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Abstract: This study focuses on calibration and test campaigns of an IoT camera-based sensor
system to monitor occupancy, as part of an ongoing research project aiming at defining a Building
Management System (BMS) for facility management based on an occupancy-oriented Digital Twin
(DT). The research project aims to facilitate the optimization of building operational stage through
advanced monitoring techniques and data analytics. The quality of collected data, which are the
input for analyses and simulations on the DT virtual entity, is critical to ensure the quality of the
results. Therefore, calibration and test campaigns are essential to ensure data quality and efficiency
of the IoT sensor system. The paper describes the general methodology for the BMS definition, and
method and results of first stages of the research. The preliminary analyses included Indicative
Post-Occupancy Evaluations (POEs) supported by Building Information Modelling (BIM) to optimize
sensor system planning. Test campaign are then performed to evaluate collected data quality and
system efficiency. The method was applied on a Department of Politecnico di Milano. The period
of the year in which tests are performed was critical for lighting conditions. In addition, spaces’
geometric features and user behavior caused major issues and faults in the system.Incorrect boundary
definition: areas that are not covered by boundaries; thus, they are not monitored

Keywords: Building Management System; Digital Twin; Post-Occupancy Evaluations; facility
management; asset management

1. Introduction

The operation and maintenance (O&M) phase of buildings and civil infrastructures
ranges between 20–30 years for buildings, but it can cover more than 50 years of the whole
lifecycle [1]. It is essential to ensure an actual and efficient management of buildings during
the O&M phase. Occupancy and actual use of spaces strongly affect the organizational ef-
fectiveness and functioning during the operational phase [2,3]. Typically, standardized and
fixed values of occupancy are considered during design phases, e.g., maximum occupancy
values from fire regulations or scheduled occupancy for energy models [4]. Consequently,
actual occupancy and space use levels may significantly vary from and rarely correspond
to the values considered during the design phase. Occupancy strongly influences use and
cleanness of spaces, which in turn are related to well-being, satisfaction, and productivity
of users [5,6]. In recent years, a consistent number of studies investigated the segment
of the performance gap between expected energy consumptions, defined during the de-
sign phase, and actual consumptions, due to human-building interaction and variable
occupancy [6–17]. However, other promising fields in building management include se-
curity, safety, cleanness, and space management. These aspects can have a crucial role,
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especially in light of current sanitary emergencies related to the spread of the COVID-19
pandemic: space monitoring is a key aspect to guarantee safety in existing buildings [18].

In this context, the aim of the ongoing research project here presented is to define
a Building Management Systems (BMS) based on an occupancy-oriented Digital Twin
(DT), evolving from and enriching the Building Information Model (BIM) and integrating
occupancy levels and additional relevant data from Post-Occupancy Evaluations (POEs).
Analyses and simulations of the occupancy-oriented DT would support the decision-
making processes during the O&M phase.

The case study for the application of the methodology is an existing office building
hosting the Department of Architecture, built environment, and construction engineer-
ing (DABC) at Politecnico di Milano, Italy, used by people working at the university
and performing their research and administrative activities in the indoor spaces of the
building. The maintenance and cleanness of the distribution spaces and offices is a very
important aspect in the facility management of the building and department business plan;
strong variations in occupants’ flows are experienced by the users and particularly during
the pandemic.

The IoT network of sensors that represents the source of data for the occupancy-
oriented DT and that was tested and calibrated as described in this article was provided
and installed by an external consulting company (Laser Navigation srl). They provided
the hardware part of the system that is the camera-based sensors with an embedded deep
learning algorithm, the installation, and the technical settings of the sensors. They also
provided an online platform named SophyAI and integrated with the IoT system, that
allows to visualize, store, and download collected data.

This paper focuses on the preparatory phases for the definition of the DT, i.e., sensor
system calibration and collected data quality validation. In fact, a fundamental characteris-
tic of a DT is the connection, alignment, and reciprocity between the physical and virtual
part [19]. Therefore, a key aspect is the data collection process, ensuring data quality on
which the correct digital representation of the physical phenomenon depends [20,21], since,
in order to obtain satisfactory results, is essential to ensure the quality of input data [22]. In
this perspective, fundamental steps are the selection of sensor types that are most suitable
for the specific application [23], the spatial distribution of sensors in the indoor spaces [24],
and the setting and calibration of the IoT sensor system [25,26], to allow a correct detection
and collection of data.

Given the importance of data quality for the proper digital representation of the
building occupancy phenomenon, the objectives of the research are: optimization of spatial
distribution and orientation of sensors for system planning and installation, identification of
issues and faults of the detection system, and resolution of issues and faults by performing
an assessment of the detection system through test campaigns. This study proposes
method and evaluation criteria for system calibration and data quality validation, also
defining parameters for occupancy analysis. Two test campaigns were performed until all
major faults have been checked and solved, allowing for the verification and validation of
collected data quality to monitor building occupancy. The study also describes and tests the
use of the platform SophyAI for real-time visualization of data during the test campaigns.

2. Literature Review
2.1. Evolution, Main Applications, and Features of Post-Occupancy Evaluations

Post-Occupancy Evaluations (POEs) aim at assessing building performances, users’
behavior, and feedback regarding existing buildings during the operational phase and
once the building has been occupied for some time [27–31]. POEs were first introduced in
the UK and US in the 1960s in order to assess building performances from user perspec-
tive, by means of interviews, questionnaires, photographic surveys, and walk-through
surveys [27,28]. The major developments of POEs were during the 1980s, aiming at analyz-
ing and optimizing the facility management and design [29]. POEs had been performed
in the US, mainly in the public sector, UK, New Zealand, and Canada [32], and, since a
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correlation between workplace features and worker productivity was proposed in 1985,
they have been also applied in the private sector to improve costumer and worker satisfac-
tion and to optimize the workplaces [30]. In the mid-90s, the interest moved from analyses
during the operational phase alone to an entire building life cycle process, i.e., Building
Performance Evaluation (BPE) [33,34]. Insights and findings from POEs could be applied
in the subsequent design and building life cycle process [34–36].

In the last two decades, POEs have mainly been applied to assess and optimize build-
ing energy performances, and to reduce the building environmental impacts [37]. A less
investigated but promising research field is the optimization of occupancy patterns, and
cleaning activities and contracts. Space features and workplace cleanness have been classi-
fied as basic factors affecting user satisfaction [5], and, consequently, user productivity. The
variable “interior use of space” can account for around 43% of the variance in employees’
enjoyment at work, well-being, and perceived productivity [6].

As above mentioned, POEs are analyses of the built environment, aiming at defining
the effectiveness and functionality of spaces for users, building performances, and user sat-
isfaction and perception regarding facilities in general and workplaces in particular [27,38].
There are three levels of POEs depending on accuracy, time needed to be performed, tools,
and levels of invasiveness of user privacy [7,30]:

• Indicative POEs enable to perform overall non-invasive analyses of the building, with
selected interviews and photographic surveys to detect critical areas of the building.

