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Abstract: Vulnerabilities threaten the security of information systems. It is crucial to detect and
patch vulnerabilities before attacks happen. However, existing vulnerability detection methods suffer
from long-term dependency, out of vocabulary, bias towards global features or local features, and
coarse detection granularity. This paper proposes an automatic vulnerability detection framework in
source code based on a hybrid neural network. First, the inputs are transformed into an intermediate
representation with explicit structure information using lower level virtual machine intermediate
representation (LLVM IR) and backward program slicing. After the transformation, the size of
samples and the size of vocabulary are significantly reduced. A hybrid neural network model is then
applied to extract high-level features of vulnerability, which learns features both from convolutional
neural networks (CNNs) and recurrent neural networks (RNNs). The former is applied to learn local
vulnerability features, such as buffer size. Furthermore, the latter is utilized to learn global features,
such as data dependency. The extracted features are made up of concatenated outputs of CNN and
RNN. Experiments are performed to validate our vulnerability detection method. The results show
that our proposed method achieves excellent results with F1-scores of 98.6% and accuracy of 99.0%
on the SARD dataset. It outperforms state-of-the-art methods.

Keywords: cyber security; vulnerability detection; program slice; static analysis

1. Introduction

The extensive application of information technology has significantly promoted the
development of the economy and society. However, huge losses may be caused once
an information system is attacked. Software vulnerabilities are the root cause of cyber-
attacks. The number of software vulnerabilities published has grown rapidly in recent
years. According to the 2020 annual report of US-CERT [1], national vulnerability database
(NVD) recorded 17,447 vulnerabilities in 2020, which was the fourth consecutive year with
a record number of vulnerabilities. Furthermore, some of them were utilized by attackers,
causing enormous losses. For instance, more than 500,000 passwords were stolen and
available for sale in April 2020 because of Zoom’s vulnerabilities [2]. Therefore, it is crucial
to find and patch vulnerabilities as early as possible.

Vulnerability detection is the work of finding code snippets that cause errors in certain
situations in large chunks of code. Vulnerability detection remains a challenging and
time-consuming task so far. Discovering potential vulnerabilities in the source code is
the main branch of detection approaches. It can be applied in the whole life of software
development. Traditional methods include taint analysis [3], symbolic execution [4], and
theorem proving [5]. However, they suffer from low efficiency and high false positive rate.
Moreover, intense labor of human experts is needed to make detection rules. Therefore,
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automatic vulnerability detection is the trend of research. It leverages machine learning
techniques to train the detector from vulnerability datasets. Metric- and pattern-based
techniques are the two main branches of the intelligence approach. Inspired by the belief
that complexity is the enemy of software security, metric-based detection approaches learn
the connection between software engineering metrics and vulnerabilities. Complexity met-
rics [6], code churn metrics [7], developer activity metrics [8], and dependency metrics [9]
are utilized. Metric-based approaches are lightweight to analyze a large-scale program.
However, they suffer from high false positives and are mostly at source file granularity,
requiring intense labor of human experts to locate the vulnerabilities. Pattern-based meth-
ods learn vulnerability patterns from source code using program language processing
techniques. According to the learned patterns, they can be further divided into anomaly
detection and vulnerable pattern learning. Anomaly detection learns legal programming
patterns from mature applications at the training stage. Then, a code snippet will be re-
ported as a potential vulnerability if it has an obvious low similarity with the learned legal
pattern. Anomaly detection methods [10] avoid the dependency on labeled vulnerability
datasets and can be applied to identify unknown vulnerabilities. However, their accuracy
is relatively low, and a high false–positive rate will be made when used in a cross-project
scenario. Vulnerable pattern learning formulates the vulnerable programming pattern
from labeled vulnerability datasets. Compared with anomaly detection, vulnerable pattern
learning requires smaller computations and performs better in accuracy and precision.
However, it highly relies on labeled vulnerability datasets.

While the vulnerability detection method using machine learning technology has
made significant progress in automation and accuracy, the following problems hinder
its performance: (1) Long-term dependency between code elements. The dependencies
between elements contain important information for vulnerability detection. However,
semantically related elements may have a long distance from each other. For example, the
assignment and reference of a variable may be interspersed with many irrelevant codes.
The long-term dependency issue compromises the abstraction of vulnerability features.
(2) The out of vocabulary (OoV) issue. Custom identifiers, such as function and variable
names, result in a changing vocabulary. There are always new words out of vocabulary
in a new project. (3) Coarse detection granularity. A detector with a fine granularity
will promote the understanding and patching of vulnerabilities. However, most existing
methods identify vulnerabilities at the level of file or function. Coarse granularity wastes
the time and power of security experts to deal with the detection report. (4) Bias towards
global features or local features. Methods in natural language processing are introduced
into vulnerability detection. However, different neural network models have a different
emphasis on feature extraction. For example, CNN tends to learn local features, while RNN
is good at learning global features. Both global features or local features are significant for
vulnerability detection. For example, both buffer size and data dependency play important
roles in detecting buffer overflow vulnerability.

