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Abstract: This paper presents a mathematical continuum model to investigate the static stability
buckling of cross-ply single-walled (SW) carbon nanotube reinforced composite (CNTRC) curved
sandwich nanobeams in thermal environment, based on a novel quasi-3D higher-order shear defor-
mation theory. The study considers possible nano-scale size effects in agreement with a nonlocal
strain gradient theory, including a higher-order nonlocal parameter (material scale) and gradient
length scale (size scale), to account for size-dependent properties. Several types of reinforcement ma-
terial distributions are assumed, namely a uniform distribution (UD) as well as X- and O- functionally
graded (FG) distributions. The material properties are also assumed to be temperature-dependent
in agreement with the Touloukian principle. The problem is solved in closed form by applying the
Galerkin method, where a numerical study is performed systematically to validate the proposed
model, and check for the effects of several factors on the buckling response of CNTRC curved sand-
wich nanobeams, including the reinforcement material distributions, boundary conditions, length
scale and nonlocal parameters, together with some geometry properties, such as the opening angle
and slenderness ratio. The proposed model is verified to be an effective theoretical tool to treat
the thermal buckling response of curved CNTRC sandwich nanobeams, ranging from macroscale
to nanoscale, whose examples could be of great interest for the design of many nanostructural
components in different engineering applications.

Keywords: curved sandwich nanobeams; nonlocal strain gradient theory; quasi-3D higher-order
shear theory; thermal-buckling

1. Introduction

Multilayered composites are widely used in various engineering structures, ranging
from macroscale (i.e., aircraft, submarines, space-station structures, etc.) to nanoscale
(nano-sensors, nano-actuators, nano-gears, and micro/nano-electro-mechanical systems
(MEMS/NEMS), due to the high stiffness and strength-to-weight ratios caused by fiber
reinforcements. In the recent literature, reinforcements based on carbon nanotubes (CNTs)
have been largely applied in lieu of conventional fibers due to their excellent properties
in order to improve the mechanical, electrical, and thermal properties of composite struc-
tures. In [1,2], for example, different molecular dynamic simulations have been successfully
applied by the authors to exploit the elastic moduli of polymer–CNT composites embedded
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in polymeric matrices. Fidelus et al. [3] examined the thermo-mechanical properties of
different epoxy-based nanocomposites with randomly oriented single-walled (SW) and
multi-walled (MW) CNTs. Moreover, Shen [4] investigated the nonlinear bending behavior
of FG nanocomposite plates reinforced by SWCNTs subjected to a transverse uniform
or sinusoidal load in a thermal environment using two different distribution functions.
A nonlocal strain gradient theory was also proposed by Lim et al. [5] to study a wave
propagation in macro and nanobeam structures for the first time. Wu and Kitipornchai [6]
investigated the free vibration and elastic buckling of sandwich beams with a stiff core and
functionally graded (FG)-CNTRC face sheets in a Timoshenko beam theoretical framework.
Among coupled thermo-mechanical problems, Eltaher et al. [7] investigated the influence
of a thermal loading and shear force on the nonlocal buckling response of nanobeams via
higher-order shear deformation Eringen beam theories. Similarly, Ebrahimi and Faraz-
mandnia [8] investigated the thermo-mechanical vibration of sandwich FG-CNTRC beams
within a Timoshenko-based beam approach; Sobhy and Zenkour [9] illustrated the influ-
ence of a magnetic field on the thermo-mechanical buckling and vibration response of
FG-CNTRC nanobeams with a viscoelastic substrate. In line with the previous works,
Daikh and Megueni [10] studied the thermal buckling of FG sandwich higher-order plates
with material temperature-dependent properties under a nonlinear temperature rise; Arefi
and Arani [11] combined a third-order shear deformation approach together with the
nonlocal elasticity to study the static deflection of FG nanobeams under a coupled thermo-
electro-magneto-mechanical environment. A novel refined shear theory was recently
proposed by Bekhadda et al. [12] for the study of a gradation influence on the vibration
and buckling behavior of FG beams with a power-law function by means of Fourier series.
Medani et al. [13], instead, applied the first order shear deformation and energy principle
to study the static and dynamic behavior of FG-CNT-reinforced porous sandwich plates.
Arani et al. [14] later performed a thermo-electro-mechanical buckling study of FG-CNTRC
sandwich nanobeams based on a nonlocal strain gradient elasticity theory and differen-
tial quadrature numerical procedure. More complicated double-curved sandwich panels
were accounted by Nejati et al. [15], who analyzed the thermal vibration in presence of
pre-strained shape memory alloy wires. Chaht et al. [16] analyzed the size-dependent static
behavior of FG nanobeams, including the thickness stretching effect; whereas a nonlocal
trigonometric shear deformation theory and nonlocal quasi-3D theory were proposed
in [17,18], respectively, to treat FG nanobeams. An efficient alternative tool to handle non-
localities within nanostructures is represented by the strain gradient theory, as successfully
applied in [19,20] for the thermal snap-buckling and bending analysis of FG curved porous
and non-porous nanobeams and in [21,22] for the buckling study of porous FG sandwich
nanoplates resting on a Kerr foundation due to a heat conduction. A theoretical formu-
lation based on a Reddy shear deformation theory, has been also proposed in the recent
work by Daikh et al. [23] to study the buckling and vibration of FG-CNTRC-laminated
nanoplates in thermal environment, with promising results for engineering applications.
Furthermore, Daikh et al. [24] investigated the thermal buckling response of FG sandwich
beams under a power-law (P-FGM) or sigmoid (SFGM) variation. Further attempts of
combining higher order theories and nonlocal approaches in a unified context, can be
found in [25–28] to predict the influence of an axial in-plane load function on the critical
buckling load and mode shape of composite beam members, also in presence of porosities.
During fabrication, structural members can exhibit an initial curved shape as possible
imperfection related to iterative heating and cooling processes. Many MEMS devices
employ curved structures as well [29]. The initial curvature of a beam structure can be a
source of difficulty in developing the constitutive relations, as verified by Emam et al. [30],
who illustrated the possible effects of curvatures and imperfections on the post-buckling
and free vibration response of multilayer nonlocal prestressed nanobeams. Shi et al. [31]
also studied the effect of nanotube waviness and agglomeration on the elastic property
of CNT-reinforced composites. A further systematic study was performed by Khater
et al. [32], who investigated the impact of the surface energy and thermal loading on the
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static stability of curved nanowires, modeled as curved Euler-Bernoulli beams, accounting
for both the von Karman and axial strain field. Among more sophisticated shell models, a
valuable comparison between different higher-order formulations was proposed in [33–35]
for the static analysis of multilayered composite and sandwich plates and shells, both
from a theoretical and computational perspective. Mohamed et al. [36] later proposed a
differential quadrature method to study the nonlinear free and forced vibrations of buckled
curved beams resting on nonlinear elastic foundations. A further attempt of combining the
nonlocal strain gradient and higher-order shell theories was conducted by Karami et al. [37]
for a wave dispersion study in anisotropic doubly-curved nanoshells, as well as in [38–41]
for FG-CNTRC curved nanobeams also in coupled piezoelectric conditions. In another
work, Arefi et al. [42] predicted the static deflection and stress field of curved FG-CNTRC
nonlocal Timoshenko nanobeams resting on an elastic foundation under four different
distribution patterns of CNTs throughout the thickness direction. Eltaher et al. [43] also
presented the influence of periodic and/or nonperiodic imperfections on the buckling, post-
buckling and dynamic response of curved beams resting on nonlinear elastic foundations
by means of high-performing numerical differential-integral quadrature methods (DIQMs).
Malikan et al. [44] developed a theoretical model to study the dynamics of non-cylindrical
curved viscoelastic SWCNTs by applying a second gradient theory of stress-strain, whereas
Mohamed et al. [45] used an energy equivalent model to study the post-buckling response
of imperfect CNTs resting on a nonlinear elastic foundation, including mid-plane stretching
and nanoscale effects. Among the most recent works on the topic, Van Tham et al. [46]
developed a novel four-variable refined shell theory to study the free vibration of multi-
layered FG-CNTRC doubly curved shallow shell panels; Dindarloo et al. [47] exploited the
strain-driven nonlocal integral theory to study the bending response of isotropic doubly
curved high-order shear deformation nanoshells under a combined assumption of exponen-
tial and trigonometric shape functions. Furthermore, Eltaher and Mohamed [48] exploited
the nonlinear stability and vibration of imperfect CNTs modeled as Euler-Bernoulli beams
with a mid-plane stretching, while in [49–51], the authors studied the free and forced
vibration and the dispersion behavior of elastic waves of doubly-curved nonlocal strain
gradient theory nanoshells in conjunction with a higher-order shear deformation shell
theory. Based on the available literature, however, the influence of a material scale, size
scale, and graduation distribution functions on the thermal static stability of curved sand-
wich nanobeams with temperature-dependent material seems to be generally lacking. To
this end, the present paper aims at providing a closed-form solution to the problem, for
different boundary conditions, that could be useful as theoretical benchmark for different
computational studies and engineering design applications. The paper is organized as
follows. In Section 2, the theoretical formulation of curved sandwich CNTRC nanobeams
is reviewed, including the kinematic field, relations and constitutive equations. Section
3 illustrates the governing equilibrium equation of curved sandwich beams in a classical
and nonclassical domain, while discussing about different thermal field distributions and
temperature-dependent properties of materials. Section 4 presents the analytical solutions
of the problem for different boundary conditions, whose comparative study is performed
systematically and discussed in Section 5. Finally, in Section 6, conclusions are drawn
together with possible future research directions.

