction and scene comprehensive construction.

The former one, performed before the rendering loop, creates an unmodifiable object
space BVH tree per model. Its leaf nodes contain the pointer to the graphics primitives based
on non-animated model files, as shown in Figure 9a. These per-static models act as the object
pool, for duplicated static objects.
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BVH data

A B C
A C C B A C A B

(a) per-static model construction (b) scene comprehensive construction

Figure 9. Two separate BVH tree constructions: the scene comprehensive construction uses the
per-static models as the pre-processed and duplicated models.

The latter performs the world space BVH tree building, addressing all the objects
inside the scene with the model pointers. Unlike the static model ones, this tree has the
pointer to the corresponding pre-processed model and the corresponding transformation
matrix to save both space and time for the rendering.

The per-static individual model BVH trees are pre-processed and stored in a 2D image
array, and the scene comprehensive tree references them at the leaf nodes. To handle the
moving and/or deformable objects, the scene comprehensive tree is reconstructed every
time at the beginning of the rendering loop. Since we can enjoy the time-coherency of the
scenes, we can partially update the scene comprehensive tree, with respect to the moving
and/or deformable objects.

3.3. Ray Reflection Calculation

The light transport calculation is another important point of the ray-tracing method,
as the ray reflection calculation step [27,28]. Many illumination calculation methods are
available, starting from physically correct BRDF (bidirectional reflectance distribution
function) and BSDF (bidirectional scattering distribution function) formula to diverse
artistic approaches including cell-shading and more.

We opted for one of the most efficient illumination methods:

IR,S = AS × IR′ ,S′ + ES,

where IR,S is the illumination of the current ray R and its hit surface S. Upon hit, the
surface’s light emittance ES and attenuation AS is calculated into the traced light color.
After the intersection, a new ray R′ reflected from the surface S and its new hit surface S′ is
recursively attained to trace the next ray illumination IR′ ,S′ .

To overcome the high computation burden of the ray-tracing, we adopted Boughida’s
upsampling method [31]. The main idea is to improve performance by reducing the number
of pixels to compute.

Figure 10 depicts the detail of our rendering process. We first generate the full res-
olution G-buffer. The G-buffer is a collection of all lighting-relevant textures produced
to compose the final lighting pass, which is an essential step for all deferred rendering
pipelines [35,36]. The G-buffer includes normal vectors, depth values, and material in-
formation of the rendered image. Material data carries its surface image, roughness, and
emittance. These textures can be generated through a conventional rasterization pipeline
since it does not involve indirect lighting. In this work, we decided to use the compute
shader-based ray casting for efficiency. We then compute the ray-traced indirect illumi-
nation in a half-resolution and upsample it back to the full resolution based on these
pre-generated G-buffer images.
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G-buffer

diffuse reflection joint upsampling & bilateral filtering

Figure 10. Our rendering pipeline in order.

We used edge-preserving joint bilateral upsampling to avoid the flaws of fuzzy and noisy
upsampling [37–39]. We upsample the low-resolution image with the help of full-resolution
normal vector and depth value information, preserving the notable edges.

Figure 11 depicts the difference between these methods. Joint bilateral upsampling
is one derivation of the bilateral filtering method, utilizing both spatial and range filter
kernel [40,41]. The final color composition of the pixel Ip at the pixel position p in the
spatial kernel Ω can be denoted as below:

Ip =
1

Wp
∑

q∈Ω
Iq f (||p− q||) g(Gp, Gq),

where Wp is the normalization factor and f , g is the spatial and range filter kernel, re-
spectively. Unlike the conventional bilateral filter, the joint bilateral upsampling uses the
guidance image G to evaluate the range factor, which is normal vector and depth value
images in our case.

(a) full resolution normal vectors 
and depth values (b) low resolution indirect illumination

(c) joint upsampling (d) joint bilateral upsampling

Figure 11. Joint upsampling results.
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The spatial kernel f is a truncated Gaussian function and is pre-computed before the
run-time usage:

f (x) = e−(
2x
s )

2
,

where s is the kernel size. The range kernel g is the edge-preserving factor evaluated by
the G-buffer normal vector n and depth value z:

g(Gp, Gq) = ||Gpz − Gqz||
(
Gpn · Gqn

)
.

For efficient computation, we filter the row and column separately to minimize the
execution time [42,43]. The per- pixel n by n kernel operation is reduced down from n2 to
2n with a little loss of filtering quality.

4. Implementation Results

Our ray-tracing engine runs on Windows 10 and is based on the C++ programming
language with Visual Studio 2019 development environment. The OpenGL graphics li-
brary [44,45] has opted for more elegant codes. The rendering environment is Nvidia
GeForce GTX 1070 graphics card and Intel Core i7-6700K 4.00 GHz CPU.

