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Abstract: This paper describes the evaluation of a single output, online, and time domain modal
parameters identification technique based on differential algebra and operational calculus. In addition,
an analysis of the frequency response function (FRF) of the system is conducted in a specific set up,
emulating its nominal or operational conditions to determine the influence of the non-linearities over
the dynamic behavior of the system in those particular magnitudes of deformations; thus, this influence
is quantified by a numerical index. This methodology is applied to a wind turbine blade submitted to
wind tunnel experiments. The natural frequencies and modal damping ratios of six bending modes
associated with the blade are estimated using real-time velocity measurements from one single point of
the blade. A comparison with the usual impact hammer modal testing is performed to evaluate and
establish the proposed approach’s main contributions. The developed modal parameter identification
algorithms are implemented to run into a standard personal computer (PC) where the data acquisition
system’s measurements are conditioned and processed. The results show the performance and the fast
parametric estimation of the proposed algebraic identification approach.

Keywords: modal analysis; modal parameters identification; algebraic identification; dynamics of
wind turbine blades

1. Introduction

To ensure that wind turbine blades fulfill the design requirements, they are subjected
to load-carrying capacity experimental tests under extreme loading and fatigue resistance
tests. Additionally, it is common practice to perform tests to derive the blades’ basic
dynamic properties, such as natural frequencies and damping ratios. These are essential for
the dynamic behavior and structural integrity of the entire wind turbine [1]. In this context,
modal analysis is an engineering and technological tool that contributes to carry out these
tests. It is also a constant topic of research and development towards new techniques and
computational algorithms that lead to identifying the parameters that describe the dynamic
behavior of modern engineering structures and mechanical systems [2,3]. The resulting
modal models, as a product of the identification process, are used in vibration absorbers
design, vibration control schemes, mechanical design, and structural health monitoring
(SHM), among other important applications. Nowadays, numerous modal parameter
identification algorithms, in time or frequency domain, have been reported in the literature
and research articles [4–6], although most of these techniques are essentially designed to be
performed in a post-processing context due to their asymptotic and recursive nature, those
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methodologies are unsuitable to be applied to adaptive or real-time vibrations absorption
schemes like those proposed in [7,8].

For online applications suitable to be applied in structural health monitoring and
adaptive vibration control schemes, it is highly desirable to perform the parameter identifi-
cation in real time, preferably online and in the nominal operation conditions of the system.
Since 1996, as reported in [9], several online modal parameter identification schemes have
been developed using neural networks and artificial intelligence (AI). It is also important to
consider that classical mathematical models for dynamic and vibrating systems are linear
assumptions of their dynamic behavior such that it is possible to use basic and well known
approaches like least squares and auto-regressive models [3,10–14]. However, the use of
modern materials in structural engineering, high displacements, geometrical restrictions,
and complex behavior are now becoming common in modern mechanical structures, re-
sulting in inherent non-linear phenomena (e.g., stiffness, damping, and excitation), and
as a result, despite of the numerous advantages of the linearity assumption on mechanical
systems, there are cases where the linear methods are no longer effective or even valid, as
reported in [15–17].

In this work, we use a set of mathematical tools: Operational calculus, algebraic identi-
fication, and Hilbert transformation, to determine in time domain and online, the principal
modal parameters of a wind turbine blade given one single output measurements of its free
vibrations response. As a complement of our analysis, we apply the Hilbert transformation
to the FRF of the system to have an indicator for the presence of non-linearities; we use the
properties of this linear transformation as reported in [18] considering the interesting up-
dates and applications reported in [17]. Then, we apply an algebraic approach to transform
a complex calculus problem into an algebraic equation [19–21] in terms of the parameters
to be identified. The main contributions of the present work are summarized as follows:

• An algebraic technique for online and time-domain estimation of natural frequencies
and damping ratios is evaluated in an experimental case study.

• The evaluated estimation approach is performed in time-domain and on-line, where a
small interval of time is required for the technique to provide accurate results.

• Compared to other modal parameters identification methods, a significant reduction of
the amount of time and data required for the estimation process is the main highlight.

• Only measurements of single output signals are required. In this work, natural frequen-
cies and damping ratios estimation are carried out using measurements of velocity.