To this end, we propose an automated software vulnerability detection framework
based on hybrid neural networks and the backward sliced intermediate representation
method. This framework is designed to discover inter-procedural vulnerabilities hidden in
program source code with fine granularity to pinpoint the vulnerability. The inputs in the
form of source code are transformed into intermediate representations first. Specifically,
each sample is compiled into LLVM IR, which is in the form of a static single assignment
(SSA). LLVM IR has an explicit control dependency and data dependency. Then, a cus-
tomized syntactic analysis is conducted to find all security sensitive program points in each
input. These identified program points will serve as criteria to guide program slicing. Next,
inter-procedural data dependency analysis and intra-procedural control dependency anal-
ysis are performed on each slice criterion. As a result, we abstract the vulnerability-related
part of a sample. Subsequently, normalization is performed to replace the custom-defined
identifiers with uniform ones and remove non-representative code and string variable
definition. After the above steps, the inputs are transformed into intermediate represen-
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tations with precise vulnerability information. This transformation significantly reduces
the vulnerability context and the vocabulary size, relieving the long-term dependency and
OoV issue.

Moreover, a hybrid neural network is proposed to learn high-level features of a vul-
nerability. A convolutional layer and a recurrent layer are applied. The convolutional layer
is applied to learn local features, and the recurrent layer is utilized to learn global features.

We implemented the proposed framework and evaluated its performance on an
authoritative vulnerability dataset. The experiment results show that our proposed inter-
mediate representation facilitated the effect of the vulnerability detection method. The size
of the samples and the size of vocabulary were significantly reduced after the transforma-
tion. The comparative analysis results show that our proposed method achieved excellent
results with an F1-score of 98.6% and an accuracy of 99%. These results outperform
state-of-the-art methods.

The remainder of this paper is structured as follows. In Section 2, we introduce some
related noteworthy works. In Section 3, we present our proposed framework in detail. The
experiments are discussed in Section 4. Finally, we conclude this paper and discuss future
works in Section 5.

2. Related Work

This section reviews the related works from source code representation learning
and intelligent vulnerability detection. We discuss source code presentation learning
from sequence-based approaches, tree-based approaches, and graph-based approaches.
Furthermore, intelligent vulnerability detection is reviewed from metric-based vulnerability
detection and pattern-based vulnerability detection.

2.1. Source Code Representation Learning

Source codes must be transformed into a proper form to employ data-driven ap-
proaches for automatic vulnerability detection. This form should represent the source
code’s syntactic and semantic information and be suitable for further analysis in machine
learning algorithms. There are three main representation learning methods for source code:
sequence-based approaches, tree-based approaches, and graph-based approaches [11].

Sequence-based approaches treat code fragments as sequences, which is similar to
natural language processing in a way. The elements that compose a sequence can be
character, token, or application programming interface (API). Local embedding methods
are proposed at first. Scandariato et al. [12] apply the “bag-of-words” model to encode
textual tokens of each Java file to find vulnerabilities. Their implementation demonstrates
the possibility of predicting software vulnerability using machine learning approaches.
Pang et al. [13] further improved the detection effect by leveraging the N-gram model to
encode source code. Although the local representation methods demonstrate their abil-
ity to represent source code in the vulnerability detection task, they usually suffer from
high dimension and poor abstraction of long-term contextual information. Distributed
representation methods are proposed to overcome these challenges. Li et al. [14,15] utilized
word2vec to represent code fragments. Tokens are embedded using their context informa-
tion. Towards the lack of vulnerability samples, a fine-tuned model was applied [16]. This
model learns the embedding of tokens using a pre-training stage on an expanded source
code corpus. The pre-training method’s application reduces training time and improves
performance using the transferred pre-known information. Sequence-based approaches
have the advantage of a lightweight computation. However, the existing sequence-based
methods are prone to the long-term dependency problem.

Tree-based approaches learn the representation from an abstract syntax tree (AST).
AST is a kind of tree to abstract a source code with an explicit syntactic structure. On
the one hand, AST serves as an intermediate representation between a source code and
sequence to facilitate the representation using syntactic knowledge. Lin [17,18] proposed a
function level representation method using AST. Functions in the form of AST are serialized
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to sequence using depth-first traversal. Bilgin [19] used full binary AST for simplification
and efficiency. Breadth-first traversal is leveraged to serialize binary AST into a sequence.
Code2vec [20] and Code2seq [21] decompose AST to a set of paths using a random walk.
Then the skip-gram model is applied to generate embeddings.

On the other hand, tree-based neural networks are applied directly to AST. Mou [22]
leverages a custom convolutional neural network on a full binary tree of code snippets. To
relieve the gradient limitation, an AST neural network (NN) [23] splits large ASTs into a
set of small statement trees. Then, the tree-based RNN is performed. Overall, tree-based
approaches improve the representation of source code by adding syntactic knowledge.
Furthermore, arbitrary code fragments can be parsed to AST, which broadens the usage
scenarios of tree-based approaches. However, tree-based methods dramatically increase
code fragment complexity. Moreover, they are prone to the long-term dependency problem
and the gradient vanishing problem.

Graph-based approaches parse programs in the form of source code into graph repre-
sentations with structure knowledge. Then graph-based embedding methods are applied
to the graph representations. Tufano et al. [24] learned similarities between different code
snippets using a control flow graph (CFG). Allamanis et al. [25] used the combination of
AST and data flow graph (DFG) as a graph representation before embedding. Furthermore,
a program dependency graph (PDG) [26], code property graph (CPG) [27], and context
flow graph (XFG) [28] were also applied to the representation learning of programs.