2. Theoretical Formulation
2.1. Geometric and Mechanical Properties

A symmetric cross-ply single-walled carbon nanotube reinforced composite (CNTRC)
curved sandwich beam of length L, thickness h, and radius of curvature R is considered,
as shown in Figure 1. Different volume fraction distributions of CNTs are here assumed
throughout the thickness (see Figure 2), in agreement with the following relations [22]:

• UD (Uniformly-Distributed) CNTRC multilayered nanobeam:

Vcnt = V∗cnt (1)
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• FG-O CNTRC multilayered nanobeam:

Vcnt = 2

1−

∣∣∣2|z| − ∣∣∣z(k−1) + z(k)
∣∣∣∣∣∣

z(k) − z(k−1)

V∗cnt (2)

• FG-X CNTRC multilayered nanobeam:

Vcnt = 2

∣∣∣2|z| − ∣∣∣z(k−1) + z(k)
∣∣∣∣∣∣

z(k) − z(k−1)
V∗cnt (3)

More specifically, UD CNTRC refers to a uniform distribution of CNTs, whereas
FG-V CNTRC, FG-O CNTRC and FG-X CNTRC account for different non-uniform FG
distributions. Moreover, z(k) and z(k − 1) refer to the thickness coordinates at the bottom
and top sides of the kth layer within the laminated nanobeam; V∗cnt is the total volume
fraction of CNTs, defined as

V∗cnt =
Wcnt

Wcnt + (ρcnt/ρm)(1 − Wcnt)
(4)



Appl. Sci. 2021, 11, 3250 5 of 20

where Wcnt is the CNTs mass fraction; ρcnt, ρm refer to the CNTs and polymer mass
density, respectively.

The Mori–Tanaka scheme [31] is here applied together with the rule of mixtures and
molecular dynamics, as suggested in [1,2]. Thus, the effective Young’s modulus and shear
modulus for each CNTRC sheet is described as

Ek
11 = η1Vk

cntE
cnt
11 + Vk

p Ep
η2
Ek

22
=

Vk
cnt

Ecnt
22

+
Vk

p
Ep

η3
Gk

12
=

Vk
cnt

Gcnt
12

+
Vk

p
Gp

(5)

where Ek
11 and Ek

22 are the elasticity modulus along the in-plane directions (x, z) for the
kth layer and Gk

12 is its shear modulus. The subscripts p and cnt refer to the polymer and
SWCNT properties, respectively, assuming the CNT efficiency parameters η1, η2, η3 as
proposed in [6] and summarized in Table 1.

Table 1. CNT efficiency parameters.

V*
cnt η1 η2 η3

0.12 0.137 1.022 0.715

0.17 0.142 1.626 1.138

0.28 0.141 1.585 1.109

The Poisson’s ratio νk
12, the density ρk, and the thermal expansion coefficients in the

longitudinal and transverse directions αk
11, αk

22, for each sheet are given as follows:

νk
12 = Vk

cntν
cnt
12 + Vk

p νp (6)

ρk = Vk
cntρcnt + Vk

p ρp (7)

αk
11 = Vk

cntα
cnt
11 + Vk

p αp (8)

αk
22 =

(
1 + νcnt

12
)
Vk

cntα
cnt
22 +

(
1 + νp

)
Vk

p αp − νk
12αk

11 (9)

2.2. Kinematic Field

In the present work, a quasi-3D higher-order-shear deformation theory (HSDT) is
used to define the governing equations for the buckling problem of CNTRC curved sand-
wich beams, whose displacements components are expressed in terms of the midline
displacements and cross-section rotations as

u(x, z, t) =
(
1 + z

R
)
u0 − z ∂w0

∂x + Φ(z)ϕx
w(x, z, t) = w0 + Φ(z)′ϕz

(10)

A novel hyperbolic shape function Φ(z) is proposed herein to determine the distribu-
tion of the transverse shear strain and stress field along the thickness direction, namely

Φ(z) =
h
(

π cos h
(

π
2
)
tan h

( z
h
)
− sin h

(
πz
h
)(

1 − tan h
(

1
2

)2
))

π

(
tan h

(
1
2

)2
+ cos h

(
π
2
)
− 1

) (11)
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Based on a quasi-3D theory, the strain fields of the curved sandwich beam have the
following form:

εxx =
[

∂u
∂x + w

R

]
= ∂u0

∂x − z ∂2w0
∂x2 + Φ(z) ∂ϕx

∂x + w0
R + Φ(z)′ ϕz

R

εzz =
[

∂w
∂x

]
= Φ(z)′′ ϕz

γxz =
[

∂u
∂x + ∂w

∂x −
u0
R

]
= Φ(z)′

(
∂ϕx +

∂ϕz
∂x

) (12)

2.3. Constitutive Equations

The stress field is governed by the following constitutive relations:


σxx
σzz
τxz


(k)

=

 Qk
11 Qk

13 0

Qk
13 Qk

33 0

0 0 Qk
55




εxx
εzz
γxz


(k)

(13)

with Qk
ij being the transformed material constants, defined by means of the lamination

angle θk for the kth layer, as follows:

Qk
11 = Q11 cos4 θk + 2(Q12 + 2Q66) sin2 θk cos2 θk + Q22 sin4 θk

Qk
13 = Q13 cos2 θk + Q23 sin2 θk

Qk
55 = Q55 cos2 θk + Q44 sin2 θk

(14)

and
Q11 = E11

1 − ν12ν21

Q12 = Q13 = ν12E11
1 − ν12ν21

Q23 = ν21E22
1 − ν12ν21

Q22 = Q33 = E22
1 − ν12ν21

(15)

E33 = E22, G12 = G13 = G23, ν21 =
E22

E11
ν12, ν13 = ν12, ν31 = ν21, ν32 = ν23 = ν21 (16)

3. Equilibrium Governing Equations
3.1. Classical Formulation of Curved Sandwich Beams

Based on a classical formulation, the equilibrium equations of the problem are deter-
mined by means of the potential energy principle. In detail, the strain energy variation is
defined as

h/2∫
− h/2

L∫
0

[
σ
(k)
xx δεxx + σk

zzεzz + τ
(k)
xz

(k)γxz

]
dxdz −

L∫
0

N0
x

∂w0
∂x

∂δw0
∂x dx−

L∫
0

[
kww0δw0 + kg

∂w0
∂x

∂δw0
∂x + kNLw3

0δw0

]
dx (17)

in agreement with a quasi-3D theory, where kw and kg are the linear Winkler stiffness
and the shear layer stiffness, respectively, and kNL refers to the non-linear stiffness. The
strain energy variation can be rewritten in terms of stress resultants as