The paper is organized as follows: In Section 2, the dynamic representation of multi-
ple degrees of freedom mechanical systems is explained. The algebraic and online modal
parameters identification scheme is detailed in Section 3. In addition, in Section 3, the math-
ematical fundamentals for a non-linearity analysis of the system dynamics are presented.
In Section 4, the experimental work developed is presented. Finally, the most important
conclusions are given in Section 5.

2. Multiple Degrees of Freedom Mechanical Systems

The vibrating mechanical system shown in Figure 1 is a schematic representation of
one possible discrete form of a generic wind turbine blade considered as a mechanical
structure with a finite number of degrees of freedom. It is well known that its corresponding
dynamic response is determined in terms of the parameters mi, bϕ_i, kp_i, where the last
two parameters can be expressed as a combination of a linear part and a non-linear part
(viscous damping plus dry friction, Coulomb friction, etc., as well as linear stiffness plus a
non-linear polynomial stiffness, duffing stiffness for example). It is important to remark
that the connecting or coupling discrete elements bϕ_i and kp_i do not follow a determined
pattern or an assembling rule. The configuration shown in Figure 1 is a schematic diagram
of the discrete form, considering a finite number of degrees of freedom, let it be ndo f .
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Figure 1. Generic linear/nonlinear vibrating mechanical system.

In addition to the before mentioned, let us assume that the non-linear effects can be
concentrated into a function Φ(x, ẋ), which can take a structure such that it contains or
concentrates the sum of the non-linearities mentioned before. Thus, we can express the
system dynamics behavior, in the conditions of free vibrations (no exogenous forces acting
on the system), of this non-linear system by the following differential equation:

Mẍ + Bẋ + Kx = −Φ(x, ẋ) (1)

where, the vector x ∈ Rndo f denotes the physical displacements of the masses as a function
of time t, and the function Φ(x, ẋ) ∈ Rndo f is a non-linear restoring force, commonly
depending on the displacements and velocities of the considered ndo f degrees of freedom.
In Equation (1), the dynamic response of the linear part is determined by the matrices
M ∈ Rndo f×ndo f , B ∈ Rndo f×ndo f , and K ∈ Rndo f×ndo f , which are the mass damping and
stiffness matrices, respectively, given by:

M =


m11 m12 · · · m1ndo f

m21 m22 · · · m2ndo f
...

. . .
mndo f 1 mndo f 2 · · · mndo f ndo f

, B =


b11 b12 · · · b1ndo f

b21 b22 · · · b2ndo f
...

. . .
bndo f 1 bndo f 2 · · · bndo f ndo f



K =


k11 k12 · · · k1ndo f

k21 k22 · · · k2ndo f
...

. . .
kndo f 1 kndo f 2 · · · kndo f ndo f

 (2)

As mentioned before, it is common for the non-linear restoring force to assume a structure
such that it contains the sum of non-linearities like dry friction, non-linear damping, and some
polynomial stiffness as follows [18]:

Φ(x, ẋ) = Kipxr + K(i−1)pxr−1 + · · ·+ K2px2 + Fdsign(x) + Cdsign(ẋ) (3)
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where r is the order or the polynomic stiffness, and Kip ∈ Rndo f×ndo f are the polynomial
stiffness matrices, with i = 2, 3, ..., r given by:

Kip =


kip11 kip12 · · · kip1ndo f

kip21 kip22 · · · kip2ndo f
...

. . .
kipndo f 1 kipndo f 2 · · · kipndo f ndo f

, i = 2, 3, ..., r (4)

The matrices Fd ∈ Rndo f×ndo f and Cd ∈ Rndo f×ndo f are the Coulomb dry friction and
nonlinear damping matrices, respectively, with the following structure.

Fd =


fd11 fd12 · · · fd1ndo f

fd21 fd22 · · · fd2ndo f

...
. . .

fdndo f 1 fdndo f 2 · · · fdndo f ndo f

, Cd =


cd11 cd12 · · · cd1ndo f

cd21 cd22 · · · cd2ndo f

...
. . .

cdndo f 1 cdndo f 2 · · · cdndo f ndo f

 (5)

For the traditional modal analysis approaches [2,3,6,22–24], it is crucial that Φ(x, ẋ) ≈ 0
for the correct performance of the identification methods, when Φ(x, ẋ) 6= 0, the classic
modal analysis tools are inoperative or inaccurate. This situation demonstrates the need to
have an indicator of how important or dominant the non-linear terms are over the global
dynamic response of the system. In the following section, we present the application of a
mathematical method for determining this influence in terms of a numerical indicator.