Graph-based approaches relieve the long-term dependency issue and improve the
performance of detectors. However, they need intensive computation, which requires a
large number of hardware resources. Moreover, most graph-based methods rely on the
compiled intermediate representation limiting their application scenarios.

2.2. Intelligent Vulnerability Detection

The development of artificial intelligence technology brings new methods to alleviate
the bottlenecks of traditional vulnerability detection. Metric-based and pattern-based
approaches are the two main branches. Inspired by bug prediction, software engineering
metrics are used as features to detect vulnerabilities. At first, the successful application
of complexity metrics [6,29] reveals the capacity of metric-based approaches to discover
vulnerabilities. Subsequently, more metrics such as token frequency metrics [30], execution
complexity metrics [31], developer activities metrics [7], and dependency metrics [9] are
utilized to improve the performance of a detector. Recently, Du et al. [32] used vulnerability
metrics in an additional step. This method achieves excellent results in cross-project situa-
tion. Metric-based vulnerability detection is a lightweight method to find vulnerabilities in
source code at file-level granularity. However, their recall is low, and file-level granularity
is too coarse to help the developer locate and patch the reported vulnerabilities.

Pattern-based approaches are proposed to improve efficiency and reduce reliance
on human workers. On the one hand, normative patterns derived from mature software
are utilized as rules to find vulnerabilities. Violations from these norms are considered
potential vulnerabilities. Fabian [33,34] derived anomalous patterns from the variable
initializations with data or control dependency on security-sensitive functions. Some key
statements or API usages are collected, such as abnormal API usage patterns, imports, and
function calls. Bian et al. [35] utilized syntactic information to derive anomalous patterns.
They transform sliced source codes into AST. Then, a hash algorithm is used to obtain
the vector representation. Anomaly detection has the advantages of finding unknown
vulnerabilities, and it reduces the dependence on labeled vulnerability datasets. However,
anomaly detection is task/project-specific and incurs a low recall.

On the other hand, vulnerable programming patterns derived from vulnerable pro-
grams are also applied to detect potential vulnerabilities. Dam et al. [36] proposed a
file-level vulnerability detection method. They use long short-term memory (LSTM) to
learn the embedding of a serialized AST. Local features and global features are leveraged
to train a simple classifier. Wang et al. [37] parsed files into AST nodes and leveraged a



Appl. Sci. 2021, 11, 3201 5 of 16

deep belief network (DBN) to learn semantic features from token vectors. Vulnerability
detections with a granularity of file-level has the advantage of easily acquired datasets.
However, its detection granularity is too coarse for location and understanding of re-
ported vulnerabilities.

Liu and Lin [38,39] utilized transfer learning to minimize the divergence between
the source domain and the target domain. Their approach performs well in cross-project
vulnerability detection with a function-level granularity. VulSniper [27] leverages CFG
and AST as a graph representation and uses soft attention to learn high-level features of
vulnerabilities. Devign [26] proposed a function-level detection method using a graph
representation that combines AST, dependency, and natural code sequence information.
Function-level vulnerability detections provide precise vulnerability information compared
with file-level ones. However, they fail to capture inter-procedural semantic details due to
their granularity.

Inter-procedural statement-level vulnerability detection methods are proposed with a
fine granularity. SySeVr [15] and VulDeePecker [14,40] utilize inter-procedural dependency
analysis to generate sliced source code, and word2vec is used as the embedding method.
VulDeeLocator [41] transforms source code into the LLVM IR form, representing syntax
and semantic information in the form of an SSA. Then, the attention mechanism and
LSTM neural networks are leveraged to learn high-level features. Compared with file-level
and function-level methods, those with inter-procedural statement-level granularity can
abstract broad scope vulnerability types and provide precise information for the location
and understanding of the reported vulnerabilities. However, they are relatively complex
due to the inter-procedural dependency analysis.

3. Methods

In this section, we describe in detail how our proposed method automatically learns
high-level features and discovers potential vulnerabilities in source code.

3.1. Problem Formulation

A software vulnerability is a fault or mistake created during development. Malicious
users may exploit it to perform functions different from design logic. In this paper, we
focus on detecting vulnerabilities in source code. Most vulnerabilities are rooted in critical
operations. A critical operation can be a function call, an assignment, or a control statement.
Therefore, from the source code perspective, we describe a vulnerability as follows:

Definition 1. In source code, a vulnerability is a security-sensitive operation and the statements
that have control or data dependency on it. These relative statements can be inter-procedural or
intra-procedural.

Vulnerability detection is essentially a binary classification problem. Our goal is to
design a detector that can classify a program into a correct label based on the knowledge
learned from labeled datasets. It can be described as follows:

Let a sample be defined as ((ci, yi)|ci ∈ C, yi ∈ Y), i ∈ {1, 2, · · · , n}, where C repre-
sents the set of programs and Y = {0, 1}n denotes the label of corresponding programs
with 0 for clean and 1 for vulnerable. n is the number of programs in datasets. Let R denote
the intermediate representations that are fed to the machine learning model. The function
g : C → R parses programs in raw source data into intermediate representations. The goal
of our method is to learn a mapping from R to Y, f : R→ Y to predict whether a program
is vulnerable or not.