L∫
0

[
Nxx

∂δu0

∂x
− Mxx

∂2δw0

∂x2 + Pxx
∂δϕx

∂x
+ Nxx

δw0

R
+ Qx

δϕz

R
+ Rzδϕz + Qxzδϕx + Qxz

δδϕz

∂x

]
dx (18)

where
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Nxx =
N
∑

k=1

hk+1∫
hk

σ
(k)
xx dz = A11

∂u0
∂x − B11

∂2w0
∂x2 + Bs

11
∂ϕx
∂x + A11

w0
R + D11

ϕz
R + E12 ϕz

Mxx =
N
∑

k=1

hk + 1∫
hk

σ
(k)
xx zdz = B11

∂u0
∂x − F11

∂2w0
∂x2 + Fs

11
∂ϕx
∂x + B11

w0
R + Ds

11
ϕz
R + Js

12 ϕz

Pxx =
N
∑

k=1

hk + 1∫
hk

σ
(k)
xx Φ(z)dz = Bs

11
∂u0
∂x − Fs

11
∂2w0
∂x2 + Gs

11
∂ϕx
∂x + Bs

11
w0
R + Hs

11
ϕz
R + Es

12 ϕz

Qx =
N
∑

k=1

hk + 1∫
hk

σ
(k)
xx Φ(z)′dz = D11

∂u0
∂x − Ds

11
∂2w0
∂x2 + Hs

11
∂ϕx
∂x + D11

w0
R + Ks

11
ϕz
R + Ls

12 ϕz

Qxz =
N
∑

k=1

hk + 1∫
hk

τ
(k)
xz Φ(z)′dz = Ks

33

(
ϕx + ∂ϕz

∂x

)
Rz =

N
∑

k=1

hk + 1∫
hk

σ
(k)
zz Φ(z)′′dz = E12

∂u0
∂x − Es

12
∂2w0
∂x2 + Js

12
∂ϕx
∂x + E12

w0
R + Ls

12
ϕz
R + Ls

22 ϕz

(19)

and

{
A11, B11, F11, Bs

11, Fs
11, Gs

11
}
=

N
∑

k=1

hk + 1∫
hk

Qk
11

{
1, z, z2, Φ(z), zΦ(z), Φ(z)2

}
dz

{
D11, Ds

11, Hs
11, Ks

11
}
=

N
∑

k=1

hk + 1∫
hk

Qk
11
{

Φ(z)′ , zΦ(z)′ , Φ(z)Φ(z)′ , Φ(z)′ 2
}

dz

{
E12, Es

12, Js
12, Ls

12
}
=

N
∑

k=1

hk + 1∫
hk

Qk
12{Φ(z)′′ , zΦ(z)′′ , Φ(z)Φ(z)′′ , Φ(z)′Φ(z)′′ }dz

Ls
22 =

N
∑

k=1

hk + 1∫
hk

Qk
22Φ(z)′′ 2dz

Ks
33 =

N
∑

k=1

hk + 1∫
hk

Qk
33Φ(z)′ 2dz

(20)

Integrating by parts and setting the coefficients of δu0, δw0, δϕx, and δϕz equal to zero,
the equilibrium equations of the problem are as follows:

δu0 : ∂Nxx
∂x = 0

δw0 : ∂2 Mxx
∂x2 − Nxx

R − N0
x

∂2w0
∂x2 − kww0 + kg

∂2w0
∂x2 − kNLw0

3 = 0
δϕx : ∂Pxx

∂x − Qxz = 0
δϕz : ∂Qxz

∂x − Rz − Qx
R = 0

(21)

3.2. Nonlocal Strain Gradient Approach

We account for possible effects related to the strain gradient stress and nonlocal elastic
stress fields, in line with [5], as follows:

σij = σ
(0)
ij −

dσ
(1)
ij

dx
(22)

where σ
(0)
ij refers to the classical stress components corresponding to the strain field εkl

and the higher-order stress σ
(1)
ij corresponds to strain gradient εkl,x. The classical and

higher-order stress components are described as

σ
(0)
ij =

∫ L
0 Cijklα0(x, x′, e0a)εkl,x(x′)dx′

σ
(1)
ij = l2

∫ L
0 Cijklα1(x, x′, e1a)εkl,x(x′)dx′

(23)
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where Cijkl is an elastic constant and l is the material length scale parameter, here introduced
to account for the strain gradient stress field; e0a and e1a are the nonlocal parameters
defining the nonlocal elastic stress field.

The nonlocal kernel functions α0(x, x′, e0a) and α1(x, x′, e1a) satisfy the conditions
developed by Eringen [52], whereby the general constitutive relations can be defined as[

1 − (e1a)2∇2
][

1 − (e0a)2∇2
]
σij = Cijkl

[
1 − (e1a)2∇2

]
εkl − Cijkl l2

[
1 − (e0a)2∇2

]
∇2εkl (24)

[
1 − µ∇2

]
σij = Cijkl

[
1 − λ∇2

]
εkl (25)

where µ = (ea)2 and λ = l2.
In addition, the constitutive relations for a nonlocal shear deformable CNTRC curved

sandwich nanobeam can be written as

σxx − µ
∂2σxx

∂x2 = Qk
11

(
εxx − λ

∂2εxx

∂x2

)
(26)

σxz − µ
∂2σxx

∂x2 = Qk
55

(
γxz − λ

∂2γxz

∂x2

)
(27)

Based on a nonlocal strain gradient theory, the following equilibrium equations
are obtained in terms of the displacement components by substitution of Equation (19)
into Equation (21).(

1 − λ ∂2

∂x2

)(
A11

∂2u0
∂x2 − B11

∂3w0
∂x3 + A11

R
∂w0
∂x + Bs

11
∂2 ϕx
∂x2 +

(
D11
R + E12

)
∂ϕz
∂x

)
= 0(

1 − λ ∂2

∂x2

) B11
∂3u0
∂x3 − A11

R
∂u0
∂x − F11

∂4w0
∂x4 + 2B11

R
∂2w0
∂x2 − A11

R2 w0

+ Fs
11

∂3 ϕx
∂x3 −

Bs
11
R

∂ϕx
∂x +

(
Ds

11
R + Js

12

)
∂2 ϕz
∂x2 −

(
D11
R2 + E12

R

)
ϕz


−
(

1 − µ ∂2

∂x2

)(
N0

x
∂2w0
∂x2 − kww0 − kg

∂2w0
∂x2 − kww0

3
)
= 0(

1 − λ ∂2

∂x2

)(
Bs

11
∂2u0
∂x2 − Fs

11
∂3w0
∂x3 +

Bs
11
R

∂w0
∂x + Gs

11
∂2 ϕx
∂x2 − Ks

33 ϕx +
(

Hs
11

R + Js
12 − Ks

33

)
∂ϕz
∂x

)
= 0(

1 − λ ∂2

∂x2

) −
(

D11
R − E12

)
∂u0
∂x +

(
Ds

11
R + Es

12

)
∂2w0
∂x2 −

(
D11
R2 + E12

R

)
w0

−
(

Hs
11

R + Js
12 − Ks

33

)
∂ϕx
∂x −

(
2 Ls

12
R +

Ks
11

R2 + Ls
22

)
ϕz + Ks

33
∂2 ϕz
∂x2

 = 0

(28)

3.3. Temperature Field

In the present work we assume a uniform temperature field distribution on the CNTRC
surfaces, labeled as Tm and Tp, on the bottom and top sandwich surfaces, respectively. A
(10,10) SWCNT-based reinforcement is selected within the numerical investigation, with
the same mechanical properties as assumed by Shen [4] and summarized in Table 2.

Table 2. Thermo-mechanical properties of SWCNTs.

T[K] Ecnt
11 [TPa] Ecnt

22 [TPa] Gcnt
12 [TPa] νcnt

11 αcnt
11 [10−6]/K] αcnt

22 [10−6]/K]

300 5.6466 7.0800 1.9445 0.175 3.4584 5.1682

400 5.5679 6.9814 1.9703 0.175 4.1496 5.0905

500 5.5308 6.9348 1.9643 0.175 4.5361 5.0189

700 5.4744 6.8641 1.9644 0.175 4.6677 4.8943

1000 5.2814 6.6220 1.9451 0.175 4.2800 4.7532

To analyze the thermal effect on the buckling response of CNTRC curved sandwich
nanobeams, we assume the following temperature-dependent material properties, in
line with [53].
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P = P0

(
P− 1T − 1 + 1 + P1T + P2T2 + P3T3 + P4T4

)
(29)

where T = T0 + ∆T, T0 is the ambient temperature (T0 = 300 K), ∆T is the temperature
difference, and P0, P1, P2, P3 and P4 are thermal coefficients listed in Table 3.

Table 3. Temperature-dependent coefficients of CNT material properties [22].

P0 P−1 P1 P2 P3 P4

Ecnt
11 [TPa] 6.5653 0 −8.9437 × 10−4 1.9182 × 10−6 −1.8198 × 10−9 6.0043 × 10−13

Ecnt
22 [TPa] 8.2271 0 −8.9024 × 10−4 1.9066 × 10−6 −1.8063 × 10−9 5.9486 × 10−13

Gcnt
12 [TPa] 1.1056 0 5.6727 × 10−3 −1.4815 × 10−5 1.6402 × 10−8 −6.5007 × 10−12

α11
[
10−6/◦C

]
−1.1279 0 −2.0340 × 10−2 2.5672 × 10−5 −1.0186 × 10−8 5.9455 × 10−14

α22
[
10−6/◦C

]
5.4359 0 −1.7906 × 10−4 4.6367 × 10−8 1.2424 × 10−11 −5.3290 × 10−14

νcnt
12 0.175 0 0 0 0 0

The polymeric matrix (PmPV) features temperature-dependent elastic properties,
as follows:

Em = (3.51− 0.0047T) GPa (30)

αm = 45(1 + 0.0005∆T)10−6 GPa (31)

where the Poisson’s ratio and mass density are set as vm = 0.34 and ρm = 1150 kg/m3,
respectively.