• Investigative POEs are more in-depth analyses, and more invasive, with question-
naires, video recordings, and measurement, and they are meant to find causes and
consequences of the building performances.

• Diagnostic POEs are the most in-depth analyses, with high levels of user privacy
invasiveness and high costs, since they can imply the use of sensor systems to monitor
the building, providing data to analyze and optimize building performances and
future designs.

Despite being expensive and invasive for user privacy, especially when performing
diagnostic analyses, POEs can have several benefits, ranging from the optimization of the
operational phase in terms of performances and user satisfaction, to an increased facility
adaptation to organizational change and growth over time [27,30], and to the definition
of design criteria and requirements based on actual user and space needs for similar
buildings [39].

2.2. From Building Information Models to Digital Twins for Asset Management

In recent years, a major evolution of Building Information Modelling (BIM) occurred
in the construction sector. BIM models are parametric models, centralized sources of
information mostly for the design and construction phases, and instruments to improve
collaboration among specialists and document management [40]. The application of BIM
for facility management can result in several benefits: customer services improvement,
time and cost reduction resulting from better planning capabilities, and higher consistency
of data [41,42]. The integration of POEs in a BIM approach enables the connection between
POE data and the digital model [8,12,43], with the advantages of defining a single source
and storage of POE and building data, integrating structured data into the BIM, and identi-
fying POE data and related issues in a visual representation of the building space [8,44,45].
Despite the advantages of adopting BIM during the operational phase, a BIM approach for
asset management lacks of information richness, analysis, and simulation capability, which
are usually manually implemented and time-consuming when using a BIM model [20]. In
addition, an effective and efficient management of buildings during the operational phase
strongly rely on continuous flows of real time data regarding the building, its performances,
and conditions [20,46]. However, BIM models present limitations for the integration with
different data sources and systems, e.g., sensor data, and lack of automatic updating and
evolution over time [20]. Therefore, in order to overcome these limitations, the definition
of a Digital Twin is investigated.
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2.3. Evolution of the Digital Twin Concept

The Digital Twin (DT) concept dates back in 2002 when the idea of a virtual space
containing the information of and linked to the real space emerged in the field of study of
complex systems, in particular regarding the Product Lifecycle Management (PLM) [19].
When the concept emerged, it was not referred to as DT, but it was presented as the “Con-
ceptual Ideal for PLM” [19], evolved then to Mirrored Spaces Model in 2005 [47] and to
Information Mirroring Model in 2006 [48] and 2011, when also the term Digital Twin was
first used to describe the model [49]. In recent years, the concept of a DT has been studied
also in the aerospace sector: the DT represents an ultra-realistic digital replica of real
flying vehicles, considering one or more interconnected systems allowing for probabilistic
simulations that take into account physical characteristics and models, sensor data, and
history of previous flights and vehicles [50–52]. Recent definitions of DTs can be found
in various sectors, with a wide use and diffusion of the concept of a virtual replica of
physical entities whose purpose is to manage, optimize, and control the physical asset
itself. In the infrastructure sector, DT was defined as a realistic virtual representation of
the corresponding infrastructure, adding the built or natural context in which the object
is contained and to which it is connected [53]. In the manufacturing sector, the idea of
the connection between physical components and virtual models is widened, adding the
necessary mono- or bi-directional flow of data between the physical asset and its virtual
counterpart in order to real-time monitoring the actual object, supporting simulations,
analytics, and control capabilities of the dynamic virtual model [54]. The construction in-
dustry can be still considered in its beginning regarding the definition of a DT for buildings.
Despite the various attempts to define a DT in construction industry [21,24,53,55,56], a
comprehensive definition was proposed by Al-Sehrawy and Kumar [57]: “an approach for
connecting a physical system to its virtual representation via bidirectional communication
(with or without human in the loop) using temporally updated Big Data [ . . . ] to allow
for exploitation of Artificial Intelligence and Big Data Analytics by harnessing this data to
unlock value through optimization and prediction of future state”. This definition includes
all the fundamental parts of a DT, which are described in detail in the following paragraph.

2.4. Elements and Characteristics of a Digital Twin

As stated, a DT is composed by some elements. A list of components for DTs in
construction industry is provided as follows:

• A physical asset and its virtual counterpart, and data connecting them [23];
• Platform to visualize and manage sensor data, e.g., data and virtual model visualiza-

tion, analysis, and simulation, which is a key aspect for real-time remote monitoring [23].
The platform should return insights, alerts, or predictions regarding the physical ob-
ject, thus supporting the decision-making process for the definition of O&M objectives
and plans [40,58];

• An acquisition layer such as an IoT system [40,46,53,59], since sensing is a vital
component of a DT [60–63], allowing for continuous monitoring of the physical
asset. The virtual component enriched with real-time data regarding the real object
represents a dynamic digital replica of the physical asset [46,53];

• BIM model as a starting point, especially as regards the geometrical virtual replica
of the building, allowing for the evolution and information enrichment of the BIM
model itself [20,23];

• Artificial intelligence (AI) tools to analyze data and provide predictions, simulations,
and data analytics [20,46].

In addition, some characteristics are fundamental for the correct definition of a DT:

• Synchronization between physical and virtual component [40], with data flowing at
least in one direction allowing for analyses, control, and simulation on the virtual
model [20,46,64]. Any change in the monitored characteristics or conditions of the
asset is detected and, through data flow, is reflected in the virtual counterpart [20,21];
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• Bidirectional communication between physical and virtual part, either with or without
humans in the loop, defining a Passive DT or an Active DT, respectively [57]. The
knowledge regarding the asset provided by the virtual part results in either human
intervention of direct actuation in the real asset [21];

• A DT represents specific and selected aspects of the physical asset, i.e., the subjects of
monitoring, simulating, and analyzing, so it does not represent an exact duplication
of reality [57];

• Data or status visualization capabilities in order to support the monitoring and
decision-making processes by the actors that are in charge of the asset O&M phase [46].

As previously specified, one of the main characteristics of a DT is the direct connec-
tion between physical and virtual entity, with the concept of twinning as alignment and
reciprocity between the two components [19]. Therefore, a fundamental aspect for the
definition of a DT is the data collection process, i.e., data quantity, quality, and granularity,
on which depends the correct detection of changes of the real object over time, and thus the
correspondence of the digital object to the real one and its continuous evolution through
the building lifecycle [20–22]. A first fundamental step is the selection of sensor types that
are most suitable for each specific application [23]. In addition, the spatial distribution
of sensor network, i.e., the spatial distribution of sensors in the indoor spaces, is another
theme that should be faced [24]. Furthermore, in order to allow a correct detection and
collection of data, the IoT sensor system should be properly set and calibrated [25,26] to
ensure the quality of data collected. In fact, the output of an analysis strongly depends on
the data that are used as input for the system or algorithm; therefore, to obtain satisfactory
results, data quality is essential [22]. Nonetheless, existing studies tend to focus on different
phases and aspects of the DT definition and creation, while IoT sensor system definition is
a less investigated aspect, almost taken for granted [23].

