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Abstract: This paper tackles automatic detection of contradictions in Spanish within the news domain.
Two pieces of information are classified as compatible, contradictory, or unrelated information. To
deal with the task, the ES-Contradiction dataset was created. This dataset contains a balanced number
of each of the three types of information. The novelty of the research is the fine-grained annotation of
the different types of contradictions in the dataset. Presently, four different types of contradictions
are covered in the contradiction examples: negation, antonyms, numerical, and structural. However,
future work will extend the dataset with all possible types of contradictions. In order to validate
the effectiveness of the dataset, a pretrained model is used (BETO), and after performing different
experiments, the system is able to detect contradiction with a F1m of 92.47%. Regarding the type
of contradictions, the best results are obtained with negation contradiction (F1m = 98%), whereas
structural contradictions obtain the lowest results (F1m = 69%) because of the smaller number of
structural examples, due to the complexity of generating them. When dealing with a more generalistic
dataset such as XNLI, our dataset fails to detect most of the contradictions properly, as the size of
both datasets are very different and our dataset only covers four types of contradiction. However,
using the classification of the contradictions leads us to conclude that there are highly complex
contradictions that will need external knowledge in order to be properly detected and this will avoid
the need for them to be previously exposed to the system.

Keywords: contradiction detection; natural language processing; deep learning; human
language technologies

1. Introduction

One of the worst problems in the current information society is disinformation. It is a
wide-ranging problem that alludes to the inaccuracy and lack of veracity of certain informa-
tion that seeks to deliberately deceive or misdirect [1]. This phenomenon spreads on a viral
scale and can therefore result in massive confusion about the real facts. Disinformation
often involves a set of contradictory information that misleads users. Being able to automat-
ically detect contradictory information becomes essential when the amount of information
is so large that it becomes unmanageable and therefore confusing [2]. Contradiction, as
described in [3], occurs between two sentences A and B when there exists no situation
whatsoever in which A and B are both true. Therefore, in natural language processing
(NLP), the task of contradiction identification implies detecting natural language state-
ments conveying information about events or actions that cannot simultaneously hold [4].
In the current context, the automatic detection of contradictions would contribute to detect
unreliable information, as finding contradictions between two pieces of information deal-
ing with the same factual event would be a hint that at least one of the two pieces of news
is false. A definition of different types of contradictions were presented in [3], where the
authors defined a typology for English contradiction, finding two main categories: (1) those
occurring via antonymy, negation, and date/number mismatch, which are relatively simple
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to detect, and (2) contradictions arising from the use of factive or modal words, structural
and subtle lexical contrasts, as well as world knowledge (WK).

The task of automatic detection of contradictory information is tackled as a classifica-
tion problem [5], when two pieces of text are talking about the same fact, within the same
temporal frame. If we define a statement as s = (i, f , t), where i refers to the information
provided about fact f occurring at the time t, we will classify two pairs of text as

• Compatible information: two pieces of text, s1 and s2, are considered compatible if, given
s1 = (i1, f1, t1) and s2 = (i2, f2, t2), the following statement holds true:

(i1 ∼= i2) ∧ ( f1 = f2) ∧ (t1 = t2) (1)

• Contradictory information: two pieces of text, s1 and s2, are considered contradictory if,
given s1 = (i1, f1, t1) and s2 = (i2, f2, t2), the following statement holds true:

(i1 � i2) ∧ ( f1 = f2) ∧ (t1 = t2) (2)

• Unrelated information: two pieces of text, s1 and s2, are considered unrelated if, given
s1 = (i1, f1, t1) and s2 = (i2, f2, t2), the following statement holds true:

f1 6= f2 (3)

Thus, a news item is classified as contradictory when given the same fact (It is consid-
ered that the same fact in two different news items could be expressed with different event
mentions.) within the same time frame, the fact-related information is incongruent in the
two news items being considered.