4. Analytical Solution

In this section, the equilibrium equations are solved analytically using the Galerkin
method for simply-supported (SS), clamped-clamped (CC) and clamped-hinged (CS)
boundary conditions. The following displacement functions are thus assumed:

u0
w0
ϕx
ϕz

 =
∞

∑
m=1


Um

∂Xm
∂x

WmXm

ψxm
∂Xm
∂x

ψzmXm

 (32)

with Um, Wm, ψxm and ψzm being arbitrary parameters. The functions Xm(x) that satisfy
the selected boundary conditions are defined as

• For SS beam

Xm = sin(βx), β = mπ
L (33)

• For CC beam

Xm = 1− cos(βx) , β =
2mπ

L
(34)

• For CS beam

Xm = sin(βx)[cos(βx)− 1], β = mπ
L (35)
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By substituting Equation (32) in Equation (28), we get

[
Kij
]

Um
Wm
ψxm
ψzm

 = 0, i, j = 1 : 4 (36)

where
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0
)  + 

𝐴11

𝑅
(∫ (

𝜕𝑋𝑚

𝜕𝑥
)
2
d𝑥

𝐿

0
− 𝜆 ∫

𝜕3𝑋𝑚

𝜕𝑥3
𝜕𝑋𝑚

𝜕𝑥
d𝑥

𝐿

0
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𝜕𝑥5
𝜕𝑋𝑚

𝜕𝑥
d𝑥

𝐿

0
)  

𝐾14 = (
𝐷11

𝑅
 +  𝐸12) (∫ (

𝜕𝑋𝑚

𝜕𝑥
)
2
d𝑥

𝐿

0
− 𝜆 ∫

𝜕3𝑋𝑚

𝜕𝑥3
𝜕𝑋𝑚

𝜕𝑥

𝐿

0
d𝑥)  

𝐾21 = 𝐵11 (∫
𝜕4𝑋𝑚

𝜕𝑥4
𝑋𝑚d𝑥

𝐿

0
− 𝜆 ∫

𝜕6𝑋𝑚

𝜕𝑥6
𝑋𝑚d𝑥

𝐿

0
) −

𝐴11

𝑅
(∫

𝜕2𝑋𝑚

𝜕𝑥2
𝑋𝑚d𝑥

𝐿

0
− 𝜆 ∫

𝜕4𝑋𝑚

𝜕𝑥4
𝑋𝑚d𝑥

𝐿

0
)  

𝐾22 = −𝐹11 (∫
𝜕4𝑋𝑚

𝜕𝑥4
𝑋𝑚d𝑥

𝐿

0
− 𝜆 ∫

𝜕6𝑋𝑚

𝜕𝑥6
𝑋𝑚

𝐿

0
d𝑥) +  2

𝐵11

𝑅
(∫

𝜕2𝑋𝑚

𝜕𝑥2
𝑋𝑚d𝑥

𝐿

0
− 𝜆∫

𝜕4𝑋𝑚

𝜕𝑥4
𝑋𝑚

𝐿

0
d𝑥) − (𝑁𝑥

0 − 𝑘𝑔) (∫
𝜕2𝑋𝑚

𝜕𝑥2
𝑋𝑚d𝑥

𝐿

0
−

𝜇 ∫
𝜕4𝑋𝑚

𝜕𝑥4
𝑋𝑚

𝐿

0
d𝑥) − 𝑘𝑤 (∫ 𝑋𝑚

2d𝑥
𝐿

0
− 𝜇 ∫

𝜕2𝑋𝑚

𝜕𝑥2
𝑋𝑚d𝑥

𝐿

0
) − 𝑘𝑁𝐿 (∫ 𝑋𝑚

4d𝑥
𝐿

0
− 𝜇 ∫

𝜕2𝑋𝑚
3

𝜕𝑥2
𝑋𝑚d𝑥

𝐿

0
)  

𝐾23 = 𝐹11
𝑠 (∫

𝜕4𝑋𝑚
𝜕𝑥4

𝑋𝑚d𝑥

𝐿

0

− 𝜆∫
𝜕6𝑋𝑚
𝜕𝑥6

𝑋𝑚

𝐿

0

d𝑥) −
𝐵11
𝑠

𝑅
(∫

𝜕2𝑋𝑚
𝜕𝑥2

𝑋𝑚d𝑥

𝐿

0

− 𝜆∫
𝜕4𝑋𝑚
𝜕𝑥4

𝑋𝑚

𝐿

0

d𝑥) 

𝐾24 = (
𝐷11
𝑠

𝑅
 +  𝐸12

𝑠 ) (∫
𝜕2𝑋𝑚

𝜕𝑥2
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𝐿
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0
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𝑅
) (∫ 𝑋𝑚
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𝐿
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𝜕𝑥2
𝑋𝑚d𝑥

𝐿

0
)  

𝐾31 = 𝐵11
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𝜕3𝑋𝑚

𝜕𝑥3
𝜕𝑋𝑚
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d𝑥

𝐿

0
− 𝜆 ∫

𝜕5𝑋𝑚
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𝜕𝑋𝑚

𝜕𝑥
d𝑥

𝐿

0
)  
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𝜕𝑋𝑚
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𝐵11
𝑠

𝑅
(∫

𝜕𝑋𝑚
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(37) 
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The accuracy of the proposed theoretical solution is explored in the next section, 

within a large systematic investigation aimed at determining the sensitivity of the buck-

ling response. The proposed model is limited to uniform cross-sectional curved FG-

CNTRC nanobeams with SS, SC, and CC boundary conditions and linear variation of tem-

perature across the beam thickness; a further expansion should include more complicated 

cross-sectional geometries and thermal variations. 

5. Results and Discussion 

In this section, various numerical applications are presented to determine the accu-

racy of a quasi-3D HSDT, to solve the buckling problem of FG-CNTRC straight sandwich 

beams, compared to some existing solutions from the literature. Then, we investigate the 

effect of curvature on the structural response of CNTRC sandwich beams, which could be 

of great interest for design purposes, among different engineering applications. In what 

follows, the critical buckling load and elastic foundation parameters are presented in di-

mensionless form, as follows: 

�̅� = 𝑅2
𝑁𝑥
0

𝐴110
          ,    𝐾𝑤 =

𝑘𝑤𝐿
2

𝐴110
     ,       𝐾𝑔 =

𝑘𝑔

𝐴110
      ,      𝐾𝑁𝐿 =

𝑘𝑁𝐿𝐿
2

𝐴110
 (38) 

where the coefficient 𝐴110 refers to a beam made of pure matrix material at room temper-

ature 𝑇 =  300 K. The length of the curved sandwich beam is kept equal to 𝐿 = 20 for 

all the numerical examples. 

5.1. Comparison Study 

We start the numerical analysis by a comparative evaluation of our results with pre-

dictions from the open literature, while including possible thickness stretching effects. In 

Table 4, we summarize the results in terms of dimensionless critical buckling load for SS- 

and CC-CNTRC sandwich beams with and without thickness stretching effects and com-

pare their accuracy against the numerical predictions by Wu et al. [6], based on a differ-

ential quadrature method (DQM). The face sheets are made of poly methyl methacrylate 

(PMMA) as the matrix, with 𝐸𝑚 = 2.5 GPa and 𝜈𝑚 = 0.3, and armchair (10, 10) SWCNTs 

as the reinforcement phase, with 𝐸11
𝑐𝑛𝑡 = 5.6466 TPa , 𝐸22

𝑐𝑛𝑡 = 7.08 TPa , 𝐺12
𝑐𝑛𝑡 =

1.9445 TPa and 𝜈𝑐𝑛𝑡 = 0.175 (in 300 K). Titanium alloy (Ti-6Al-4V) is used as the core, 

with 𝐸𝑚 = 113.8 GPa and 𝜈𝑚 = 0.342. It is worth noticing the good correlation between 

our results (see Table 4) and the findings of [6] when the thickness stretching effect is 

neglected. 
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The accuracy of the proposed theoretical solution is explored in the next section,
within a large systematic investigation aimed at determining the sensitivity of the buckling
response. The proposed model is limited to uniform cross-sectional curved FG-CNTRC
nanobeams with SS, SC, and CC boundary conditions and linear variation of temperature
across the beam thickness; a further expansion should include more complicated cross-
sectional geometries and thermal variations.

5. Results and Discussion

In this section, various numerical applications are presented to determine the accuracy
of a quasi-3D HSDT, to solve the buckling problem of FG-CNTRC straight sandwich beams,
compared to some existing solutions from the literature. Then, we investigate the effect of
curvature on the structural response of CNTRC sandwich beams, which could be of great
interest for design purposes, among different engineering applications. In what follows,
the critical buckling load and elastic foundation parameters are presented in dimensionless
form, as follows:

N = R2 N0
x

A110
, Kw = kw L2

A110
, Kg =

kg
A110

, KNL = kNL L2

A110
(38)

where the coefficient A110 refers to a beam made of pure matrix material at room tempera-
ture T = 300 K. The length of the curved sandwich beam is kept equal to L = 20 for all the
numerical examples.