3.2. Overview

Our study aimed to detect vulnerabilities in source code with a fine granularity. There-
fore, we chose the inter-procedural statement-level granularity. As shown in Figure 1,
our detection framework goes through the training phase and detecting phase. At the
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training phase, programs in the form of source code are parsed into LLVM IR, which is in
the form of an SSA. SSA provides explicit use-define chain and control dependency in the
context. Then, an inter-procedural static analysis on parsed intermediate representations
is conducted. Our framework performs syntactic analysis to find all security-sensitive
operations. Some security-sensitive operations may belong to one vulnerability, so vulnera-
bility description information is utilized to find these key operations as slice criteria. Next,
backward program slicing is performed using these slice criteria. The slicing results are
treated as the input of a hybrid neural network after normalization and serialization. In
the hybrid neural network, the recurrent layer is used to learn the long-term information,
while the convolutional layer is applied to learn the local details of a program. The outputs
of the recurrent layer and the convolutional layer are concatenated as the input of a dense
layer, which generates the detection result. At the detection phase, the target programs
will be parsed into intermediate representations and classified by the trained model.

Figure 1. Overview of the proposed vulnerability detection approach. The red arrow represents the data flow in the training
phase. The blue arrow represents the data flow in the detection phase. The black arrow represents the data flow in both the
training and detecting phases.

3.3. Intermediate Representation Generation

Programs are transformed into intermediate representations that have explicit data
dependency and control dependency first. Irrelevant information is removed to reduce the
interference of noise. To do so, LLVM IR and backward program slicing is applied.

3.3.1. Parsing Source Code

A program language has strict syntax rules and dependency relations. This character-
istic is crucial to the representation of vulnerabilities. However, dependency relations in a
program source code may be implicit. For example, a variable may be defined and used in
more than one place. Furthermore, these options all share one name. This issue may incur
confusion while using the automated detection method to understand the program.

In our method, LLVM IR is utilized as an initial intermediate representation to obtain
explicit dependency relations, which has already been used by compilers for optimization.
LLVM IR is given in static single assignment (SSA) form, ensuring every variable is defined
only once. Each use of a variable is assigned a new identifier, and all these identifiers are
connected to one common register. This form makes it easy for machine learning models to
understand the dependency in a program. As shown in Figure 2, a simple function written
in the C program language in Figure 2a is transformed into LLVM IR form in Figure 2b.
In LLVM IR, custom-defined variables are renamed to the form of a specific token plus
a number. For example, local variables are renamed by “%ID” and global variables are
renamed by “@ID”. This naming method ensures a fixed vocabulary, relieving the out
of vocabulary issue. Moreover, control flow is specified by “br” and “label” in LLVM IR.
These characters facilitate machine learning methods to understand a program.



Appl. Sci. 2021, 11, 3201 7 of 16

Figure 2. A code snippet and its lower level virtual machine intermediate representation (LLVM IR): (a) A program sample
written in C language; (b) the corresponding LLVM IR form of the program listed in Figure 2a.

3.3.2. Finding Slice Criterion

Our proposed framework chooses inter-procedural statements as detection granularity.
Hence, further static analysis is needed. Furthermore, vulnerability descriptions are used to
facilitate the generation of the intermediate representation. As discussed in Section 3.1, the
key part of a vulnerability is the set of statements that perform security-sensitive operations.
Therefore, these statements are found as criteria to guide program slicing. Firstly, the
label and line number of the statements that perform security-sensitive operations are
extracted from vulnerability descriptions. Traditional static analysis methods already
summarize security-sensitive operations. Then, syntax analysis is performed on every
found statement to pinpoint the call of security-sensitive functions or memory operations,
which are extracted as slice criteria. The whole algorithm is described in Algorithm 1.

Algorithm 1. Extracting security-sensitive operations from a program.

Input: A program p = {s1, s2, · · · , sm}, vulnerable syntax rules R = {r1, r2, · · · , rk},
Vulnerability manifest M = {m1, m2, · · · , ml}
Output: A set C of slice criterions
1: C ← ∅ ;
2: for each vulnerability description mi ∈ M do:
3: line← Get line from mi
4: label ← Get label from mi
5: for each rule ri ∈ R do:
6: if sline match ri:
7: c← extract slice criterion from si;
8: C ← C ∪ {(c, line, label)} ;
9: end if;
10: end for;
11: end for;
12: return C;

3.3.3. Program Slicing and Serialization

In this paper, the token sequence of sliced LLVM IR is leveraged as the final intermedi-
ate representation. A backward program slicing is performed to remove instructions of a
program that do not influence the slice criterion. The generation of program slice relies
on data dependency and control dependency, which define how other instructions affect
some program points of interest.
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Definition 2. Data dependence. A statement j is data dependent on statement i(written i dd→ j) if
there exists a variable xsuch that: (1) x ∈ DEF(i) ∩ REF(j), (2) there exists a non-trivial path
pfrom i to jsuch that for every statement k ∈ p− {i, j}, x /∈ DEF(k). DEF(i)denotes the set of
variables defined at statement i, and REF(j)denotes the set of variables referenced at statement j.

Definition 3. Control dependence. A statement jis control dependent on a statement i(written i cd→ j)
(1) if there exists a path pfrom ito jsuch that jpost-dominates every statement k ∈ p− {i, j}, (2)
i is not post-dominated by j.