Nowadays, the coronavirus crisis has heightened both the need for reliable and not
contradictory information. However, it is frequent to find different information about the
same fact in different media, sometimes biased by a certain political spectrum. For example,
here is a real case of contradiction in two different Spanish media outlets about the same
information. The date of publication for the two news items taken from OkDiario and El
Pais is the 19 March 2021:

1. Source “OkDiario” (https://okdiario.com/espana/estas-son-imagenes-reacciones-
vacuna-astrazeneca-algunos-funcionarios-prisiones-6976588, accessed on 22 March
2021): “Varios funcionarios han sufrido reacciones adversas tras la inoculación del fármaco
que en algunos casos han precisado de atención hospitalaria por lo que piden un protocolo
de seguimiento para los vacunados. . . .Hasta ahora al menos tres policías nacionales, un
guardia civil y un policía de la Ertzaintza han desarrollado trombos de gravedad tras haberse
vacunado. . . ” (“Several government employees have suffered adverse reactions after
being inoculated with the vaccine, and in some cases they have required hospital care,
so they are calling for a follow-up protocol for those vaccinated. . . So far at least three
national police officers, a civil guard and an Ertzaintza police officer have developed
serious thromboses after having been vaccinated. . . ”)

2. Source “El Pais” (https://elpais.com/opinion/2021-03-19/confianza-en-las-vacunas.
html, accessed on 22 March 2021): “. . . La Agencia Europea del Medicamento ha ratificado
que la vacuna de AstraZeneca es segura y eficaz y que los beneficios que aporta superan
claramente a los posibles riesgos. Despeja así las dudas surgidas ante la notificación de una
treintena de casos de trombosis. . . ” (“. . . The European Medicines Agency has confirmed
that AstraZeneca’s vaccine is safe and effective and that the benefits clearly outweigh
the possible risks. This clears up the doubts that arose after the notification of some
thirty cases of thrombosis. . . ”)

These two pieces of information concerning vaccination are contradictory, as while
the first states that episodes of thrombosis have occurred after inoculation, the second rules
out that a relationship exists between the cases of thrombosis that have occurred and the
vaccine. This type of disinformation caused by the contradiction of information between
the traditional media is potentially dangerous, as it may cause a public health problem
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generated by a reluctance to take up the offer of vaccination against COVID-19. Therefore,
there is a need to alert users of these contradictions.

Most of the resources and systems for contradiction detection are developed in
English [6–9]. However, despite the fact that Spanish is one of the most widely spoken
languages in the world, there are no powerful resources to carry out the task of detecting
contradictions from the direct perspective of this language. Currently, XNLI [10] is a
cross-lingual dataset, which is divided into three partitions: training, developed, and test.
The training set is developed in the English language, and the development and test sets
are in 15 different languages. The XNLI has been used to create contradiction detection
systems for training in English and predicting in other languages, obtaining good perfor-
mance results. Each example in XNLI is classified as Contradiction, Entailment, or Neutral.
However, to deal with contradictions it is important to consider their wide range and
large variety of features [3]. Therefore, the purpose of this paper is to demonstrate that
differentiating between the different types of contradictions can help to perform a more
specific treatment of them, thereby enhancing capability to detect them in a broader way
without having many previous examples of them. The XNLI dataset does not distinguish
between different types of contradictions in its annotation, and the Spanish language is
only available in the development and test sets manually translated from English. Both of
these facts may affect the performance of models created from XNLI dataset for different
languages. Besides, in this sense, the novelty of the proposed work is that we focus the
proposal beyond covering the detection of the contradiction in Spanish, towards being able
to detect what type of contradiction it is.

Furthermore, the contradiction detection system can be applied to detect different
types of disinformation such as incongruent headlines or news published by different
media, whether traditional or social, that seek to inform about the same fact but the
information provided is inconsistent, and thereby inaccurate and unreliable.

The main contributions of this research are the following:

• First, as there is a lack of Spanish resources created from scratch for this task, a new
Spanish dataset is built with different types of compatible, contradictory, and unre-
lated information for the purpose of creating a language model that is capable of
automatically detecting contradictions between two pieces of information in this lan-
guage. The novelty of this dataset and what differentiates it from others is the fact that
in addition to detecting contradictions, each contradiction is annotated with a fine-
grained annotation, differentiating between different types. Specifically, four of the
types of contradictions defined in [3] are covered: antonymy, negation, date/number
mismatch, and structural. In addition, the dataset is based on the study of incongru-
ent headlines in traditional media, and it contains different types of contradictions
between headlines and body texts in the Spanish language.

• Second, a set of experiments using a pretrained model as BETO [11] has been applied
to build the language model and validate its effectiveness.

Note that at this stage of the research, covering only four types of contradictions is a
real limitation of our dataset due to the wide spectrum of contradictions existing between
texts. However, it allows the structure and design of preliminary systems for detecting
contradiction in Spanish. The creation of an automatic process for classifying contradictions
between texts, scaling from trivial to complex cases, could contribute to the design of hybrid
systems operating in human–machine environments, providing additional information to
humans about the type of contradiction encountered in an automatic system, which is the
future line of our research.