5.1. Comparison Study

We start the numerical analysis by a comparative evaluation of our results with
predictions from the open literature, while including possible thickness stretching effects.
In Table 4, we summarize the results in terms of dimensionless critical buckling load
for SS- and CC-CNTRC sandwich beams with and without thickness stretching effects
and compare their accuracy against the numerical predictions by Wu et al. [6], based
on a differential quadrature method (DQM). The face sheets are made of poly methyl
methacrylate (PMMA) as matrix, with Em = 2.5 GPa and νm = 0.3, and armchair (10,
10) SWCNTs as reinforcement phase, with Ecnt

11 = 5.6466 TPa, Ecnt
22 = 7.08 TPa, Gcnt

12 =
1.9445 TPa and νcnt = 0.175 (in 300 K). Titanium alloy (Ti-6Al-4V) is used as core, with
Em = 113.8 GPa and νm = 0.342. It is worth noticing the good correlation between our
results (see Table 4) and the findings of [6] when the thickness stretching effect is neglected.

5.2. Parametric Study

The parametric study in this section assumes a PmPV as core material and as matrix
phase for the face sheets of the sandwich structure, with mechanical properties as specified
in Equations (30) and (31); (10,10) SWCNTs are considered as the reinforcement phase
(Table 3). The mechanical properties of materials depend on the temperature. Table 5
presents the effect of the dimensionless thickness ratio L/h on the buckling load of a
single layer CNTRC curved beam with various CNT volume fractions in the presence (or
absence) of a thickness stretching effect εzz, while keeping the opening angle α = L/R
equal to π/3. Note that increased values of L/h result in lower values of the buckling
load, under the same assumptions for the reinforcement distribution, volume fraction and
possible stretching effects. In any case, the worst buckling response is observed for an
FG-O reinforcement distribution within the material, whereas a FG-X distribution seems
to yield the highest buckling loads for fixed values of L/h, εzz, V∗cnt. The stability of the
curved beam increases significantly for higher values of V∗cnt, with a small variation in the
buckling load, depending on whether εzz is assumed (or not) equal to zero.
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Table 4. Comparisons of dimensionless critical buckling loads for FG-CNTRC straight beams hc/hf, V∗cnt = 0.12.

L/h
CC SS

V*
cnt=12 V*

cnt=17 V*
cnt=28 V*

cnt=12 V*
cnt=17 V*

cnt=28

UD

10
Wu [6] 0.0254 0.0296 0.0373 0.0070 0.0082 0.0107
Present
εzz = 0 0.0271 0.0319 0.0413 0.0071 0.0084 0.0110

Present
εzz 6= 0 0.0267 0.0316 0.0410 0.0066 0.0080 0.0106

20 Wu [6] 0.0070 0.0082 0.0107 0.0018 0.0021 0.0028
Present
εzz = 0 0.0071 0.0084 0.0110 0.0018 0.0021 0.0028

Present
εzz 6= 0 0.0069 0.0082 0.0108 0.0017 0.0020 0.0027

30 Wu [6] 0.0031 0.0037 0.0049 0.0008 0.0009 0.0012
Present
εzz = 0 0.0032 0.0038 0.0049 0.0008 0.0009 0.0012

Present
εzz 6= 0 0.0031 0.0037 0.0049 0.0007 0.0008 0.0012

FG

10
Wu [6] 0.0261 0.0305 0.0387 0.0072 0.0085 0.0111
Present
εzz = 0 0.0271 0.0319 0.0413 0.0071 0.0084 0.0110

Present
εzz 6= 0 0.0267 0.0316 0.0410 0.0066 0.0079 0.0106

20
Wu [6] 0.0072 0.0085 0.0111 0.0018 0.0022 0.0029
Present
εzz = 0 0.0071 0.0084 0.0110 0.0018 0.0021 0.0028

Present
εzz 6= 0 0.0069 0.0082 0.0108 0.0017 0.0020 0.0027

30
Wu [6] 0.0032 0.0039 0.0051 0.0008 0.0010 0.0013
Present
εzz = 0 0.0032 0.0038 0.0049 0.0008 0.0010 0.0012

Present
εzz 6= 0 0.0031 0.0037 0.0049 0.0007 0.0009 0.0012

Table 5. Effect of thickness ratio on the buckling load of a single layer CNTRC curved beam α = π
3 ,

T = 300 K.

L/h
V*

cnt=12 V*
cnt=17 V*

cnt=28

εzz=0 εzz 6=0 εzz=0 εzz 6=0 εzz=0 εzz 6=0

UD

5 73.7930 73.4424 120.6917 120.1610 146.3642 145.5590
10 49.0266 49.0250 77.6401 77.6399 101.4712 101.4484
20 21.9451 21.9242 33.2103 33.1708 48.7346 48.7136
30 11.4565 11.4369 17.0329 16.9992 26.2191 26.1931

FG-X

5 79.5433 79.1094 128.5687 127.9463 149.0114 148.3479
10 57.1285 57.1134 90.5184 90.5055 111.0156 110.9778
20 28.9721 28.9611 44.1395 44.1160 61.6479 61.6372
30 15.9804 15.9653 23.8972 23.8700 35.6810 35.6608

FG-O

5 58.0980 57.9593 96.1446 95.9410 128.1600 127.5412
10 33.6793 33.6650 52.7577 52.7221 75.9965 75.9952
20 12.7261 12.6870 18.9830 18.9144 29.3401 29.2905
30 6.2518 6.2261 9.1882 9.1452 14.5124 14.4755

In Table 6, we account for the influence of opening angles α, boundary conditions, and
CNT reinforcement patterns on the dimensionless critical buckling load of (0◦/90◦/c/90◦/0◦)
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sandwich beams. Note that the critical buckling load increases significantly for a decreased
opening angle and increased CNT volume fraction. As summarized in Table 7, the dimen-
sionless critical buckling load of curved sandwich (0◦/90◦/0◦/c/0◦/90◦/0◦) nanobeams
could be affected by nonlocal and length scale parameters as well as by the core-to-face
sheet thickness ratio, hc/h f , and thermal condition. A meaningful reduction of the criti-
cal buckling load is observed for higher temperatures for a fixed geometry and nonlocal
parameters µ, λ. An increased value of µ and a reduced value of λ reduce the critical
buckling load of the nanostructure under the same thermal and geometric assumptions.
Moreover, Table 8 summarizes the sensitivity of the buckling response of CNTRC sandwich
(0◦/c/0◦) beams to different elastic foundation parameters and boundary conditions, with
an increased stability of the structure for more rigid boundary conditions and foundation.

Table 6. Effect of opening angle on the dimensionless buckling load of curved sandwich beam (0◦/90◦/c/90◦/0◦) (hc/hf = 4,
h = L/10, T = 300 K.

α
SS CC CS

V*
cnt=12 V*

cnt=17 V*
cnt=28 V*

cnt=12 V*
cnt=17 V*

cnt=28 V*
cnt=12 V*

cnt=17 V*
cnt=28

UD

π/4 74.6585 100.3288 139.9486 339.9366 442.8754 611.3111 212.5558 278.2913 381.2890
π/3 41.9954 56.4350 78.7211 257.7059 343.7374 492.5488 149.4863 199.1205 281.3863
π/2 18.6646 25.0822 34.9871 198.9635 272.9172 407.7090 104.4352 142.5681 210.0248

2π/3 10.4989 14.1087 19.6803 178.3950 248.1198 378.0018 88.6652 122.7722 185.0451

FG-X

π/4 74.8276 100.6190 140.6169 340.6800 444.0969 613.9162 213.0218 279.0764 383.0227
π/3 42.0905 56.5982 79.0970 258.1393 344.4732 494.1862 149.7553 199.5840 282.4389
π/2 18.7069 25.1548 35.1542 199.1755 273.3061 408.6553 104.5634 142.8020 210.5910

2π/3 10.5226 14.1496 19.7743 178.5296 248.3875 378.7063 88.7442 122.9258 185.4411

FG-O

π/4 74.5146 100.1307 139.7518 339.3283 442.1373 610.8484 212.1712 277.8003 380.9295
π/3 41.9144 56.3235 78.6104 257.3788 343.3707 492.4602 149.2768 198.8661 281.2614
π/2 18.6286 25.0327 34.9379 198.8371 272.8157 407.8875 104.3507 142.4828 210.0675