Data dependence information identifies the statements that modify the value of a
variable in a program point. Control dependence information identifies the conditionals
that may affect the execution of a statement.

Definition 4. Backward program slice. Let Cbe the slice criteria of a program. Backward program

slice with respect to a slice criterion c ∈ Cis defined as a set Sc =
{

s
∣∣∣s dd→ c or s cd→ c

}
.

Based on the definition of control dependence and data dependence, all the instruc-
tions that can affect a given criterion are found. Then, preprocessing that removes non-
representative code and normalizes custom-defined identifiers from the backward program
slice of a program is conducted. After this step, the length of a sample is reduced, relieving
the out of vocabulary issue. Finally, tokenization is performed on the natural sequential
order of the preprocessed backward program slice. The results are fed to a hybrid neural
network to learn the vulnerable pattern automatically.

3.4. Hybrid Neural Network

As shown in Figure 3, a hybrid neural network is proposed to learn the vulnerable
pattern automatically. RNN has proved its ability to process sequential order data tasks.
However, compared with natural language processing and program summary, local details
play a crucial role in vulnerability detection. For example, a vulnerable program may have
little difference from its patched version. The cause of a vulnerability could be just a few
misused variables or control statements. CNN has the advantage of learning local features.
Therefore, our proposed hybrid neural network utilized a convolutional layer to learn local
features and a recurrent layer to learn global features.

Figure 3. Overview of the proposed hybrid neural network. The input token sequence is converted into vector representation
in the embedding layer. Then it is input into the recurrent layer and the convolutional layer, respectively. The red arrows
represent the process of the recurrent layer, and the blue arrows represent the process of the convolutional layer. The outputs
of these two layers are concatenated and feed into a dense layer to predict whether an input sample is vulnerable or not.



Appl. Sci. 2021, 11, 3201 9 of 16

As shown in Figure 3, our proposed neural network consists of six layers. Specifically,
the network takes a token sequence 〈t1, t2, · · · , tn〉 generated from Section 3.3 as input,
where n is the length of a sequence. Each token ti ∈ RV in the input is a vector in the form
of one-hot, where V is the vocabulary size. The embedding layer maps each token into a
fixed-length continuous vector, which is done by maintaining a token embedding matrix
E ∈ Rk×|V|, where k is the size of a token vector, and |V| is the size of the vocabulary V. The
embedding matrix that acts as a look-up table is randomly initialized and then modified
during training. The vector representation of a token ti is generated by

vi = ti × E (1)

where i is the index of a token in a token sequence. Then the input can be represented as

xj = v1 ⊕ v2 ⊕ · · · ⊕ vn (2)

where j is the order of a sample in the dataset, and ⊕ denotes the concatenate operation.
The vector representation of input is sent to the convolutional layer and the recurrent layer,
respectively.

In the convolutional layer, let w ∈ Rh × k be a filter, where h is the filter window. A
new feature ci is produced by

ci = f (w·xi:i+h−1 + b) (3)

Here, xi:i + h−1 denotes the token vectors that are involved in one convolution, and
b ∈ R is the bias. f denotes a non-linear function. This filter is applied to each possible
window in the input token sequence, and a feature map is produced by

C = [c1, c2, , cn−h + 1]. (4)

A max-pooling operation with a pooling size d is performed over the feature map.
After this special filter, all d features are converted into one feature by maximizing value
on every dimension. Last, we apply a flattening operation to convert the feature map into
a vector Ĉ ∈ R(n−h + 1)k/d In the recurrent layer, the Bi-directional Gated Recurrent Unit
(Bi-GRU) network is utilized to capture the long-term dependencies for the input sequence.
Every vector representation vt is input into a GRU unit. As described in [42], the basic
recurrence of the propagation model is

rt = ∂(vtWvt + ht−1Whr + br)
zt = ∂(vtWvz + ht−1Whz + bz)

h̃t = tanh(vtWvh + rt � ht−1Whz + bh)

ht = zt � ht−1 + (1− zt)� h̃t

(5)

where rt and zt represent reset and update gates, respectively. h̃t denotes the candidate
hidden state, and ht is the output of the recurrent GRU unit. Furthermore, the symbol ∂
denotes the sigmoid function, and tanh represents the hyperbolic tangent function. The
symbol � signifies element-wise multiplication. GRU captures long-term dependencies
using update gate and reset gate. Furthermore, Bi-GRU implementation, which consists
of a forward and a backward GRU, is applied to capture both preceding and subsequent
contextual information. The recurrent layer output H ∈ R2u can be calculated using
H = H f ⊕ Hb, where u is the number of the GRU unit, and H f , Hb represent the output of
forward and backward GRU, respectively.

In the last three layers, the outputs of the recurrent layer and the convolutional layer
are converted into fixed-length vectors using a fully connected neural network, respectively.
After that, these two vectors are concatenated and finally input into a dense layer to output
vulnerable and clean probabilities.



Appl. Sci. 2021, 11, 3201 10 of 16

3.5. Vulnerability Detection

In the detection phase, target programs are transformed into the intermediate represen-
tation in the same way as that of the training phase. The model learned in the training phase
is performed as a classifier, generating predictions according to the transformed input.