As stated above, a fundamental preliminary step is a detailed analysis of sensor
types in order to identify the most suitable ones for the research objectives. Such analysis
is described in the following paragraph, in which existing studies regarding types of
sensors for occupancy detection are analyzed, highlighting features, pros, and cons. In
addition, a brief review of the concept of occupancy detection is provided. The investigation
supported the selection of the sensor type for the case study, as explained in the following
methodology section.

2.5. Occupancy Detection: Analysis of Occupancy Monitoring Systems

Occupancy detection consists in the definition of occupancy levels and patterns of
buildings during the operational phase. Occupancy patterns consist of occupancy values at
room-level and user movements inside the building [65]. Monitoring occupancy patterns
and optimizing the use of spaces and cleaning activities, based on occupancy data, can
increase user satisfaction and productivity at work. In fact, occupancy levels of buildings
have a strong influence on cleanness and use of spaces that, in turn, are strongly related to
well-being, satisfaction, and productivity of users [5,6]. Table 1 focuses on IoT monitoring
sensor systems studies, highlighting main features, pros, and cons.

As shown in Table 1, camera-based sensors and PIR (Passive Infra-Red) sensors present
the best accuracy levels, followed by CO2 sensors, but they are also affected by detecting
and privacy issues [9], such as the Hawthorne effect for camera-based sensors. It mainly
causes alterations of behavior when users are aware of being observed and, if ignored,
can affect the reliability of collected data [26]. One strategy implies the combination of
more types of sensors, some of which may already exist in the building, having been
previously installed for other purposes [9]. Additionally, system implementation costs can
be reduced by previously analyzing the building with Indicative POE analyses in order to
identify the most critical areas to be further analyzed [27,32] by means of sensor systems
and other techniques.
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Table 1. Sensor systems and related features to monitor occupancy.

Sensor Type Main Aspects Pros Cons

Camera-based sensors [25,26] Average accuracy of 97%
High accuracy

Security and safety
applications

Users detection only within
field-of-view

Privacy issues and
Hawthorne effect

CO2 concentration change sensors
[25,26,66] Average accuracy of 94% Often used in buildings

No privacy issues
Less reliable than other type

of sensors

Visual light and infrared (PIR)
technologies
[9,16,67,68]

High accuracy of 97%
(unoccupied–occupied

scenarios)
Accuracy 93% (stationary and

moving occupants)

High accuracy
No privacy issues

Issues in detecting
stationary occupants

Users’ presence/absence
detection only within the

field-of-view

Radio frequency identification
(RFID) sensors

[9,15,69]

Accuracy of 88% (stationary
occupants)Low accuracy 65%

(moving occupants)

No privacy
issuesAccess-control
system applications

Low accuracy compared with
other sensor systems

Wi-Fi connections
[8,9,70–74] Average accuracy of 80% Available in most

buildings

Privacy issues in visualizing
and analyzing

users’ connections

The highlighted advantages and disadvantages of existing sensor types supported
the selection of the type of sensors for the methodology and case study, as described in the
following section.

3. Research Project Stages

This paper presents some stages of an ongoing research project. The aim of the
research project is to define a Building Management Systems (BMS) based on an occupancy-
oriented Digital Twin (DT), evolving from and enriching the Building Information Model
(BIM) and integrating occupancy levels and additional relevant data from Post-Occupancy
Evaluations (POEs). The expected results of the research project are: monitoring occupancy
and defining building occupancy patterns, optimizing current O&M management, building
space use and organization, cleaning activities, and, as possible future implementations,
applying Smart Contract to cleaning and maintenance services and extending the IoT
network with other kind of sensors for safety and quality control. The research project
stages are presented in Figure 1.

The first two stages, “definition of BIM guidelines” and “BIM model creation”, have
been previously analyzed in a publication by Di Giuda et al. [75]. “Preliminary analyses”,
“system installation”, and “test campaigns” are presented in this paper, as they are critical
to provide the foundations upon which the occupancy-oriented DT should be based.

The “occupancy-oriented DT” set of activities is currently under development. In
future steps of the research, collected data will be analyzed to identify occupancy patterns
of the building spaces, and evaluate current management of spaces in terms of people
permanence and cleaning frequency. In addition, benchmarks to evaluate optimization
strategies will be defined together with the subjects in charge of O&M in the case study
building, a fundamental step to evaluate advantages and results of the methodology [76].
The defined occupancy-oriented DT will be the base for the subsequent phase, i.e., “FM
scenario definition and optimization”, that will allow the optimization of cleaning activities
and contracts that are currently based on the building floor areas, and to reach a better
organization and planning of space usage.
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Figure 1. Stages of the research project.

Figure 1 also provides “possible future implementations” of the research project.
The integration of other kinds of sensors, such as “sensors for safety (man down) and
quality control” will allow the monitoring and optimization of different aspects of the
building management, resulting in a complete report of building conditions and indoor
environmental quality. In addition, a possible future implementation of the system will
be the definition of “smart contracts for facility management and cleaning activities” that
would be based on the actual need of cleaning defined in previous stages. Smart Contract
based on Blockchain technologies and on the occupancy-oriented DT data will provide
relevant advantages, i.e., increased network security, reliable data storage, traceability [77],
and the possible automation of payments for cleaning activities [78,79].

4. Method

This section provides the methodology applied for the “preliminary analyses” and
“test campaigns” stages, analyzed in detail in this article. The “system installation” task
was performed by an external consulting company that provided and installed the IoT
sensor network, and the platform SophyAI for visualization, storage, and download of
collected data.

4.1. IoT Network of Camera-Based Sensors

The “sensors analysis and selection” phase relies on the proposed literature review.
As previously stated, most analyzed recent applications aimed at optimizing energy perfor-
mances and consumptions rather than building operation and use [9,12,16]. Nonetheless,
existing studies allowed objectively comparing several available sensor types, supporting
the selection of the most suitable type for occupancy monitoring.

Camera-based sensors were selected considering their high accuracy and the possibil-
ity to perform other kind of analyses, such as security and safety monitoring, thus allowing
for further implementations of new features in the system, increasing the scalability of the
system itself.