2π/3 10.4786 14.0809 19.6526 178.3388 248.1110 378.2735 88.6244 122.7461 185.1463

Table 7. Effect of nonlocal and length scale parameter on the dimensionless buckling load of simply
supported UD-CNTRC curved sandwich nanobeam (0◦/90◦/0◦/c/0◦/90◦/0◦) (α = π/3, h = L/10,
V∗cnt = 28.

hc/hf

µ T = 300 K T = 500 K T = 700 K

λ 4 6 8 4 6 8 4 6 8

0 0 81.8686 73.5399 66.3319 61.1267 56.6032 52.3027 19.0516 18.8260 18.5363
1 83.8886 75.3545 67.9686 62.6350 57.9999 53.5932 19.5217 19.2906 18.9937
2 85.9086 77.1690 69.6053 64.1432 59.3965 54.8837 19.9918 19.7551 19.4511
3 87.9287 78.9835 71.2419 65.6515 60.7931 56.1743 20.4618 20.2196 19.9084

1 0 79.8972 71.7691 64.7347 59.6548 55.2402 51.0433 18.5928 18.3727 18.0900
1 81.8686 73.5399 66.3319 61.1267 56.6032 52.3027 19.0516 18.8260 18.5363
2 83.8400 75.3108 67.9292 62.5987 57.9662 53.5622 19.5104 19.2794 18.9827
3 85.8114 77.0816 69.5265 64.0706 59.3292 54.8216 19.9691 19.7327 19.4290

2 0 78.0185 70.0816 63.2125 58.2521 53.9413 49.8431 18.1557 17.9407 17.6646
1 79.9436 71.8107 64.7722 59.6894 55.2723 51.0729 18.6036 18.3834 18.1005
2 81.8686 73.5399 66.3319 61.1267 56.6032 52.3027 19.0516 18.8260 18.5363
3 83.7936 75.2691 67.8916 62.5640 57.9342 53.5325 19.4996 19.2687 18.9722

3 0 76.2262 68.4715 61.7603 56.9139 52.7021 48.6980 17.7386 17.5285 17.2588
1 78.1070 70.1610 63.2842 58.3181 54.0025 49.8996 18.1762 17.9610 17.6847
2 79.9878 71.8505 64.8081 59.7224 55.3029 51.1011 18.6139 18.3935 18.1105
3 81.8686 73.5399 66.3319 61.1267 56.6032 52.3027 19.0516 18.8260 18.5363
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Table 8. Effect of hardening nonlinear parameters on the dimensionless buckling load of CNTRC curved sandwich beams
(0◦/c/0◦) (α = π/3, h = L/10, hc/hf = 4, V∗cnt = 0.12, T = 300 K.

Kw Kg Knl
SS CC CS

UD FG-X FG-O UD FG-X FG-O UD FG-X FG-O

0

0
0 59.3208 59.9622 58.6879 406.4881 408.7038 404.3375 229.0790 230.5969 227.5994

0.05 60.7067 61.3482 60.0738 410.5303 412.7460 408.3797 230.5082 232.0261 229.0286
0.1 62.0926 62.7341 61.4597 414.5725 416.7882 412.4220 231.9374 233.4554 230.4578

0.05
0 77.5586 78.2001 76.9257 424.7259 426.9416 422.5753 247.3168 248.8347 245.8372

0.05 78.9446 79.5860 78.3117 428.7681 430.9838 426.6175 248.7460 250.2640 247.2664
0.1 80.3305 80.9719 79.6976 432.8103 435.0261 430.6598 250.1752 251.6932 248.6957

0.1
0 95.7965 96.4379 95.1636 442.9637 445.1794 440.8131 265.5546 267.0725 264.0750

0.05 97.1824 97.8238 96.5495 447.0059 449.2216 444.8554 266.9838 268.5018 265.5042
0.1 98.5683 99.2097 97.9354 451.0482 453.2639 448.8976 268.4130 269.9310 266.9335

0.05

0
0 61.1687 61.8101 60.5358 407.8740 410.0897 405.7234 230.2339 231.7518 228.7543

0.05 62.5546 63.1960 61.9217 411.9162 414.1319 409.7656 231.6631 233.1811 230.1835
0.1 63.9405 64.5819 63.3076 415.9584 418.1742 413.8079 233.0923 234.6103 231.6128

0.05
0 79.4065 80.0479 78.7736 426.1118 428.3275 423.9612 248.4717 249.9897 246.9921

0.05 80.7924 81.4338 80.1595 430.1540 432.3697 428.0034 249.9009 251.4189 248.4214
0.1 82.1783 82.8197 81.5454 434.1962 436.4120 432.0457 251.3301 252.8481 249.8506

0.1
0 97.6443 98.2857 97.0114 444.3496 446.5653 442.1990 266.7095 268.2275 265.2300

0.05 99.0302 99.6717 98.3973 448.3918 450.6076 446.2413 268.1387 269.6567 266.6592
0.1 100.4162 101.0576 99.7833 452.4341 454.6498 450.2835 269.5680 271.0859 268.0884

0.1

0
0 63.0166 63.6580 62.3837 409.2599 411.4756 407.1093 231.3888 232.9068 229.9092

0.05 64.4025 65.0439 63.7696 413.3021 415.5178 411.1515 232.8180 234.3360 231.3385
0.1 65.7884 66.4298 65.1555 417.3443 419.5601 415.1938 234.2473 235.7652 232.7677

0.05
0 81.2544 81.8958 80.6215 427.4977 429.7134 425.3471 249.6266 251.1446 248.1471

0.05 82.6403 83.2817 82.0074 431.5399 433.7556 429.3894 251.0559 252.5738 249.5763
0.1 84.0262 84.6676 83.3933 435.5822 437.7979 433.4316 252.4851 254.0030 251.0055

0.1
0 99.4922 100.1336 98.8593 445.7355 447.9512 443.5849 267.8645 269.3824 266.3849

0.05 100.8781 101.5195 100.2452 449.7777 451.9935 447.6272 269.2937 270.8116 267.8141
0.1 102.2640 102.9054 101.6311 453.8200 456.0357 451.6694 270.7229 272.2408 269.2433

Figure 3 also depicts the buckling response for a SS (0◦/90◦/c/90◦/0◦) beam versus
the thickness ratio, L/h, while varying the opening angles. All the plots in Figure 3
feature a monotone decreasing behavior for increasing values of L/h, reaching a plateau
for L/h ≥ 30. Note also that an increased opening angle value decreases significantly the
buckling load of the structure for each fixed value of L/h.

In Figure 4 the critical buckling load versus the opening angle is illustrated, taking
into account the core-to-face sheet thickness ratio variation. A clear reduction of the beam
stiffness with an increased core layer can be observed for each fixed opening angle, which
is even more pronounced for lower values of the opening angles.

Figure 5 also shows the double effect of the core-to-face sheet thickness ratio and CNT
volume fraction on the dimensionless buckling load, with a clear shift of the curve upwards
for increasing values of Vcnt. The highest critical buckling load is reached for a volume
fraction Vcnt = 28, where the lowest stability is observed for Vcnt = 12. The impact of the
thermal environment on critical buckling load is visible in Figure 6, where an increased tem-
perature value leads to a clear reduction in the buckling load for all the selected boundary
conditions because of the thermal dependence of the mechanical properties of the materials.
As also expected, the highest stability is reached by CC sandwich beams, independently of
the thermal environment. The further effect of nonlocal µ and length scale λ parameters on
the critical buckling load is also plotted in Figures 7 and 8, respectively. One can easily note
that the buckling load increases by decreasing the nonlocal parameter and by increasing
the length scale parameter, in line with the information in Table 7. Unlike the length scale
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parameter λ, an increased nonlocal parameter µ leads to a stiffness reduction of CNTRC
laminated nanobeams. The critical buckling load versus the thickness ratio L/h is finally
illustrated in Figure 9 by assuming different elastic foundation parameters. An increased
thickness ratio L/h leads to a monotone reduction of the buckling load, with a meaningful
effect of the shear foundation parameter Kg on the buckling results.
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Figure 9. Effect of thickness ratio and elastic foundation on the dimensionless buckling load.

6. Conclusions

A novel quasi-3D higher-order shear deformation theory was proposed in this work
to study the buckling response of CNTRC curved sandwich nanobeams for the first time.
The problem was tackled theoretically, based on a Galerkin procedure, accounting for
different boundary conditions and size-dependent effects. The material properties of
CNTRC sheets were here assumed to be temperature-dependent, in agreement with the
Touloukian principle.