The rest of the paper is organized as follows. Section 2 describes the previous work
and existing resources on contradiction. Section 3 presents the definition of the dataset
benchmark. Section 4 describes the model, the evaluation setup used, and experiments
conducted in this research. Section 5 presents the results and discussion. Finally, our
conclusions and future work are presented in Section 6.
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2. Related Work

In this section, a brief review of contradiction detection methods is presented. Besides,
some research in the field for specific domains is introduced. Finally, because the most
important aim of this research is the creation of a new dataset for this field, a review of the
main existing resources is provided below.

2.1. Contradiction Detection Methods

• Linguistic features approaches

The most common approaches to contradiction detection in texts use the linguistic
features extracted from texts to build a classifier by training from the annotated examples,
such as the works in [3,5,12,13].

Early research on contradiction detection within the field of natural language process-
ing was reported by the authors of [12] whose work tackled contradictions by means of
three types of linguistic information: negation, antonymy, and semantic and pragmatic
information associated with discourse relations. After evaluation experiments, over 62% of
accuracy was obtained due to the fact that there are more types of contradictions possible
in texts.

Linguistic evidences such as polarity, numbers, dates and times, antonymy, structure,
factivity, and modality features were used by the authors of [3] to detect contradiction.

An approach for detecting three different types of contradiction (negation, antonyms,
and numeric mismatch) was proposed in [5]. This approach deploys a Recurrent Neural
Network (RNN) using long short-term memory (LSTM) and Global Vectors for Word Rep-
resentation (GloVe) and included four linguistic features extracted from the text: (1) Jaccard
Coefficient, (2) Negation, (3) IsAntonym, and (4) Overlap Coefficient.

Simple text similarity metrics (cosine similarity, f1 score, and local alignment) were
used as baseline in [13], obtaining good results for contradiction classification. This ap-
proach used two datasets built with examples of tweet pairs.

• Semantic features approaches

Other approaches created contradiction detection systems are based on semantic
features [4,14–16].

A model to detect contradiction and the architecture that enables validation of the
model was proposed by [4]. The model defined the extraction of semantic relations between
a pair of sentences and verified some rules to detect contradictions. Furthermore, this
author defined contradiction measures by considering the structure of relations extracted
from texts and the level of uncertainty attached to them.

Other authors [14] combined shallow semantic representations derived from semantic
role labeling (SRL) with binary relations extracted from sentences in a rule-based frame-
work, and the authors of [15] extended the analysis using background knowledge.

A contradiction-specific word embedding (CWE) model and a large-scale corpus of
contrasting pairs were proposed in [16]. This approach improved the results in contra-
diction detection in SemEval 2014 [17]. This research concluded that traditional word
embedding learning algorithms have been highly successful in accomplishing the main
NLP tasks but most of these algorithms are not powerful enough for the contradiction
detection task [16].

2.2. Contradiction Detection in Specific Domains

There is also some specific domain research regarding contradiction detection. In medi-
cal domain, the authors of [18] detected contradiction by comparing subject–relation–object
tuples of a text pair in medical research. This work detected 2236 contradictions automati-
cally, but these contradictions were checked manually and only 56 were correct.

A classification system based on Support Vector Machine (SVM), with some features
(negation, antonyms, and similarity measures) that help to detect contradiction in medical
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texts was created in [19]. This system detected antonyms and negation contradiction but not
numerical contradiction. These results improved the state-of-the-art in a medical dataset.

Regarding the tourism domain, other research provides an analysis of the type of
contradictions present in online hotel reviews. In addition, a model for the detection of
numerical contradiction is proposed for the tourism industry [20].

2.3. Contradiction Detection Resources

Currently, the availability of large annotated datasets for contradiction detection are
mainly present in English [21], such as SNLI [6], MultiNLI (including multiple genres) [7],
or even the cross-lingual dataset XNLI [10]. These datasets have allowed the training of
complex deep learning systems, which require very large corpora to obtain successful
results. There are numerous studies that use these resources to create Recognizing Textual
Entailment (RTE) systems. These systems usually use Transformers Learning models
like BERT [22] and RoBERTa [23] to improve their predictions. BERT and RoBERTa are
multi-layer bidirectional Transformer encoders that are designed to pre-train from text
without labels. These pretrained models have the advantage of being able to be fine-tuned
with just one additional layer of output, a feature that enables them to be used to create
state-of-the-art models in various NLP tasks.