The limitations of camera-based sensors that have been presented in the literature
review section, and how they have been overcome, are described as follows:
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• Detection only within field-of-view of the sensors: the BIM model was used to ensure
the best positioning and orientation of sensors and to maximize the area covered by
the sensors’ field-of-view;

• Privacy issues and Hawthorne effect: the system was set to anonymously monitor
users and not to store any images. The user is recognized as a human by the deep
learning algorithm embedded in the camera-based sensors and translated into an
anonymous agent that cannot be linked to a specific user identity. Consequently, the
movements of the user can be anonymously monitored in real time and visualized in
the online platform SophyAI, without storing any real image or video recording.

The sensors can detect occupancy; in particular, they can visualize real time move-
ments of users that are instantaneously transformed into anonymous virtual agents.

The detection of anonymous real-time movements of users is limited to common
spaces, i.e., circulation areas and corridors, and they can be visualized in the online
platform SophyAI, but are not stored in the database (DB), to protect the users’ privacy.
On the contrary, sensors count and store the number of agents that are entering or leaving
rooms, which are the main objects of monitoring.

Two values are recorded by the sensors for each monitored room:

• O: Occupancy values at room-level, i.e., the number of people (p) occupying a room
in a certain period of time;

• T: Period of time in which one or more virtual agents occupy a room (minutes/hours).

4.2. Visualization and Analysis Platform

A critical theme for real-time monitoring is the possibility of plotting sensors data
for visualization, verification, and analyses [23]. Data visualization is a primary subject
to support decision-making processes and to help people who are in charge of O&M in
reaching management goals, since they may not possess the technical ability to effectively
use the indexes and information directly extracted by the sensor system [58].

As shown in Figure 2, the described monitoring system is intertwined with the online
platform SophyAI. The platform can:

• Visualize real-time occupancy count, i.e., the instantaneous value of O of each space;
• Visualize real-time movements of anonymous virtual agents in a 2D visualization

of spaces;
• Store in a DB data regarding the occupancy count of each space (O) and of each day of

the week;
• Store in a DB data regarding the room occupancy time (T) during each day of the week.

Data stored in the online platform DB can then be downloaded as CSV files that
contain the values of O and T for all days of a specified period of time, which could be a
week, a month, or a year. In addition, data can be processed in graphs and diagrams and
visualized through the online platform.

The online platform displays a 2D visualization of the spaces. Each monitored area
is contained in a 2D boundary, which defines the contours of the area itself. The check
between the area displayed in the 2D visualization and the 3D view of the same area
detected by cameras is a key aspect to correct the optical distortion between the 3D view of
the camera and the 2D view of the online platform. The check between 2D boundary and
3D view was performed as a part of the study during the system test and calibration, as
described in following paragraphs.
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Figure 2. Data and information flow.

4.3. Preliminary Analyses Based on Post-Occupancy Evaluations and Building
Information Modelling

This phase applies Indicative POEs to preliminary analyze the building by means of
general and low-invasive analyses, using the BIM model:

• Analysis of the geometry of spaces: identification of number of levels of the building
and number and geometry of rooms. The geometry of spaces influences the number
and position of cameras that are needed to monitor the whole space. In addition, the
height of spaces represents the maximum height at which the sensor can be installed,
and in turn influences the field-of-view of the sensor;

• Analysis of the functions of spaces: identification of the function of spaces, e.g.,
bathroom, office, equipment room, etc. The function of spaces influences the definition
of the area to be monitored. For example, an equipment room with no variable
occupancy, since only technicians can enter the rooms for planned maintenance, does
not represent a critical area for occupancy monitoring. As a result, the critical areas
whose variable occupancy needs to be monitored are identified. The installation of
sensors is limited to the identified critical areas, thus reducing implementation costs
of the overall system;

• Analysis of electrical and data and communication systems: analysis of presence, dis-
tribution, and equipment of electrical equipment. A non-homogeneous distribution of
the electrical and data wiring can in fact represent a limitation for sensors installation;

• Simulation of sensors location and orientation: virtual objects representing the sensors
are placed into the BIM model, and each virtual sensor is linked to a field-of-view to
simulate the area covered and seen by the sensor itself. The height of installation of
the sensor also influences the field-of-view. The simulation of several configurations
allows the optimization of number, position, and orientation of sensors, maximizing
the area covered by sensors.

The use of the BIM model as a source of information and simulation tool to perform
the Indicative POE ensures the minimization of user privacy invasiveness. In addition, the
sensor system plan is optimized by comparing different configurations.
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4.4. Test Campaign Methodology for Data Quality Evaluation

The preliminary analyses allow for an efficient planning and installation of sensors,
selecting critical areas to be monitored, and optimizing spatial distribution, orientations,
and fields-of-view of sensors. Nonetheless, after the first phases of data collection, some
errors and faults, described in the following paragraph, may occur, and the system needs
to be calibrated to ensure data quality. An incorrect calibration would lead to incorrect
data collection and to an erroneous modelling of the occupancy patterns of the spaces, with
repercussions on the whole BMS.

The iterative process to perform the “test campaigns” (Figure 1) is presented in detail
in Figure 3 and described in the following paragraphs.

Figure 3. Data collection, test campaign, and adjustments application iterative process.

Once the system is installed as planned with the support of preliminary analyses, data
are collected for a representative period of time that should be identified for each case
study. Then collected data are downloaded in CSV format from the online platform DB.
Collected data are analyzed in order to identify the possible data errors and related system
faults, as described in Table 2. If no faults that could compromise the following analyses
are detected, the system is properly functioning and calibrated. Otherwise, test campaigns
are performed to verify the errors detected in the collected data.

The real time test campaign involves two operators. One operator (operator A)
monitors through the online platform the position and movements of the other operator
(operator B) inside the building. The two operators are constantly connected via earphones
to communicate and coordinate with each other. In particular, operator A guides operator
B towards the areas where errors were previously detected in the collected data. Moving
inside the building and entering/exiting the rooms, operator B tests the detection of user
movements and the room occupancy count (O) by the system. At the same time, operator A
monitors the response of the system by checking the real-time displayed user movements
and instantaneous values of O of the rooms through the online platform. Consequently,
the operators search for detection errors and system faults in order to identify the causes,
as described in Table 2. System faults can be classified as missing data, outliers, stuck
values, and noise. Each fault can be identified in collected data or during test campaigns
according to specific values of O. In addition, noise can be detected only during real-time
test campaigns, by comparing the movements of operator B and his anonymous digital
counterpart displayed on the online platform. Some examples of the causes of the errors
and faults are camera malfunctioning in the case of missing data and extreme lighting
contrast in the monitored area, which impedes a correct detection and causes noisy data.
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Table 2. System faults [22] and related data errors. Data errors are divided into errors observed in collected data and errors
detected during real-time test campaigns.