A parametric study was performed systematically, to check for the influence of some
significant parameters on the buckling response of CNTRC curved sandwich nanobeams,
namely the CNTs reinforcement patterns and the nonlocal and length scale parameter,
together with the geometric parameters. Based on the parametric investigation, it seems
that the critical buckling load decreases for an increased temperature because of a global
reduction in the stiffness of CNTRC curved sandwich nanobeams. Possible size effects
can reduce the overall stiffness of CNTRC curved sandwich nanobeams, whereby the
dimensionless critical buckling load decreases for an increased nonlocal parameter µ.
Unlike the nonlocality effect, an increased length scale parameter λ leads to an increased
buckling stability. More flexible elastic foundations and boundary conditions can reduce
significantly the overall structural stability, which is also largely affected by a varying
core-to-face sheet thickness ratio hc/h f , opening angle α, and CNT volume fractions. The
results obtained by neglecting the effect of thickness stretching (ε = 0) are perfectly in line
with predictions from the literature, thus confirming the good accuracy of the proposed
method to handle similar problems. The results obtained in this work, could represent
valid benchmarks for engineers and researchers to validate different numerical methods as
well as for practical design purposes of nanostructures.

Author Contributions: Conceptualization, A.A.D., M.S.A.H., B.K., R.D. and F.T.; Data curation,
A.A.D. and B.K.; Formal analysis, M.S.A.H., B.K., R.D. and F.T.; Investigation, A.A.D., R.D. and F.T.;
Methodology, M.S.A.H., M.A.E., R.D. and F.T.; Supervision, R.D. and F.T.; Validation, A.A.D., B.K.,
M.A.E., R.D. and F.T.; Writing—original draft, A.A.D., M.S.A.H., B.K. and M.A.E.; Writing—review &
editing, R.D. and F.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research receive no funding.



Appl. Sci. 2021, 11, 3250 19 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Griebel, M.; Hamaekers, J. Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites.

Comput. Methods Appl. Mech. Eng. 2004, 193, 1773–1788. [CrossRef]
2. Han, Y.; Elliott, J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites.

Comput. Mater. Sci. 2007, 39, 315–323. [CrossRef]
3. Fidelus, J.; Wiesel, E.; Gojny, F.; Schulte, K.; Wagner, H. Thermo-mechanical properties of randomly oriented carbon/epoxy

nanocomposites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1555–1561. [CrossRef]
4. Shen, H.-S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments.

Compos. Struct. 2009, 91, 9–19. [CrossRef]
5. Lim, C.; Zhang, G.; Reddy, J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation.

J. Mech. Phys. Solids 2015, 78, 298–313. [CrossRef]
6. Wu, H.; Kitipornchai, S.; Yang, J. Free Vibration and Buckling Analysis of Sandwich Beams with Functionally Graded Carbon

Nanotube-Reinforced Composite Face Sheets. Int. J. Struct. Stab. Dyn. 2015, 15, 1540011. [CrossRef]
7. Eltaher, M.; Khater, M.; Park, S.; Abdel-Rahman, E.; Yavuz, M. On the static stability of nonlocal nanobeams using higher-order

beam theories. Adv. Nano Res. 2016, 4, 51–64. [CrossRef]
8. Ebrahimi, F.; Farazmandnia, N. Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams

in thermal environment. Adv. Aircr. Spacecr. Sci. 2018, 5, 107. [CrossRef]
9. Sobhy, M.; Zenkour, A.M. Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams

with CNT reinforced face sheets on a viscoelastic substrate. Compos. Part B Eng. 2018, 154, 492–506. [CrossRef]
10. Daikh, A.A.; Megueni, A. Thermal buckling analysis of functionally graded sandwich plates. J. Therm. Stress. 2018, 41, 139–159.

[CrossRef]
11. Arefi, M.; Arani, A.H.S. Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded

nanobeam in thermal, mechanical, electrical, and magnetic environments. Mech. Based Des. Struct. Mach. 2018, 46, 669–692.
[CrossRef]

12. Bekhadda, A.; Cheikh, A.; Bensaid, I.; Hadjoui, A.; Daikh, A.A. A novel first order refined shear-deformation beam theory for
vibration and buckling analysis of continuously graded beams. Adv. Aircr. Spacecr. Sci. 2019, 6, 189–206. [CrossRef]

13. Medani, M.; Benahmed, A.; Zidour, M.; Heireche, H.; Tounsi, A.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R. Static and dynamic
behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel Compos. Struct. 2019, 32, 595–610. [CrossRef]

14. Arani, A.G.; Pourjamshidian, M.; Arefi, M.; Arani, M.R. Thermal, electrical and mechanical buckling loads of sandwich nano-
beams made of FG-CNTRC resting on Pasternak’s foundation based on higher order shear deformation theory. Struct. Eng. Mech.
2019, 69, 439–455. [CrossRef]

15. Nejati, M.; Ghasemi-Ghalebahman, A.; Soltanimaleki, A.; Dimitri, R.; Tornabene, F. Thermal vibration analysis of SMA hybrid
composite double curved sandwich panels. Compos. Struct. 2019, 224, 111035. [CrossRef]

16. Chaht, F.L.; Kaci, A.; Houari, M.S.A.; Tounsi, A.; Beg, O.A.; Mahmoud, S. Bending and buckling analyses of functionally graded
material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos. Struct. 2015, 18, 425–442.
[CrossRef]

17. Ahouel, M.; Houari, M.S.A.; Bedia, E.A.; Tounsi, A. Size-dependent mechanical behavior of functionally graded trigonometric
shear deformable nanobeams including neutral surface position concept. Steel Compos. Struct. 2016, 20, 963–981. [CrossRef]

18. Bouafia, K.; Kaci, A.; Houari, M.S.A.; Benzair, A.; Tounsi, A. A nonlocal quasi-3D theory for bending and free flexural vibration
behaviors of functionally graded nanobeams. Smart Struct. Syst. 2017, 19, 115–126. [CrossRef]

19. She, G.-L.; Jiang, X.Y.; Karami, B. On thermal snap-buckling of FG curved nanobeams. Mater. Res. Express 2019, 6, 115008.
[CrossRef]

20. She, G.-L.; Yuan, F.-G.; Karami, B.; Ren, Y.-R.; Xiao, W.-S. On nonlinear bending behavior of FG porous curved nanotubes. Int. J.
Eng. Sci. 2019, 135, 58–74. [CrossRef]

21. Daikh, A.A.; Houari, M.S.A.; Tounsi, A. Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via
nonlocal strain gradient theory. Eng. Res. Express 2019, 1, 015022. [CrossRef]

22. Daikh, A.A.; Bachiri, A.; Houari, M.S.A.; Tounsi, A. Size dependent free vibration and buckling of multilayered carbon nanotubes
reinforced composite nanoplates in thermal environment. Mech. Based Des. Struct. Mach. 2020, 1–29, in press. [CrossRef]

23. Daikh, A.A.; Drai, A.; Bensaid, I.; Houari, M.S.A.; Tounsi, A. On vibration of functionally graded sandwich nanoplates in the
thermal environment. J. Sandw. Struct. Mater. 2020, 1–28, in press. [CrossRef]

24. Daikh, A.A.; Guerroudj, M.; El Adjrami, M.; Megueni, A. Thermal Buckling of Functionally Graded Sandwich Beams.
Adv. Mater. Res. 2019, 1156, 43–59. [CrossRef]

25. Eltaher, M.; Mohamed, S.; Melaibari, A. Static stability of a unified composite beams under varying axial loads. Thin-Walled Struct.
2020, 147, 106488. [CrossRef]

26. Hamed, M.A.; Abo-Bakr, R.M.; Mohamed, S.A.; Eltaher, M.A. Influence of axial load function and optimization on static stability
of sandwich functionally graded beams with porous core. Eng. Comput. 2020, 36, 1929–1946. [CrossRef]

http://doi.org/10.1016/j.cma.2003.12.025
http://doi.org/10.1016/j.commatsci.2006.06.011
http://doi.org/10.1016/j.compositesa.2005.02.006
http://doi.org/10.1016/j.compstruct.2009.04.026
http://doi.org/10.1016/j.jmps.2015.02.001
http://doi.org/10.1142/S0219455415400118
http://doi.org/10.12989/anr.2016.4.1.051
http://doi.org/10.12989/aas.2018.5.1.107
http://doi.org/10.1016/j.compositesb.2018.09.011
http://doi.org/10.1080/01495739.2017.1393644
http://doi.org/10.1080/15397734.2018.1434002
http://doi.org/10.12989/aas.2019.6.3.189
http://doi.org/10.12989/scs.2019.32.5.595
http://doi.org/10.12989/sem.2019.69.4.439
http://doi.org/10.1016/j.compstruct.2019.111035
http://doi.org/10.12989/scs.2015.18.2.425
http://doi.org/10.12989/scs.2016.20.5.963
http://doi.org/10.12989/sss.2017.19.2.115
http://doi.org/10.1088/2053-1591/ab44f1
http://doi.org/10.1016/j.ijengsci.2018.11.005
http://doi.org/10.1088/2631-8695/ab38f9
http://doi.org/10.1080/15397734.2020.1752232
http://doi.org/10.1177/1099636220909790
http://doi.org/10.4028/www.scientific.net/AMR.1156.43
http://doi.org/10.1016/j.tws.2019.106488
http://doi.org/10.1007/s00366-020-01023-w