In addition, there is research that merges deep learning models with external knowl-
edge. The Wordnet relations were introduced in [8] to enrich neural network approaches
in natural language inference (NLI), which is a previous step in contradiction detection.
In another sense, the research developed in [9] introduces SRL information that allows the
improvement of models based on Transfer Learning.

To the authors’ knowledge, there are few studies that address the detection of con-
tradictions in languages other than English, such as those in [21,24]. Machine translation
of SNLI from English into German was done in [21]. They built a model on the German
version of SNLI and the results of the predictions are very similar to the same model trained
on the original SNLI version in English. A large-scale database of contradictory event
pairs in the Japanese language has been created by [24]. This database is used to generate
coherent statements for a dialogue system.

As for multilinguality, current research in NLI is mainly conducted in English. Con-
cerning other languages, cross-lingual datasets were provided in [25] and XNLI in [10];
however, they relied on translation-based approaches or multilingual sentence encoders.
The detection of contradictions is a very complicated task within the NLP [21]. It would be
convenient to have powerful datasets in Spanish that allow the creation of specific systems
to detect contradictions in Spanish. Furthermore, existing datasets do not determine the
different types of contradictions, whereas considering a fine-grained annotation in the
contradictions would be more effective for dealing with them. Given these considerations,
one of the main aims of this work is the development of a Spanish dataset that contains a
balanced number of compatible, contradictory, and unrelated information in a first step,
and subsequently, differentiating the different types of possible contradictions. The process
followed to build the dataset is described in detail in the next section.

3. ES-Contradiction: A New Spanish Contradiction Dataset

Our dataset (ES-Contradiction) is focused on contradictions that are likely to appear in
traditional news items written in the Spanish language. Unlike other datasets, in the dataset
proposed in this work, contradictions are annotated by distinguishing the type of contra-
diction according to its specific characteristics. Thanks to this fine-grained classification,
complex contradictions can be treated in more precisely in future.

In order to create the ES-Contradiction dataset, news articles from a renowned Spanish
source were automatically collected, including the headline and body text. According to
the journalistic structure of a news item, the headline is the title of the news article, and
it provides the main idea of the story. Normally, in one sentence it summarizes the basic
and essential information about the story. The main objective of the title is to attract the
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reader’s attention. A headline is therefore expected to be as effective as possible, without
losing accuracy or becoming misleading [26]. Therefore, finding contradictions between
headlines and body texts is a crucial task in the fight against the spread of disinformation.

In the current state of the dataset, news is focused on two domains—economics and
politics, although the ultimate goal will be automatic cross-domain contradiction detection.

3.1. Dataset Annotation Stages

The dataset was built in four stages, subsequently outlined and detailed: (1) Extracting
information from data source, (2) modifying news headline according to the different types
of contradictions, (3) classifying the relationship between headline and body text (Compat-
ible or Contradiction), and (4) randomly mixing headlines and body texts (Unrelated).

1. Extracting information from data source: The headline, body text, and date of the
news item are extracted from a reliable data source. In this case, the news agency
EFE was used (https://www.efe.com/efe/espana/1, accessed on 22 March 2021).
The news extracted belongs to the political and economic domains, assuming that the
headlines and body texts are compatible, although in the third stage this relationship
is verified.

2. Modifying news headlines: The aim of this stage is to make the news headline
contradictory to the body text by including simple alterations to the headline structure.
The changes to the headline together with some examples are (examples given in
Spanish and translated into English for clarification) given as follows:

• NEGATION (Con_Neg): This alteration consists of negating the headline of the
news item.

(a) Original headline: “El comité de empresa debatirá mañana la “propuesta
final” de Alcoa” (“Union representatives will discuss Alcoa’s ‘final
proposal’ tomorrow”)

(b) Modified headline: “El comité de empresa no debatirá mañana la “propuesta
final" de Alcoa” (“Union representatives will not discuss Alcoa’s ‘final
proposal’ tomorrow”)

• ANTONYM (Con_Ant): This transformation consists of replacing the verb de-
noting the main event of the headline with an antonym.

(a) Original headline: “El Gobierno se compromete a subir los salarios a los
empleados públicos tras los comicios” (“The Government pledges to raise
public employees’ salaries after the elections”)

(b) Modified headline: “El Gobierno se compromete a bajar los salarios a los
empleados públicos tras los comicios” (“Government pledges to cut public
employees’ salaries after the elections”)

• NUMERIC (Con_Num): This amendment consists of changing numbers, dates,
or times appearing in the headline.