System Fault Data Error in Collected Data Data Error during Real-Time Test Campaign

Missing data: data are not collected O = 0 p O = 0 p

Outliers: one or more consecutive
anomalous values

O < 0 p
Values of O unacceptable for room

dimensions, e.g., O = 50 p in a
10-square-meter office

O < 0

Stuck values: those values occur when
a sensor fails in detecting and a

previously-detected value
remains fixed

O > 0 outside the working hours
No correspondence between detected O and

actual occupancy values, e.g., O > 0 in an
empty room

Noise: it represents corrupted values Not detectable in collected data

No correspondence between the virtual agent
movements detected by the system and

displayed in the platform, and the actual
movements of operator B

Once the causes of data errors and faults are identified, some adjustments are proposed
and applied to the system. Then the system must be verified again, in an iterative process,
until no errors are detected and consequently the required data quality level is reached.
This iterative process is also useful to check overtime the effectiveness of improvement
solutions or to check the system after geometry changes in the building, e.g., in the case
of refurbishments.

Regarding the possible adjustments to solve the errors and the related causes, some
general rules were identified to define a hierarchy of possible solutions.

Generally, the most preferable solution would be not acting on the hardware of the
system: in the case of a recently added physical obstacle that prevents the camera-based
sensor from detecting, the most preferable solution would be moving the object before
moving the sensor. In addition, before acting on the hardware part of the system (e.g.,
adding or replacing cameras), the camera settings could be checked, and the software
system would be improved. An example of camera setting adjustment is the modification
of contrast and luminance settings of the camera in the case of extreme lighting contrast
in the monitored area. In addition, modifying the software is faster, less invasive, and
cheaper than working on the hardware. Specifically, the deep learning algorithms of
the embedded artificial intelligence system of the cameras for image recognition could
be improved and optimized with the support of the external consulting company Laser
Navigation srl. Consequently, the adjustments are hierarchized based on those general
rules using the following symbols: from the most preferable solution, identified with (++),
to the least preferable one, identified with (–).

5. Case Study

The building chosen as case study hosts the Department of Architecture, Built Envi-
ronment and Construction Engineering (DABC) of Politecnico di Milano, and is located
in Milan (Italy). It is a four-story building, hosting administrative offices, research spaces,
and university staff offices, for a total of 4300 square meters of gross floor area. Rooms
have variable dimensions depending on their use. The building has a symmetrical layout,
with a common space in the center and two side corridors. The offices and workspaces are
located on either sides of the corridors. Each floor houses at least one bathroom. Before the
current study, the building has never been monitored. Therefore, neither data regarding
the actual occupancy patterns, nor information about actual cleaning and maintenance
activities are currently analyzed and optimized. Furthermore, no space optimization has
been performed in relation to the use of available rooms and the actual occupancy indexes
at room-level in the building. This case study building acts as prototype for a future
application of the proposed method to other university’s buildings.
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The case study section is divided in two subsections: the first one describes the ap-
plication and results of preliminary analyses on the building that supported the planning
and installation of the IoT sensor system; the second subsection describes the two test cam-
paigns with specific focus on the detected system faults and related proposed adjustments.

5.1. Preliminary Analyses: Sensors Spatial Distribution and Orientation

A preliminary study of the building (“Indicative POE supported by BIM model” phase
as in Figure 1) was performed to identify critical areas to be monitored and to optimize
number, position, and orientation of sensors, which in turn allowed the reduction of
implementation costs and proper planning of the IoT sensor system.

As described in the methodology section, the preliminary analyses included the
following activities that are analyzed in detail in the following paragraphs:

• Analysis of the functions of spaces;
• Analysis of the geometry of spaces;
• Simulation of sensors location and orientation;
• Analysis of electrical and data and communication systems.

5.1.1. Analysis of the Functions of Spaces

The analysis of the building through the BIM model allowed the identification of
number and type of rooms of the building, as shown in Table 3. The BIM model had been
previously defined and modeled, as described in Di Giuda et al. [75], who also performed
a complete survey to update the as-built documents and to ensure the correspondence
between the BIM model and the building. Equipment rooms, storage closets, and archives
were excluded, since the only users are cleaning services employees or technicians in charge
of maintenance activities. The analyses highlighted that sensors installed in common
spaces, i.e., corridors, would be sufficient to monitor room occupancy, i.e., the count of
users entering and leaving rooms. Anonymous real-time agent movements are detected
only in corridors and can be visualized in the online platform, but are not stored in the DB,
to ensure and protect the privacy of users. On the contrary, as regards rooms, the count
of number of users (O) and time of occupancy (T) is recorded, as shown in Table 3. The
occupancy of critical rooms is monitored to optimize their use, cleanness, and maintenance,
while corridors are considered only as circulation areas. As shown in Table 3, 70 rooms out
of 87 were selected as critical areas to be monitored.

Table 3. Type and quantity of rooms and necessity to be monitored.

Building Level Space Type Quantity Monitored/Not Monitored

Underground Level

Laboratory/Office 5 Monitored
Bathroom 2 Monitored
Classroom 1 Monitored

Equipment Space 3 Not monitored
Storage Room 10 Not monitored

Ground Level

Laboratory/Office 22 Monitored
Bathroom 3 Monitored

Meeting Room 1 Monitored
Equipment Space 1 Not monitored

First Level

Laboratory/Office 21 Monitored
Bathroom 3 Monitored

Storage Room 1 Not monitored
Terrace 1 Not monitored

Second Level

Laboratory/Office 10 Monitored
Bathroom 1 Monitored

Meeting Room 1 Monitored
Equipment Space 1 Not monitored
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5.1.2. Analysis of the Geometry of Spaces and Simulation of Sensors Location
and Orientation

During the preliminary phases regarding the system planning, the BIM model of the
building was used to optimize locations and orientations of the camera-based sensors. The
geometry analysis highlighted that the building corridors are long, low ceiling, and narrow
(length: 32 m; height: 2.40–2.70 m; width: 1.60 m). Three simulations of the interrelated
position of the sensors in a corridor have been performed to define the best configuration.
Virtual objects representing the sensors were added to the BIM model in different locations
according to the three possible configurations. Each virtual sensor was then linked to a
field-of-view that allowed to virtually check through the model the area covered by each
sensor. The BIM-based simulation analyzed three possible configurations, as shown in
Figure 4:

• The first solution considered two standard cameras at the two opposite sides of the
corridor. Each corridor would be entirely monitored by two sensors at the same time,
but in the central area, the detection could be less precise due to the distance from the
sensors. In addition, cameras would have difficulty in monitoring areas near the end
of the corridor, i.e., the area close to each sensor. Users passing through a door near
the end of the corridor would be extremely distorted in the view of the nearby camera,
making recognition difficult.

• The second solution considered two standard camera-based sensors located at 1/3
and 2/3 of the corridor. This solution allows for a better monitoring of the end areas
of corridors, but limits the simultaneous monitoring by both sensors to the central
area only.