Appl. Sci. 2021, 11, 3250 20 of 20

27. Melaibari, A.; Abo-Bakr, R.M.; Mohamed, S.; Eltaher, M. Static stability of higher order functionally graded beam under variable
axial load. Alex. Eng. J. 2020, 59, 1661–1675. [CrossRef]

28. Zenkour, A.M.; Daikh, A.A. Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different
boundary conditions. J. Appl. Comput. Mech. 2020, 6, 1245–1259. [CrossRef]

29. Senturia, S.D. Microsystem Design; Springer Science & Business Media: Berlin, Germany, 2007.
30. Emam, S.A.; Eltaher, M.A.; Khater, M.E.; Abdalla, W.S. Postbuckling and Free Vibration of Multilayer Imperfect Nanobeams

under a Pre-Stress Load. Appl. Sci. 2018, 8, 2238. [CrossRef]
31. Shi, D.-L.; Feng, X.-Q.; Huang, Y.Y.; Hwang, K.-C.; Gao, H. The Effect of Nanotube Waviness and Agglomeration on the Elastic

Property of Carbon Nanotube-Reinforced Composites. J. Eng. Mater. Technol. 2004, 126, 250–257. [CrossRef]
32. Khater, M.; Eltaher, M.; Abdel-Rahman, E.; Yavuz, M. Surface and thermal load effects on the buckling of curved nanowires.

Eng. Sci. Technol. Int. J. 2014, 17, 279–283. [CrossRef]
33. Brischetto, S.; Tornabene, F. Advanced GDQ models and 3D stress recovery in multilayered plates, spherical and double-curved

panels subjected to transverse shear loads. Compos. Part B Eng. 2018, 146, 244–269. [CrossRef]
34. Tornabene, F.; Bacciocchi, M. Dynamic stability of doubly-curved multilayered shells subjected to arbitrarily oriented angular

velocities: Numerical evaluation of the critical speed. Compos. Struct. 2018, 201, 1031–1055. [CrossRef]
35. Tornabene, F. On the critical speed evaluation of arbitrarily oriented rotating doubly-curved shells made of functionally graded

materials. Thin-Walled Struct. 2019, 140, 85–98. [CrossRef]
36. Mohamed, N.; Eltaher, M.; Mohamed, S.; Seddek, L. Numerical analysis of nonlinear free and forced vibrations of buckled curved

beams resting on nonlinear elastic foundations. Int. J. Non-Linear Mech. 2018, 101, 157–173. [CrossRef]
37. Karami, B.; Janghorban, M.; Tounsi, A. Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based

on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 2018, 129, 251–264. [CrossRef]
38. Arefi, M.; Pourjamshidian, M.; Arani, A.G. Free vibration analysis of a piezoelectric curved sandwich nano-beam with FG-

CNTRCs face-sheets based on various high-order shear deformation and nonlocal elasticity theories. Eur. Phys. J. Plus 2018, 133,
193. [CrossRef]

39. Arefi, M.; Bidgoli, E.M.-R.; Dimitri, R.; Tornabene, F.; Reddy, J.N. Size-Dependent Free Vibrations of FG Polymer Composite
Curved Nanobeams Reinforced with Graphene Nanoplatelets Resting on Pasternak Foundations. Appl. Sci. 2019, 9, 1580.
[CrossRef]

40. Karami, B.; Janghorban, M.; Shahsavari, D.; Dimitri, R.; Tornabene, F. Nonlocal Buckling Analysis of Composite Curved Beams
Reinforced with Functionally Graded Carbon Nanotubes. Molecules 2019, 24, 2750. [CrossRef]

41. Karami, B.; Shahsavari, D.; Janghorban, M.; Li, L. Influence of homogenization schemes on vibration of functionally graded
curved microbeams. Compos. Struct. 2019, 216, 67–79. [CrossRef]

42. Arefi, M.; Bidgoli, E.M.-R.; Dimitri, R.; Bacciocchi, M.; Tornabene, F. Nonlocal bending analysis of curved nanobeams reinforced
by graphene nanoplatelets. Compos. Part B Eng. 2019, 166, 1–12. [CrossRef]

43. Eltaher, M.; Mohamed, N.; Mohamed, S.; Seddek, L. Periodic and nonperiodic modes of postbuckling and nonlinear vibration of
beams attached to nonlinear foundations. Appl. Math. Model. 2019, 75, 414–445. [CrossRef]

44. Malikan, M.; Nguyen, V.B.; Dimitri, R.; Tornabene, F. Dynamic modeling of non-cylindrical curved viscoelastic single-walled
carbon nanotubes based on the second gradient theory. Mater. Res. Express 2019, 6, 075041. [CrossRef]

45. Mohamed, N.; Eltaher, M.A.; Mohamed, S.A.; Seddek, L.F. Energy equivalent model in analysis of postbuckling of imperfect
carbon nanotubes resting on nonlinear elastic foundation. Struct. Eng. Mech. 2019, 70, 737–750. [CrossRef]

46. Van Tham, V.; Quoc, T.H.; Tu, T.M. Free Vibration Analysis of Laminated Functionally Graded Carbon Nanotube-Reinforced
Composite Doubly Curved Shallow Shell Panels Using a New Four-Variable Refined Theory. J. Compos. Sci. 2019, 3, 104.
[CrossRef]

47. Dindarloo, M.H.; Li, L.; Dimitri, R.; Tornabene, F. Nonlocal Elasticity Response of Doubly-Curved Nanoshells. Symmetry 2020, 12,
466. [CrossRef]

48. Eltaher, M.A.; Mohamed, N. Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics. Appl. Math. Comput.
2020, 382, 125311. [CrossRef]

49. Karami, B.; Shahsavari, D. On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved
nanoshells reinforced with graphene-nanoplatelets. Comput. Methods Appl. Mech. Eng. 2020, 359, 112767. [CrossRef]

50. Karami, B.; Janghorban, M.; Tounsi, A. Novel study on functionally graded anisotropic doubly curved nanoshells. Eur. Phys.
J. Plus 2020, 135, 103. [CrossRef]

51. Mohamed, N.; Mohamed, S.A.; Eltaher, M.A. Buckling and post-buckling behaviors of higher order carbon nanotubes using
energy-equivalent model. Eng. Comput. 2020, 1–14, in press. [CrossRef]

52. Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys.
1983, 54, 4703–4710. [CrossRef]

53. Touloukian, Y.S. Thermophysical Properties of High Temperature Solid Materials; MacMillan: New York, NY, USA, 1967.

http://doi.org/10.1016/j.aej.2020.04.012
http://doi.org/10.22055/jacm.2020.33136.2166
http://doi.org/10.3390/app8112238
http://doi.org/10.1115/1.1751182
http://doi.org/10.1016/j.jestch.2014.07.003
http://doi.org/10.1016/j.compositesb.2018.04.019
http://doi.org/10.1016/j.compstruct.2018.06.060
http://doi.org/10.1016/j.tws.2019.03.018
http://doi.org/10.1016/j.ijnonlinmec.2018.02.014
http://doi.org/10.1016/j.tws.2018.02.025
http://doi.org/10.1140/epjp/i2018-12015-1
http://doi.org/10.3390/app9081580
http://doi.org/10.3390/molecules24152750
http://doi.org/10.1016/j.compstruct.2019.02.089
http://doi.org/10.1016/j.compositesb.2018.11.092
http://doi.org/10.1016/j.apm.2019.05.026
http://doi.org/10.1088/2053-1591/ab15ff
http://doi.org/10.12989/sem.2019.70.6.737
http://doi.org/10.3390/jcs3040104
http://doi.org/10.3390/sym12030466
http://doi.org/10.1016/j.amc.2020.125311
http://doi.org/10.1016/j.cma.2019.112767
http://doi.org/10.1140/epjp/s13360-019-00079-y
http://doi.org/10.1007/s00366-020-00976-2
http://doi.org/10.1063/1.332803

	Introduction 
	Theoretical Formulation 
	Geometric and Mechanical Properties 
	Kinematic Field 
	Constitutive Equations 

	Equilibrium Governing Equations 
	Classical Formulation of Curved Sandwich Beams 
	Nonlocal Strain Gradient Approach 
	Temperature Field 

	Analytical Solution 
	Results and Discussion 
	Comparison Study 
	Parametric Study 

	Conclusions 
	References