(a) Original headline: “La economía británica ha crecido un 3% menos por el
brexit, según S&P” (“UK economy has grown by 3% less due to Brexit,
says S&P”)

(b) Modified headline: “La economía británica ha crecido un 5% menos por el
brexit, según S&P” (“UK economy has grown by 5% less due to Brexit,
says S&P”)

• STRUCTURE (Con_Str): This modification consists of changing the position of
one word for another or substituting words in the sentence.

(a) Original headline: “Arvind Krishna sustituirá a Ginni Rometty como conse-
jero delegado de IBM” (“Arvind Krishna will replace Ginni Rometty as IBM’s
CEO”)

https://www.efe.com/efe/espana/1
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(b) Modified headline: “Ginni Rometty sustituirá a Arvind Krishna como
consejero delegado de IBM” (“Ginni Rometty will replace Arvind Krishna as
IBM’s CEO”)

These alterations will change the semantic content of the sentence, making it contra-
dictory to the previous headline and body text. The annotation process was carried
out by two independent annotators that were trained by an expert annotator.

3. Classifying the relationship between the headline and the body text: The semantic
relationship between the headline and the body text was annotated in two phases:
The first phase consisted of classifying the information into Compatible (compatible
information) or Contradiction (contradictory information). In the second phase,
in the case of Contradiction, the type of contradiction was also annotated (Negation,
Antonym, Numeric, Structure). This stage involved four annotators who are trained
to detect semantic relationships between pairs of texts.

4. Aleatory mixing headline and body text: The news items reserved in the first stage
were used to generate unrelated examples (Unrelated). The headline was separated
from the corresponding body text and all the headlines were randomly mixed with
the body texts. In the mixing process, it was verified that the headline is not mixed
with the corresponding body text. This step was done automatically without the
intervention of the annotators.

3.2. Dataset Description

The dataset consists of 7403 news items, of which 2431 contain Compatible headline–
body news items, 2473 contain Contradictory headline–body news items, and 2499 are
Unrelated headline–body news items. This represents a balanced dataset with three main
classification items. The dataset split sizes for each annotated class are presented in Table 1.
We partitioned the annotated news items into training and test sets.

Table 1. Dataset split sizes for each class.

Split Compatible Contradiction Unrelated

Training 1703 1733 1755
Test 728 740 744

Total items 2431 2473 2499

As can be seen in Table 2, our dataset contains examples of each type of contradiction.
However, it is important to clarify that there are few examples of structure contradiction,
given the complexity of finding sentences that allow for this type of modification.

Table 2. Contradiction types in the dataset.

Split Con-Neg Con-Ant Con-Num Con-Str

Training 674 552 430 77
Test 287 236 184 33

Total items 961 788 614 110

3.3. Dataset Validation

Due to the particularities of the dataset annotation process, it was necessary to vali-
date the second and third stages of the process. For the second stage, a super-annotator
validation was conducted, while for the third stage, an inter-annotator agreement was
carried out. We randomly selected 4% of the Compatible and Contradiction pairs (n = 200)
to carry out the dataset validations.
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3.3.1. Super-Annotator Validation

For the second stage, it was not possible to make an inter-annotator agreement because
this stage consists of headline modifications and the possible variations are infinite. In this
case, a manual review of the modified headlines is performed by the Super-Annotator
to detect inconsistencies with the indications in the annotation guide. Only 2% of the
analyzed examples present inconsistencies with the annotation guide, corroborating the
validity of this stage.

3.3.2. Inter-Annotator Agreement

In order to measure the quality of the third stage annotation, an inter-annotator
agreement between two annotators was performed. In cases where there was no agreement,
a consensus process was carried out among the annotators. Using Cohen’s kappa [27] a
k = 0.83 was obtained, which validates the third-stage labeling.

4. Experiments and Evaluation Metrics

A system capable of detecting contradictions is highly relevant as it would enable
the improvement and support of other tasks that involve detecting contradictory pairs
(fact-checking or stance detection). To test the validity of the newly created Spanish
contradiction dataset in this task, a baseline was created that is based on the BETO
(https://github.com/dccuchile/beto, accessed on 22 March 2021) model described in [11]
that was previously pretrained in a Spanish dataset. Wikipedia texts and all OPUS Project
sources [28] with Spanish texts are used as training data. The model used is based on the
BERT [22] model, and it performs a series of optimizations similar to those performed in
the RoBERTa model [23]. As with the BERT model, the input sequence to the model is the
headline text concatenated with the body text.

The flexibility provided by BERT-based models allows us to create competitive base-
lines by fine-tuning the model on the dataset to be predicted [22].