• The third solution implied the use of a single 360-degree camera at the center of the
corridor. Those kind of sensors are more expensive than standard cameras, but the
total cost would be comparable, since this solution would consider only one sensor
instead of two. This solution results in the corridor being entirely monitored by a
single camera.

The chosen solution was the second one, since in many cases there are doors near the
end of corridors, thus excluding the first solution. In addition, due to the reduced width of
the corridors, one single camera could struggle in identifying two people walking lined
up. Therefore, the third solution, which involved only one camera, was also less preferable
than the second one.

The chosen sensors are High Quality Bullet Pro Camera PoE, with the following
features: they provide HD quality images; the Power over Ethernet (PoE) allows to supply
power and network connection to the camera with a single cable; a Wide Dynamic Range
(WDR) allows to compensate problems due to exposure to light; the view angle of the
camera reaches a maximum of 110 degrees. The system is installed in a dedicated Virtual
Local Area Network (VLAN), and a static IP is provided for each element of the system. As
stated in the Introduction, the sensor system was provided by a third-party organization,
Laser Navigation Srl, who operated in full compliance with EU General Data Protection
Regulation (GDPR). In fact, the deep learning algorithm does not record images, but only
metadata regarding the anonymous movements and count of users are processed by the
system, inhibiting the recognition of the observed subjects.

The 20 sensors were installed directly in the ceiling, i.e., at height 2.40/2.70 m depend-
ing on the level of the building, ensuring the maximum coverage area. Figure 5 shows the
plan of the IoT sensors system in the case study building.
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Figure 4. 2D visualization of the three simulations of sensors positioning in a typical corridor through the BIM model.

The BIM model also allowed for an optimization of the field-of-view of the sensors, as
shown in Figure 6. The virtual camera field-of-view simulation supported the definition of
the best orientation, i.e., the best tilt angle of each camera on x- and y-axis. This ensured that
all the offices and bathrooms defined as critical, whose occupancy needed to be monitored,
were correctly detected by the sensors.
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Figure 5. Ultimate spatial distribution of camera-based sensors inside the case study building.
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Figure 6. Comparison between the simulation of the virtual sensor field-of-view in the BIM model
(left) and the actual field-of-view of the installed sensor (right).

5.1.3. Analysis of Electrical and Data and Communication Systems

The last preliminary analysis performed with the BIM model was the check of the
electrical and data system equipment and wiring distribution already available in the
building. The analysis showed that since cameras would be installed in corridors, all the
necessary wiring was already available. Therefore, no implementation was needed to
install the system.

5.2. Test Campaigns

Once the preliminary analyses had been performed, the system had been installed.
First data collection was performed, and collected data were analyzed to identify issues
and faults. Data were collected during a three-month period, i.e., the representative period,
as it is the minimum period of time to encounter all possible activities conducted by the
users of the department. A qualitative analysis was conducted on the collected dataset to
identify rough errors.

Figure 7 shows a graph of collected data about a bathroom during one day. Stuck
values are identified since 4 p.m., because the occupancy raises but never decreases. It
is a stuck value because the bathroom can host only one person at a time; therefore,
a continuous occupancy of four people represents without any doubt a blunder in the
detection. The solution to this specific problem is provided in Table 4.

After faults of the system were detected, a first test campaign was performed to
understand the causes and propose improvements for the system. Detected data were
tested in real time by two operators, as described in the method, to identify the causes of
system faults. An example of the visualization of real time data in the online platform is
shown in Figure 8.
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Figure 7. Graph of collected data regarding occupancy overtime in a bathroom (O-T).

Figure 8. Visualization of real time data in the online platform during test campaign.

This first test campaign was followed by a second test campaign, to properly calibrate
the system and ensure detected data quality, as shown in Figure 9. The two test campaigns
were carried out during different periods of the year. This represented a key aspect for
the recognition of lighting contrast issues. The first test campaign was performed in June
2020, with data collection for a three-month period from November 2019 to January 2020.
The first test campaign was performed after the end of the first Italian shutdown period
due to COVID-19 pandemic (early March–early June 2020). The second test campaign was
performed in November 2020, with data collected for another three-month period from July
to October 2020, excluding August, during which the building is usually under-occupied
due to summer holidays. After the shutdown period March–June 2020, administrative and
research activities have been resumed. Therefore, all the data collected for system test and
calibration can be considered reliable.
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Table 4. Identified issues and effects on the data collecting system during the test campaigns. Table legend: (a): data
collection phase; (b): real-time test campaign phase; O: occupancy values at room-level, number of people occupying the
room (p); T: period of time in which users occupy a room (minutes/hours); adjustments hierarchy scale ranging from (++)
most preferable system adjustment to (–) least preferable system adjustment.

Detected Issue, Evaluation Criteria, and
Fault Classification

Cause Identification and Effects on
the System Proposed Hierarchized Adjustments

Data are not detected and collected.
The system detects: (a)–(b): “Data = null”.

This fault is classified as Missing data
(a)–(b).

Camera-based sensors not working Verification of sensor integrity,
functioning, and connection

Incorrect boundary definition: areas that
are not covered by boundaries; thus, they

are not monitored

Perform a real time test to identify and
verify the optimal boundary definition to
minimize optical distortion between the
3D view of the camera and the 2D floor

map visualization

Obstructions or obstacles in corridors
that impede users’ vision, like printers,

waste bins for separate collection of
paper, and presence of platforms for

people with disabilities

(++) Remove the obstacle, if possible
(+) Improve the deep learning algorithms

for image recognition
(–) Add a new camera and re-verify

the system

Behaviors of users that deceive the
detection system: blind zone caused by

unexpected doors left open

(++) Verify the possibility to avoid
keeping the door open with a
communication to the users

(–) Add a new camera in a different
position and re-verify the system

Blind zone of the sensor: when two
people are walking in corridors towards a
sensor, the person further away from the

camera generally is not detected

(++) Possibility to ignore the related error,
which does not affect the next phase of

statistical data analysis for the definition
of the occupancy pattern

(–) Add a new camera allowing a
multiple detection of the same area and

re-verify the system

Fast increase/decrease of occupancy
values.

The system detects:
(a)–(b): Negative or too high values of O.
This fault is classified as Outliers (a)–(b).

Behaviors of users that deceive the
detection system: difficulty in counting
users when they are standing in front of

the door opening the room or talking
right in front of the entry of a room

(++) Add an automatic routine to the
algorithm that records the occupancy
data after a minimum user presence
(+) Add an automatic routine to the

algorithm that brings the count back to 0
when the displayed count is negative.

(–) Enrich the system with the possibility
of manually resetting rooms occupancy
values in the presence of a wrong count

(only in Administrator mode).

Unexpected length of the period of time
the room is occupied (for bathrooms).(An

example is shown in Figure 7)
The system detects:

(a): T > 15 min
(b): Irregular real-time user detection

This fault is classified as Stuck values (a)
and Noise (b).