The proposed syntax analysis method is applied directly to find all security-sensitive
program points for the new programs with no vulnerability description. Each program
point serves as a criterion to generate the corresponding program slice. Finally, program
slices are classified by the trained model.

Our method traces back a detected vulnerability to the respective piece of source code
to help developers understand and fix vulnerabilities. As described in Section 3.2, the
key part of a vulnerability is the security sensitive program point from the source code
perspective. After the detection phase, vulnerable samples in sliced LLVM IR are detected.
Security sensitive program points are extracted from the detected samples. Then these
program points act as criteria to perform traditional static analysis at the source code level,
such as data flow analysis. Together with the static analysis results, the extracted security
sensitive program points make up the final report.

4. Experiments
4.1. Research Questions

We conduct experiments toward answering the following research questions:

RQ1: Can our proposed intermediate representation facilitate the feature extraction of
vulnerabilities from source code?

RQ2: How well does our approach perform in learning vulnerable program patterns?
RQ3: How effective and precise is our proposed method compared with the state-of-the-

art methods?

4.2. Evaluation Metrics

To measure our proposed method’s performance, a confuse matrix was utilized to
record the correct and incorrect predictions. Let True Positive (TP) denotes the num-
ber of vulnerable samples that are correctly classified. False Positive (FP) denotes the
number of clean samples that are classified as vulnerable. True Negative (TN) repre-
sents the clean samples that are correctly classified as clean. False Negative (FN) rep-
resents the vulnerable samples that are falsely classified as clean. False Positive Rate
(FPR) = FP/(TN + FP), denotes the proportion of clean samples that are falsely classi-
fied as vulnerable in all clean samples. False Negative Rate (FNR) = FN/(FN + TP) de-
notes the ratio of falsely classified vulnerable samples on all vulnerable samples. Accuracy
(Acc) =(TP + TN)/(TP + TN + FP + FN), represents the ability to classify vulner-
able and clean samples correctly. Precision (P) = TP/(TP + FP), denotes the proportion
of correctly classified vulnerable samples in all samples that are classified as vulnerable.
Recall (R) = TP/(TP + FN), represents the ability of a detection method to discover
vulnerabilities as much as possible. F1− Score (F1) = 2 · P · R/(P + R) is an indicator
that takes both Precision and Recall into consideration.

4.3. Experimental Setup

We used the Software Assurance Reference Dataset (SARD) [43] as the data source
because it has been widely used as a benchmark to test vulnerability detection methods.
SARD is a project maintained by the National Institute of Standards and Technology
(NIST). Their samples include synthetic, production, and academic vulnerabilities. A clear
vulnerability description was accessed in SARD, which is crucial for our method to perform
preprocessing before machine learning. Specifically, 12,301 programs in the C language
were chosen, including 11 types of vulnerabilities: CWE-20, CWE-78, CWE-119, CWE-121,
CWE-122, CWE-124, CWE-126, CWE-127, CWE-134, CWE-189, and CWE-399. Moreover,
the vulnerabilities may be inter-procedural or intra-procedural. We set train data:test
data = 7:3, and 5-fold cross-validation was applied to choose super parameters.
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Clang (version 6.0.0-1ubuntu2) [44] was used to parse programs into LLVM IR form.
DG (version 0e0fc8f9) [45] was used to conduct backward program slicing on LLVM IR.
Because DG is still under development, it takes all calls of function with the same name as
slice criteria in the current version. The other function calls are also designed as candidate
vulnerabilities in SARD. Thus, we removed all calls to the same function except the selected
security-sensitive program point before slicing. After normalization and tokenization, the
vocabulary size on the data source was reduced to 537. After compiling and static analysis,
we extracted 32,860 code snippets, including 12,301 vulnerable ones and 20,559 clean ones.
A hybrid neural network was implemented by Keras on Kaggle with NVIDIA Tesla P100
GPU. The tuned parameters of the hybrid neural network are shown in Table 1.

Table 1. Tuned parameters of hybrid neural network.

Parameter Description

Embedding layer The size of vocabulary and token vector are 538 and 100, respectively. The embedding matrix is
randomly initialized. The max sequence length is 1000.

Convolutional layer The number of convolutional filters is 256 with size 3. The window of the max-pooling filter is 4.

Recurrent layer The units of both forward and backward GRU net are 256. Dropout and recurrent_dropout are set to
0.2 and 0.1, respectively.

Dense layer The first two dense layers with 256 units are connected to the convolutional layer and the recurrent
layer. The last dense layer generates prediction with two units.

Batch_size The number of samples that are propagated through the network is 128.

Loss function The function to evaluate the difference between the trained model and datasets is
binary_crossentropy.

Optimizer The algorithm to optimize the neural network is Adam.

Monitor The matric to be monitored for early stop is F1-score and patience is 10.

4.4. Experiments for Answering RQ1

In order to evaluate the effect of our proposed intermediate representation, experi-
ments were conducted on five datasets. All five datasets were generated from the same
dataset. Specifically, “raw data” denotes the raw dataset described in Section 4.3, which con-
sists of programs with vulnerability and corresponding patches in their bodies. Moreover,
a sample could include multiple source code files. “LLVM IR” denotes the intermediate
codes that were transformed from “raw data”. “Source code based” consists of program
slices in the form of source code. It was transformed from “raw data” using our slice
criterion-finding method. “VulDeeLocator” is a dataset that was generated by VulDeeLoca-
tor [42], which is also an LLVM IR and program slicing based method. Table 2 summarizes
these five datasets from the number of samples, the average length of a sample, the vocab-
ulary size, and the F1-score. The indicator F1-score obtained by applying the same neural
network on these datasets represents the ability of intermediate representation to promote
vulnerability detection.