4.1. Experimental Setup

The model was implemented using the Simple Transformer (https://simpletransformers.
ai/ (accessed on 3 March 2021)) and PyTorch (https://pytorch.org/ (accessed on 3 March
2021)) libraries. In our experiments, the hyperparameter values of the model are maximum
sequence length of 512, batch size of 4, training rate of 2e-5, and training performed
for 3 epochs. These values were established after the cross-validation experiment (see
Section 5.2).

4.2. Experiments

The main objective of the experimentation proposed in this research is to demon-
strate that a model is able to learn how to automatically detect contradiction types and
contradictions with high accuracy from the ES-Contradiction dataset.

The BETO model has been configured as indicated in Section 4.1, and the following
experiments were performed:

1. Predicting all classes: This experiment uses ES-Contradiction dataset and the model
is trained with the training set, resulting in the prediction of the test set. The classes
to predict are Compatible, Contradiction, and Unrelated.

2. K-fold cross-validation: This experiment makes a cross-validation with our training
set without unrelated examples. Cross-validation is a statistical technique that in-
volves partitioning the data into subsets, training the data on a subset, and using
the other subset to evaluate the model’s performance. Cross-validation enables all
available data to be used for training and testing [29]. In this experiment, k-fold
cross-validation with k = 5 is used.

3. Detecting contradiction vs. compatible information: This experiment focuses on de-
tecting only the contradictory and compatible examples from our dataset (Table 1 with-
out the unrelated examples). The classes to predict are Compatible and Contradiction.

https://github.com/dccuchile/beto
https://simpletransformers.ai/
https://simpletransformers.ai/
https://pytorch.org/


Appl. Sci. 2021, 11, 3060 9 of 15

4. Detecting specific type of contradictions: This experiment uses only the contradictory
examples of the dataset described in Table 2 to detect the types of Contradiction
between pairs. The training and test set are used for training and testing.

5. Comparison between XNLI and our dataset: This experiment trains by using machine
translation into Spanish of the XNLI dataset (https://github.com/facebookresearch/
XNLI, accessed on 29 March 2021), and uses the Spanish test set of the XNLI corpus and
our test set. The XNLI dataset has 3 classes: (Entailment, Contradiction, and Neutral).
Therefore, it was necessary to match them with our dataset. The Neutral class of the
XNLI dataset and the Unrelated class of our dataset were eliminated, whereas the
Entailment class was associated with our Compatible class and the Contradiction
class with our Contradiction class.

4.3. Evaluation Metrics

In order to evaluate the experiments, both a measure of F1 class-wise and a macro-
averaged F1 (F1m) as the mean of those per-class F scores are used, which also enables
the imbalance among the less represented classes to be addressed. The advantage of this
measure is that it is not affected by the size of the majority class. Additionally, accuracy
(Acc) is also obtained.

5. Results and Discussion

This section presents the results obtained in each of the experiments described in
Section 4. The values are expressed in percentage mode (%).

5.1. Predicting All Classes

This experiment is performed on the entire dataset to predict the 3 classes previously
defined. The system created is capable of detecting the Unrelated class with a high level
of precision and achieves significantly good results in the Compatible and Contradiction
classes. Table 3 presents the results.

Table 3. Results obtained from Experiment 1: Predicting compatible, contradictory, and unrelated
information.

F1 Score (%) F1m (%) Acc (%)

System Compatible Contradiction Unrelated

BETO-All classes 88.70 89.12 99.59 92.47 92.49

The results obtained in the Unrelated class indicate that the system is capable of
detecting with excellent F1m these types of examples, corroborating the results obtained in
the literature on this type of semantic relation between texts [30]. The other two classes
have room for improvement, by using, for instance, external knowledge. A future line of
work would consist of including resources that detect antonyms and synonyms in line
with [31] for the purpose of improving the results of the Contradiction class. Furthermore,
including syntactic and semantic information could improve the detection of other more
complex contradictions, such as structural ones, without the need for such large datasets.

5.2. K-Fold Cross-Validation

A k-fold cross-validation experiment aims to estimate the error and select the hyper-
parameters of the model [29]. This is achieved by training and testing the model with all
available data for training. Table 4 shows the results of the cross-validation for each fold.

The experiment conducted with our best fine-tuning model obtains a mean accuracy of
88.94% and a standard deviation of 1.234%. The prediction of the contradiction classification
model in the test set should have an accuracy close to the mean obtained in the cross-
validation because the standard deviation is very low. Furthermore, the training and

https://github.com/facebookresearch/XNLI
https://github.com/facebookresearch/XNLI
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test set of the ES-Contradiction are very similar as they were formed by splitting the
original dataset.