Too high distance of the camera from the
to-be-detected area: irregular detection of

users with a continuous
detection/disappearance of a moving

user, resulting in wrong collected data, as
if there were multiple users closely

entering the room one after the other

(++) Improve the deep learning
algorithms for image recognition

(–) Add new cameras and re-verify
the system

Elevated lighting contrast between
different areas of corridors: irregular
detection of users with a continuous

detection/disappearance of a moving
user, resulting in wrong collected data, as

if there were multiple users closely
entering the room one after the other

(++) Review the camera settings
regarding lighting and contrast

(–) Add a new camera in the brighter
zone and re-verify the system
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Table 4. Cont.

Detected Issue, Evaluation Criteria, and
Fault Classification

Cause Identification and Effects on
the System Proposed Hierarchized Adjustments

Unexpected moment of the day in which
the room is continuously occupied

(for offices)
The system detects:

(a): O > 0 outside working hours
(b): Irregular real-time user detection

This fault is classified as Stuck values (a)
and Noise (b).

Too high distance of the camera from the
to-be-detected area: irregular detection of

users with a continuous
detection/disappearance of a moving

user, resulting in wrong collected data as
if there were multiple users closely

entering the room one after the other.
Due to the higher value of O than the real

number of people in the room, when
people leave, O does not return to zero,

with remaining values of O > 0 even after
the end of the working day

(++) Improve the deep learning
algorithms for image recognition

(–) Add new cameras and re-verify
the system

Elevated lighting contrast between
different areas of corridors: irregular
detection of users with a continuous

detection/disappearance of a moving
user, resulting in wrong collected data as

if there were multiple users closely
entering the room one after the other.

Due to the higher value of O than the real
number of people in the room, when

people leave, O does not return to zero,
with remaining values of O > 0 even after

the end of the working day

(++) Review the camera settings
regarding lighting and contrast

(–) Add a new camera in the brighter
zone and re-verify the system

Difficulty detecting two people entering
in a room close together and/or quickly.
This causes wrong collected data as if

there were multiple users closely entering
the room one after the other. Due to the

higher value of O than the real number of
people in the room, when people leave, O
does not return to zero, with remaining
values of O > 0 even after the end of the

working day

(++) Possibility to ignore the related error,
which does not affect the next phase of

statistical data analysis for the definition
of the occupancy pattern

(–) Add a new camera allowing a
multiple detection of the same area and

re-verify the system

Difficulty detecting cleaning employees
due to the presence of the cleaning trolley,

which impedes a complete view of the
operator. Therefore, often the cleaning

employee is detected entering the room
(O = +1) but not leaving, so the value O

remains unchanged

(++) Optimization and training of the
recognition algorithm to identify the

cleaning trolley by excluding the cleaning
service employee in the occupancy count

(–) Add a new camera allowing a
multiple detection of the same area and

re-verify the system

Figure 9. Preliminary analyses and two test campaigns process.
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6. Results and Discussion

Table 4 provides a resume of errors, related evaluation criteria, fault identification and
classification, causes of the faults, and proposed solutions, hierarchized and listed from the
most preferable one (++) to the least preferable one (–) of the two test campaigns.

The first test campaign highlighted the following issues:

• Difficulty of the system in detecting two people entering in a room close together
and/or quickly;

• Issues in the detection of two people walking in a corridor towards a sensor, since the
person further away from the camera is not detected. The error occurs in all areas not
covered by the fields of view of two cameras at the same time;

• Irregular detection of users with a continuous detection/disappearance of a moving
user due to the high distance between the camera and the to-be-detected area. This
issue was in fact detected mainly in areas far from the sensors.

The identified issues are mainly due to the geometry of corridors, which are low
ceiling, long, and narrow. Due to the limited height of the corridor, the cameras struggle in
detecting people walking in groups or lined up (Figure 10). The issues led to an incorrect
user detection affecting the displayed data in the online platform. However, while the
possibility of having people walking lined up or in groups in corridors is relatively high,
the probability of two or more people entering a room simultaneously is low, due to the
standard dimensions of the doors, that allow the entrance of one person at a time. For
this reason, it is possible to ignore these issues. To overcome the issue related to irregular
detection of users due to the distance of areas from the camera, improvement in the deep
learning algorithms for image recognition were implemented.

Figure 10. Location and orientation of camera-based sensors in corridor.

Considering the online platform, a major issue was related to the values indicating
the presence of people in the rooms showing a negative value or a high positive value.
This means that, according to the collected data, many people were entering or leaving the
room in a very short time. Automatic routines to solve and mitigate incorrect data have
been implemented to the software:

• Automatism that brings the count back to 0 when the displayed count is negative;
• Possibility to manually reset rooms that present a wrong count;
• Automatic routine that records the occupancy data after a minimum user presence

(i.e., 5 min) for office spaces only.

The improvement of the automatic routine solves the related problem of users’ behav-
ior that deceive the detection system, such as standing in front of the door when opening
the office or talking right in front of the entry of a room.
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After the modifications and improvements applied, data have been collected for a
period of three months from July to October 2020, excluding August for lower building
occupancy due to summer holidays, to verify the effectiveness of the strategies adopted.

The qualitative analysis of the second dataset highlighted a general improvement in
detection capabilities of the system, since technical issues were not identified anymore, but
some faults occurred anyway. Therefore, a second real-time test campaign was carried out
in November 2020, resulting in the following sensor-related issues:

• Difficulty in detecting users at the end of the corridors due to the presence of windows.
The intense natural light generates a high luminous contrast between the central part
of the corridor and the terminal part. The light contrast of the two zones generates
an unstable detection of users. The detecting issue related to lighting contrasts of
different zones of the building was only discovered in the second test campaign
and not during the previous test. Considering the location of the building (Milan,
45◦28′46.8” N 9◦13′48.0” E), the sun is low in the sky during the winter season. This
can generate detection issues related to lighting contrast, which cannot be detected
during others seasons of the year, which explains the newly emerged detection issue,
since the first test campaign had been performed in May. Therefore, conducting
several tests during different periods of the day and year is strongly recommended for
camera-based sensor systems. A preferable solution to overcome the lighting contrast
issue is modifying the settings of the camera to correct the lighting contrast.

• Failure in detecting the users’ entrance due to other kind of obstructions such as open
doors. Specifically, the doors opening towards the corridor can obstruct the view of
the adjacent room entrance, preventing the system from registering users entering the
room (Figure 11). The issue can only be managed by adding new cameras to cover
the unexpected blind spots. The issue was unexpected, since doors are usually kept
closed when offices are occupied.