Table 2. Results for RQ1. Evaluating the performance of different intermediate representations.

Data Sample Number Average Length Vocabulary Size F1-Score

Raw data 12,301 185 60,918 -
LLVM IR 12,301 513 43,179 -

Source code based 32,860 144 691 88.9
VulDeeLocator [42] 140,631 34 2665 97.4

Our method 32,860 51 537 98.6



Appl. Sci. 2021, 11, 3201 12 of 16

As shown in Table 2, “raw data” had 12,301 samples in total. The average length
of a sample was 185, and the vocabulary size was 60,918. After compiling, the average
length increased to 513 in “LLVM IR”, because LLVM IR was in the form of an SSA, and
non-representative codes were introduced. Both “raw data” and “LLVM IR” had no F1-
score because vulnerability and patch were mixed in some samples. As for “source code
based”, 32,860 samples were extracted from “raw data” using our proposed slice criterion
finding method. The average length of a sample and the vocabulary size were reduced
to 144 and 691, respectively, after normalization. “VulDeeLocator” had 140,631 samples,
which is approximately four times that of “our method”, because “VulDeeLocator” travels
the entire program to find all security-sensitive points whose bidirectional program slice
includes a vulnerable line given in the vulnerability description file. This method will incur
a situation in which multiple samples may belong to one vulnerability. The generated
slices are inaccurate and fragmented. Moreover, “VulDeeLocator” normalizes custom-
defined function names, reducing the vocabulary size from 43,197 to 2665. “Our method”
was based on LLVM code and extracted 32,860 samples. Each sample corresponded to a
vulnerability or a patch in the program. The average length of a sample was 51, 1/10 of that
of “LLVM IR”. In the normalization of “our method”, all the custom-defined identifiers,
such as structure, union, and databuf, were replaced with unified names, reducing the
vocabulary size to 537. Our method achieved an F1-score of 98.6%, which outperformed
other methods, proving our proposed intermediate representation’s effectiveness.

4.5. Experiments for Answering RQ2

Experiments were performed to compare our method with three embedding methods
to verify our method’s embedding effect. Specifically, “vocabulary” represents the local
embedding method, which utilizes the vocabulary model directly to encode the inputs.
A 4-layer fully connected neural network was applied to generate the detection results.
The last three methods are distributed embedding methods. They use our hybrid neural
network as a representation learning model. “Random” denotes the embeddings of inputs
randomly initialized. “Static” denotes the embeddings of inputs generated by word2vec in
the pre-training stage. Furthermore, the embedding matrices remain static in the training
stage. “None-static” denotes the embeddings of inputs generated by word2vec in the
pre-training stage. The embedding matrices were modified in the training stage. The
results are shown in Table 3.

Table 3. Comparison of 4 different embedding approaches.

Method FPR (%) FNR (%) Acc (%) P (%) R (%) F1 (%)

Vocabulary 12.9 80.3 84.1 79.7 73.8 76.6
Random 1.0 1.0 99.0 98.3 99.0 98.6

Static 1.4 3.6 87.8 97.6 96.4 97.0
None-static 0.9 3.0 98.3 98.4 97.0 97.7

As shown in Table 3, the distributed embedding method had a significant improve-
ment in vulnerability detection effectiveness compared with the local embedding method.
Using the same neural network, “random” achieved the best F1-socre, recall, accuracy, and
false negative rate. “None-static” achieved the best performance on false positive rate and
precision. In general, “random” achieved the best embedding effect on the SARD dataset.

To evaluate our proposed hybrid neural network’s ability, experiments were per-
formed to compare our method with three neural networks, which have been proven
effective in processing sequence data. All experiments were conducted on the same dataset
processed by our method discussed in Section 3.3. Neural networks for comparison were
Text-CNN, Bi-GRU, and GRU + Attention. They all use the “random” embedding method.
The results are shown in Table 4. Six indicators were utilized to measure the effectiveness
of a network. Specifically, “Acc”, “P”, “R”, and “F1” are described in Section 4.2. “TTime”
denotes the training time that neural networks cost in an epoch. “DTime” denotes the



Appl. Sci. 2021, 11, 3201 13 of 16

detecting time of the trained model on 9858 samples. Target samples and training samples
are different vulnerabilities and are both from the SARD dataset.

Table 4. Results for RQ2. Comparison of 4 different neural networks.