Table 4. Results obtained from Experiment 2: k-fold cross-validation.

F1 Score (%) F1m (%) Acc (%)

Fold Compatible Contradiction

1 90.03 90.75 90.39 90.40
2 90.43 89.43 89.93 89.95
3 88.69 88.88 88.79 88.79
4 86.64 88.21 87.43 87.48
5 87.76 88.35 88.05 88.06

5.3. Detecting Contradiction vs. Compatible Information

In this experiment, the Unrelated class is removed from the ES-Contradiction dataset
to measure the accuracy of the approach in terms of distinguishing between compatible or
contradictory information, assuming that the information is related. The results are shown
in Table 5. The approach obtains similar results in both predicted classes. This is due to the
quality of the training examples and the balanced number of examples from each class in
this dataset. As indicated in the discussion of the first experiment, the results for predicting
classes could be improved by introducing external semantic information, similar to the
introduction of SRL [9] and the use of Wordnet relations [8], both of which improve the
results of deep learning models.

Table 5. Results obtained from Experiment 3: Detecting between compatible and contradictory
information when the texts are related.

F1 Score (%) F1m (%) Acc (%)

System Compatible Contradiction

BETO-Contra_Comp 88.63 88.75 88.69 88.69

5.4. Detecting Specific Types of Contradictions

This experiment aims to analyze the detection capability of the approach by con-
tradiction types. Table 6 shows the results obtained exclusively for the detection of
contradiction types.

Table 6. Results obtained from Experiment 4: Detecting each specific type of contradiction treated.

F1 Score (%) F1m (%) Acc (%)

System Con-Neg Con-Ant Con-Num Con-Str

BETO-Type of
contradictions 97.90 93.20 92.39 68.75 88.06 93.78

The structural contradiction class (Con_Str) is the one that obtains the lowest accuracy
results and F1m. This contradiction type is considered one of the most complicated con-
tradictions to detect compared with the other contradictions [3], which is in line with our
results. In addition, the Con_Str class, due to the scarcity of training examples, contains
the lowest number of examples in this dataset, so the model can learn more about other
more representative classes. It is highly likely that contradictions such as the structure
contradiction need external semantic knowledge to improve detection results.
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5.5. Comparison between XNLI and ES-Contradiction

In order to demonstrate the generality of our proposal, a series of experiments has been
performed using the XNLI dataset and ES-Contradiction dataset in different training–test
configurations.

The XNLI dataset is divided into training, development, and test set. The training set
is developed in the English language. The development and test sets are in 15 languages,
including Spanish.

To carry out this experiment, machine translation of the training set into Spanish
and the test set in Spanish were used. Table 7 presents the results of each trained system.
The best results are highlighted in italic.

Table 7. Results obtained from Experiment 5: Results of different training-test configurations between
XNLI and ES-Contradiction.

F1 Score (%) F1m (%) Acc (%)

System Compatible Contradiction

Training set (XNLI) and test
set (ES-Contradiction) 72.57 75.00 73.78 73.84

Training and test set (XNLI) 71.73 77.53 74.63 74.97
Training set

(ES-Contradiction) and test
set (XNLI)

65.21 32.28 48.75 54.04

BETO-Contra_Comp 88.63 88.75 88.69 88.69

The models of line 1 and 2 are trained using the XNLI training set, the difference being
that the first line predicts the ES-Contradiction dataset test set, and the other one, the XNLI
test set. The prediction results are quite close for both of them, but the Contradiction class
is detected with a higher accuracy and F1m.

Comparing lines 1 and 4, considering our dataset as the test set with the four types of
contradictions, as expected the system trained on our dataset is substantially better than
the system trained on the XNLI training set. The result indicates that the XNLI dataset
does not manage to cover all the contradictions contained in our dataset, even though it is
more than 40 times the size of the training set of ES-Contradiction dataset and is composed
of examples from different genres.

The XNLI training set is exactly the same as the MultiNLI training set. It has been
developed manually by parsing a sentence from a non-fiction article and creating three
sentence variants: definitely correct, might be correct, and definitely incorrect [7]. The pro-
cedure for creating the training set of MultiNLI dataset follows an annotation guide that
is sufficiently general to avoid bias in the dataset. However, this lack of specificity may
cause a shortage of examples of various types of contradiction, resulting in an imbalance
of contradiction types. Table 8 shows the accuracy by type of contradiction of the model
trained in row 1 of Table 7.