• Issues in the recognition of cleaning service company employees. The system struggled
in detecting the workers due to the presence of the cleaning trolley, which impeded a
complete view of the operator. The cleaning trolley provoked an incorrect counting
of entries, exits, and occupancy of the rooms. To overcome the issue, the recognition
algorithm can be optimized and trained to correctly recognize the cleaning service
operator, by recognizing the cleaning trolley.

Figure 11. Unexpected blind zone generated by unusual occupants’ behavior.

Figure 12 presents the percentages of error types detected during the two test cam-
paigns. During the first test campaign, 30 out of 70 monitored rooms presented detection



Appl. Sci. 2021, 11, 3108 22 of 27

faults, while during the second test campaign, 38 rooms presented detection issues. The
reason of the higher number of faults during the second test campaign is mainly due to the
lighting issues that emerged only during the second test campaign.

During the first test campaign, 70% of errors were related to technical issues: 17%
of errors due to not-working cameras, and 53% of errors due to difficulty detecting users
in areas too far from the camera-based sensors. As shown in Figure 12, these types of
technical issues were completely fixed by adjusting the system settings. Once all cameras
were properly working and correctly set, those issues did not occur in subsequent analyses.

Another type of issue detected in the first test campaign was related to unexpected
user behavior, resulting in 30% of errors. These errors could be adjusted with some im-
provements in the system. However, a 3% of errors due to unexpected user behavior
occurred also during the second test campaign. Despite the error percentage being sig-
nificantly lower in the second test campaign, this type of error could not be completely
avoided because of the unpredictable nature and high variability of user behavior.

Regarding the second test campaign, elevated lighting contrasts between different
areas of corridors caused 68% of errors. This kind of error was never detected during the
first test campaign because of the different period of the year when the test was performed,
a key aspect for proper calibration of a camera-based sensors system.

Figure 12. Charts of errors detected during first and second test campaigns.

The remaining 30% of errors of the second test campaign were related to difficulties
detecting the cleaning employee (18%) and to obstructions and obstacles that impeded the
detection (11%). Cleaning employee detection issues were classified as a technical error
in the first campaign. After the resolution of technical issues, the error persisted, and the
actual cause was identified, highlighting the importance of a multi-stage testing of the
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system. Detection issues related to obstacles and obstructions appeared because some
pieces of furniture were moved or spaces were reorganized. The frequent check of the
correct functioning of the system overtime is fundamental to verify newly appeared issues
and consequently adjust and improve the system.

A comparison of these results with other systems could be helpful to provide an
assessment of the proposed system. As previously underlined, the setting and calibration
of monitoring system has frequently been neglected in existing literature, and the accuracy
of IoT systems applied to DTs is often taken for granted. Available data regard, as shown
in Table 1, the accuracy of specific sensors’ typologies, but do not address the accuracy of
systems, which depends on several variables, e.g., building features and use, number of
sensors, etc. The test campaigns here presented have been used to explore and improve the
efficiency of the entire systems of DT.

For this reasons, these results obtained from the case-study building cannot be com-
pared to other systems, based on different typologies of sensors. The provided case study
application is useful to define guidelines to calibrate IoT camera-based sensors system.

7. Conclusions and Further Developments

This work presents the development of first steps of an ongoing research project
to define a Building Management System (BMS) for facility management, especially re-
garding the occupancy and cleaning activities in office buildings that would be based on
an occupancy-oriented Digital Twin (DT). The proposed BMS would ensure better space
management, organization, and cleaning, since the system would detect actual occupancy
levels and related needs for cleaning activities. The advantages result in optimizations of
cost and space use, as well as customized cleaning activities and contracts.

In particular, this study presented the IoT system calibration phases, i.e., the prelimi-
nary analyses to optimize the planning of the IoT camera-based sensors system, and the
test campaigns, in order to ensure the system efficiency and accuracy to monitor occupancy.
A key aspect of the definition of a DT has been in fact identified in the data connection
between physical asset and virtual counterpart, the main components of a DT. In addition,
the data quality is a critical aspect to ensure the quality of the results of the analyses,
simulations, and predictions performed on the virtual model.

The case study section highlighted that the preliminary analyses, i.e., Indicative Post-
Occupancy Evaluations (POE) supported by the use of the BIM model, were important
to plan the IoT system, in particular as regards number, locations, and orientation of the
sensors. The analyses allowed the identification of offices and bathrooms as main spaces to
be monitored. In addition, the observed configuration of building spaces allowed planning
the sensors installation only in corridors, from which it is possible to detect entries and
exits from the different rooms. The BIM model allowed for simulations of sensors location
and fields-of-view.

As regards the two test campaigns results, some system faults and related causes were
identified and solved. The issues generated by user behavior were the least predictable,
trivial, and at the same time the most difficult and expensive to solve, requiring the installa-
tion of new cameras. The variability of human behavior inside a building is very high; the
calibration of the system must cover a sufficient period of time to bring out all problems
related to human behaviors. Considering the complexity of the monitoring system and the
high dynamicity of the variables involved (e.g., fast-changing spatial conditions and user
behavior), a multi-stage test and calibration campaign was fundamental for the correct
setting of a camera-based sensor system.

Another interesting aspect resulting from the test campaigns was the influence that
the period of the year had on the test itself, due to changing lighting conditions.

Other relevant aspects are the geometric features of the to-be-monitored spaces. For
example, the limited width and height of the corridors led to some difficulties in detecting
more users moving together. However, those issues did not have critical effects on the
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collected data. The boundary conditions of the system should be carefully checked, as they
could have negative consequences on collected data and on data analyses.

The use of an online platform was useful to real-time check and evaluate data during
the test campaigns, as well as to remote controlling the monitoring system.

Once the system is tested and assessed, further developments of the research will
regard the proper monitoring of the building. As of now, qualitative analyses have been
performed on collected dataset to identify rough errors, and by means of the two test
campaigns, the causes of the faults have been identified and solved. During the next
phases of the research project, quantitative analyses will be conducted on collected datasets,
which will be the basis for the definition of the occupancy-oriented DT. DT analyses
and simulations, and resulting optimization scenarios, will be proposed and analyzed
to identify real advantages and limitations of the proposed methodology. The proposed
method, once completely tested and refined on the case study building, could be extended
to large building stock, supporting the decision-making process of building owners and
building managers.

Potential applications of the system would entail the integration of other kind of
sensors to monitor Indoor Air Quality (IAQ), carbon dioxide, temperature, humidity, and
Volatile Organic Compounds (VOC) levels, resulting in a more complete evaluation of
the building conditions and Indoor Environmental Quality (IEQ). Sensors could play
an important role for safety management purposes. The combined use of the system
with Smart Contract and Blockchain technology could ensure increased network security,
reliable data storage, traceability of data, and the possible automation of payments for
cleaning activities. Cleaning contracts could in fact be customized based on the actual use
of spaces, detected by the proposed system.
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