Model Acc (%) P (%) R (%) F1 (%) TTime (s) DTime (s)

Text-CNN 92.6 95.6 89.8 92.6 11.0 1.5
Bi-GRU 98.2 96.5 98.8 97.6 203.6 109.8

GRU + Attention 93.8 90.5 93.2 91.8 831.2 180.9
Our model 99.0 98.3 99.0 98.6 1086.7 122.1

As shown in Table 4, “Text-CNN” had a minimum training time of 11.0 s/epoch and a
detecting time of 1.5 s. However, it had the lowest accuracy and recall. “Bi-GRU” made a
significant improvement compared with “Text-CNN”. “GRU + Attention” had the worst
performance on precise and F1-score. Our proposed hybrid neural network achieved the
best results on accuracy, precision, recall, and F1-score, which were 99.0%, 98.3%, 99.0%,
and 98.6% respectively. Although our model took 1086.7 s/epoch to train the network, the
improvement was clear. Vulnerability detection aims to discover potential vulnerabilities
as much as possible. Therefore, the training time for our method is acceptable.

4.6. Experiments for Answering RQ3

In order to answer RQ3, we compared our proposed method with five state-of-the-art
vulnerability detection methods. “Flawfinder” [46] is a famous open-source vulnerability
detector using static analysis. “Checkmarx” [3] is a commercial tool based on dependency
analysis. “Flawfinder” and “Checkmarx” represent traditional vulnerability detection
methods. Both of them rely on the vulnerable programming patterns defined by experts.
“SySeVr” [15] is a source code-based detection method. Program slice is applied to generate
candidates, and a Bi-GRU network is utilized to learn vulnerable programming patterns
automatically. “VulDeeLocator” [41] is an automatic method that uses sliced LLVM IR
as candidates and utilizes Bi-GRU and attention mechanisms to learn vulnerable pro-
gramming patterns. Both “SySeVr” and “VulDeeLocator” are sequence-based methods.
“Devign” [26] is a graph-based detection method. The samples were transformed into
a graph representation, and then GGRN was applied to learn vulnerable programming
patterns automatically. The results are listed in Table 5.

Table 5. Results for RQ3. Comparative analysis.

Method FPR (%) FNR (%) Acc (%) P (%) R (%) F1 (%)

Flawfinder [46] 12.9 80.3 62.1 47.3 19.7 27.8
Checkmarx [3] 46.5 51.8 51.6 37.7 48.2 42.3

SySeVr [15] 10.6 11.5 89.1 83.1 88.5 85.7
VulDeeLocator [41] 1.3 4.1 97.7 97.8 95.9 96.8

Devign [26] 8.3 13.3 89.8 86.0 86.7 86.4
Our method 1.0 1.0 99.0 98.3 99.0 98.6

As shown in Table 5, compared with vulnerable pattern learning methods, the tradi-
tional approaches “Flawfinder” and “Checkmarx” had low detection performance. Their
poor performance was because traditional methods detect vulnerabilities based on expert-
defined rules, which cannot fit all situations. “SySeVr” achieved a 37.5%, 45.4%, 40.3%,
and 43.4% improvement over “Checkmarx” in accuracy, precision, recall, and F1-score,
respectively. This improvement demonstrates the ability of the sequence-based machine
learning method. “VulDeeLocator” achieved an 8.6%, 14.7%, 7.4%, and 11.1% improvement
over “SySeVr” in accuracy, precise, recall, and F1-score, respectively. This improvement
demonstrates the potential of LLVM IR for vulnerability detection. “Devign” achieved a
slight improvement over “SySeVr”, which was because the application of graph representa-
tion learning highlighted the structure information. However, “Devign” takes a statement
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as the base element of a graph. Each statement is obtained by calculating the average of all
inside tokens. This operation will lose the local details, which is crucial for vulnerability
detection. Our method achieved 99.0%, 98.3%, 99.0%, and 98.6% in accuracy, precision,
recall, and F1-score, respectively, reaching a new state-of-the-art on the SARD dataset. This
is attributed to the proposed intermediate representation and the hybrid neural network,
which takes both long-term dependencies and local details.

5. Conclusions

In this paper, a novel approach that detects source code vulnerabilities automatically is
proposed. The programs are transformed into intermediate representations first. LLVM IR
and backward program slicing are utilized. The transformed intermediate representation
not only eliminates irrelevant information but also represents the vulnerabilities with
explicit dependency relations. Then, a hybrid neural network is proposed to learn both local
and long-term features of a vulnerability. We have achieved a prototype. The experiment
results show that our approach outperforms state-of-the-art methods.

The proposed approach has several limitations, which can be further investigated.
Firstly, our method is applied to detect vulnerabilities in source code written in C language
at present. In theory, our approach can be applied to other programming languages as
well. Therefore, applying our methods to other languages is one of the interesting future
works. Secondly, our approach is only conducted on the SARD dataset due to the lack
of labeled vulnerability datasets and falls into in-project vulnerability detection. The
lack of labeled datasets is an open problem restricting the development of automated
vulnerability detection technology. Existing vulnerability datasets suffer from the wrong
labels and coarse-grained vulnerability descriptions. For example, the VDISC dataset is
generated by the traditional static detection method. However, the conventional static
detection method itself has the problem of a high false positive rate. The NVD dataset
only provides the difference between the vulnerability sample and the patch. It is difficult
to locate the security sensitive program point. Therefore, one of the interesting future
works is proposing a method to generate labels on real world software and transfer the
learned vulnerable patterns to detect vulnerabilities in a new project. Transfer learning and
graph-based representation learning method should be applied in future work to solve
the cross-project task. Thirdly, the inputs processed by our method should be able to be
compiled. This means further effort is needed for compiling when only a code snippet
is accessible.
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