Table 8. Accuracy obtained for detecting each specific type of contradiction with the model in row 1
of Table 7.

Acc (%)

System Con-Neg Con-Ant Con-Num Con-Str

Training set (XNLI) and test
set (ES-Contradiction) 88.50 75 70.10 48.48

In the prediction of the type of contradiction (Con_Neg, Con_Ant, and Con_Num),
this model achieves significantly good results; even in the class Con_Neg they are very
good (88.50% accuracy). However, in the prediction of the class Con_Str, they are very
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low (48.48% accuracy); this result could be due to the lack of examples of this type in the
XNLI dataset.

Finally, the system trained on the ES-Contradiction dataset failed to obtain good
enough results in order to predict the XNLI test set. This system only obtains 32.28%
F1m to predict the contradictions of the XNLI test set. The need to include new types of
contradictions in the ES-Contradiction dataset is evidenced, specifically those that allow the
creation of robust contradiction detection systems for the real-world and enable prediction
with higher accuracy in the XNLI dataset.

Unlike the XNLI dataset, the ES-Contradiction dataset in its first version could not
be used to create a real system of contradiction detection. However, the annotation of
contradiction types has enabled us to detect which contradictions are more difficult to
tackle and how models may need external knowledge to improve the results. By future
inclusion of other types of contradiction in our dataset (factive, lexical, WK, and more
examples of structure contradiction), we could assess what kind of knowledge is useful to
include in the reference models within this task, and thereby make progress towards the
creation of a powerful system for detecting contradictions.

Extending the XNLI dataset with the types of contradictions contained in the ES-
Contradiction dataset is not an appropriate option as the XNLI Spanish language training
set is automatically translated, which could incorporate several biases into automatic
detection systems. Furthermore, the currently annotated examples do not have this fine-
grained annotation of our proposal.

6. Conclusions

This work has built the ES-Contradiction dataset, a new Spanish language dataset that
contains contradiction, compatible, and unrelated information. Unlike other datasets, in the
ES-Contradiction dataset, contradictions are annotated with a fine-grained annotation that
distinguishes the type of contradiction according to its specific characteristics. The contra-
dictions currently covered in the dataset created are negations, antonyms, date/numerical
mismatch, and structural contradictions. However, all the contradictions presented in [3]
are the final goal of this research. The main purpose is to create an automatic process for
classifying contradictions between texts, scaling from trivial to complex cases, and giving
each contradiction a precise and customized treatment. This would avoid the need to have
large datasets that contemplate a multitude of examples for each of the contradictions.

BETO model is used to create our system. Beto is a Transfer Learning model based
on BERT. Five different experiments were performed with our system indicating that it
is able to detect the four types of contradictions with a F1m of 92.47% and contradiction
types with a F1m of 88.06%. As for the detection of each specific type of contradiction, our
system obtains the best results for negation contradictions (98% F1m), whereas the lower
results are obtained for structural contradictions (69% F1m), corroborating that the best
results are obtained from the classes with the largest number of examples with more simple
contradictions. Our results leave a great margin for improvement that can be tackled
with the inclusion of external knowledge that enables improvement on the prediction of
contradiction types.

Furthermore, as for the generalization of the system, we compared the system by
training it on the XNLI dataset and training it on ES-Contradiction dataset. The system
trained on our dataset was not able to detect with high accuracy the XNLI test set, which
indicates that in this first version it is not possible to create a powerful contradiction
detection system. The negative results in the generalization tests of our corpus were
expected, as it only covers four types of contradictions existing in texts. On the other
hand, the system trained on the XNLI dataset managed to detect the contradictions in
our dataset with high accuracy, especially in the most common types of contradictions,
which therefore will also be the largest number of examples. However, when analyzing by
contradiction types, we detected that the structure contradiction is not detected correctly.
With this experiment, we found that the XNLI dataset, although much larger than ours,
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does not cover all types of contradictions, which indicates a need to deal with more complex
contradictions in a more specific manner.

The results obtained show that the created Spanish contradictions dataset is a good
option for generating a language model that is able to detect contradictions in the Spanish
language. This language model was capable of distinguishing between the specific type
of contradiction detected. In order to create a powerful contradiction detection system in
Spanish, it is necessary to extend our dataset with other types of contradictions and add
specific features. This will enable us to detect, with greater precision, not only structural
contradictions, but also other more complex contradictions that are possible in a real
scenario for which the system is not previously trained.
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