To analyze our implementation, we used three different animation scenes for the test
cases: tavern, radio, and spaceship, as shown in Figure 12. As presented in Figure 5 and
Section 3.1, our implementation starts from constructing BVH trees, for overall speed-ups.
The heat map in Figure 13 proves that the binned BVH tree structure is consistent to the
original tree, which was constructed without accelerated binning techniques.

(a) tavern (b) radio (c) spaceship

Figure 12. Three different scenes for test cases.

tree traversal intensity
high low

original model Naïve construction Binned construction

Figure 13. BVH tree structures, compared with respect to the heat map.

Table 1 is the performance result of the tree construction with and without primitive
binning. Results are evaluated by averaging 100 tests per model. Table 1 shows that the
binned construction is 6.631 to 16.391 times accelerated. Note that this result is only for the
BVH tree construction. We should include the reflection calculation steps.
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Table 1. The BVH tree construction performance for three different models (unit: µsec).

(a) Naive (b) Binned Acceleration
Construction Construction Ratio

(Prev Method) (Our Method) (a)/(b)

tavern 137,847 20,787 6.631
radio 281,897 20,172 13.974

spaceship 262,211 15,996 16.391

We were able to achieve modest interactive ray traced illumination with the OpenGL
compute shader, as shown in Figure 14. The roped BVH acceleration structure and the upsam-
pling technique enabled us to boost rendering performance. All scenes were rendered with 2
ray bounce limit and 100 sampling in its resolution. Note that the ray bounce count and the
ray sampling count are the important control factors for the speed of the overall ray-tracing
process. With our current hardware configuration, 2 ray bounces and 100 samplings per
pixel are the limits for real-time processing.

Figure 14 and Table 2 shows the rendering result and performance of our experimental
scenes. Figure 14a shows the normal ray-traced images, without roped BVH acceleration
and upsampling techniques. Figure 14b represents our ray-traced results with all accelera-
tion techniques are applied. Figure 14c represents the pixel-by-pixel differences between
Figure 14a,b.

Table 2. Performance of our rendering results (unit: µsec).

(a) Normal Case (b) Our Result (c) Accel Ratio (a)/(b)

tavern 1,352,951 545,824 2.478
radio 313,094 22,991 13.618

spaceship 322,434 28,759 11.211

The rendering performances are shown in Table 2. The final acceleration ratio shows
that our final results are accelerated at least 2.478 to 13.618 times (maximum). The pixel-by-
pixel error measures are shown in Table 3. We denoted the errors as percent values with
respect to the pixel value ranges. Since we use 256-levels for each color channels, the 50%
error means 128 level differences in its absolute pixel values.

As shown in Table 2, the error values show the mean values (µ) from 0.215% to 0.854%,
and standard deviations (σ) from 0.680% to 0.990%, as their statistical values. Assuming
the normal distributions, we can expect that more than 95% of the pixel-by-pixel errors
are less than the value of µ + 2σ, or 1.977%–2.767%. Finally, we can expect that almost
pixel-by-pixel errors are bound less than 3% of the actual pixel values.

Table 3. Error analysis for differences.

Mean (µ) Std Dev (σ) 2 σ Range Min Max

tavern 0.854% 0.680% 2.214% 0.000% 77.344%
radio 0.788% 0.990% 2.767% 0.000% 66.797%

spaceship 0.215% 0.881% 1.977% 0.000% 70.703%

In the case of minimum and maximum error values, we have some outliers, unfor-
tunately. Table 2 shows that at most 77% error was found, as one of the worst cases.
Fortunately, they are very restricted cases to the sharp edge areas, due to the limitations
of the joint bilateral upsampling. At the edge boundaries, the joint bilateral upsampling
cannot avoid to fail the accurate ray-object intersections and also ray-reflection calcula-
tions. These artifacts are drawbacks of our acceleration scheme, and will be investigated in
the future.
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(a) normal case (b) our result (c) diff btw (a) and (b)

tavern

radio

spaceship

Figure 14. Our rendering results for three different scenes with 2 ray bounce and 100 sample limits.

5. Conclusions and Future Work

In this paper, we present the overall details of our real-time ray-traced rendering
engine. To achieve the real-time ray-traced rendering, we applied a set of acceleration
techniques, including the bounding volume hierarchy, its roped representation, joint up-
sampling, and bilateral filtering. Additionally, for more speed-ups, we implemented these
features on the GPU compute shaders. Finally, we get 2.5–13.6 times accelerations, and
real-time rendering, for all of our test cases.

Actually, we now achieved a ray-traced rendering framework, and we can apply much
more experimental works. For example, since we used the shader programs to achieve
the real-time ray-tracing, we can simultaneously apply some shader-based special effects,
including cartoon rendering and high-dynamic range rendering. Various experimental
combinations of ray-tracing frameworks and shader-based rendering techniques can be
our future works.

For the implementation point of view, we can achieve more speed-ups through concen-
trating on the faster BVH construction, and/or tree traversal. Reducing the pixel-by-pixel
artifacts can also be investigated in near future.
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