3. Algebraic and Online Modal Parameters Identification

Consider, as mentioned in the last section, that the mechanical system shown in Figure 1
is a general graphic representation of a wind turbine blade, whose dynamic response can be
determined by Equation (1). The classic experimental modal analysis paradigm for mechanical
engineering is to consider that the influence of the non-linear part can be neglected, that is,
Φ(x, ẋ) ≈ 0 or, in the best case, it is such that: Φ(x, ẋ) ≡ 0. When possible, considering the
dynamic behavior of the system as linear results in an uncoupled 2ndo f grade, which can
be expressed in terms of the principal or generalized coordinates [3] qi as follows:

q̈i + 2ξiωni q̇i + ωni
2qi = 0

x(t) = Ψq(t) (6)

where ωni and ξi are the natural frequencies and damping ratios associated with the i-th
vibration mode, respectively, and Ψ is the modal matrix with components ψij that contains
the column space of the eigenvectors of the system (1) given by

Ψ =


ψ11 ψ12 · · · ψ1ndo f

ψ21 ψ22 · · · ψ2ndo f
...

. . .
ψndo f 1 ψndo f 2 · · · ψndo f ndo f

 (7)

In notation of the Mikusiński’s operational calculus [20,21], the modal analysis repre-
sentation or modal model (6) is:

(s2 + 2ξiωnis + ωni
2)qi = 0 (8)
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The combination of Equations (6) and (8) leads to

xi(s) =
ndo f

∑
j=1

ψij(α0,i + α1,is)
(s2 + 2ξiωnis + ωn2)

(9)

where the constants α0,i and α1,i depend on the initial conditions. Therefore, the physical
displacements xi are given by

pc(s)xi(s) = ρ0i + · · ·+ ρ1is + ρ2ndo f−1is
2ndo f−1 (10)

with:
pc(s) = s2ndo f + a2ndo f−1s2ndo f−1 + ... + a3s3 + a2s2 + a1s + a0 (11)

where pc(s) is the characteristic polynomial of the vibrating mechanical system, ρij are con-
stants that depend on the initial conditions and the modal matrix components ψij. The com-
ponents of the characteristic polynomial (11) provide the damping factors and damped
natural frequencies, and hence, the natural frequencies and damping ratios of the flexible
structure. Moreover, since the characteristic polynomial of the system is unique, it does not
make any difference in which output xi is selected.

Note that the mathematical model (1) can describe any N DOF vibrating mechanical
system, with N being an arbitrarily large integer. In previous works, the direct parameter
identification of the system parameters such as mass, stiffness, and damping ratios have
been realized using algebraic parameter identification methods as described in [20,25],
where some comparisons with ARX and ARMAX methods are discussed, consequent works
as [26,27] report the modal parameters identification schemes, evaluated in time domain
and online. In this work, we propose a reliable extension of those algebraic parameter
identification methods [20,26,27] for general N DOF modal models. Herein, ndo f < N is
the number of degrees of freedom to be considered, and the parameters ai belong to the
characteristic polynomial of the system. The components of this polynomial contain the
modal parameters of the system ωi and ξi.

As reported in [20,25–27], the general expression for the proposed time domain, algebraic
identification scheme for modal parameters in the case of multiple degrees of freedom, is
given by

Θ = G−1V =
1
∆


∆1
∆2
...

∆n

 (12)

where the vector Θ = [â2ndo f−1 · · · â1 â0]
T contains the estimated coefficients of the character-

istic polynomial and ∆ is the determinant of the matrix G and ∆i, which are partial determi-
nants used for the Cramer’s rule. The matrix G ∈ R2ndo f×2ndo f and the vector V ∈ R2ndo f are
given by

G =


g11 g12 · · · g12ndo f

g21 g22 · · · g22ndo f
...

. . .
g2ndo f 1 gndo f 2 · · · g2ndo f 2ndo f

, V =


v1
v2
...

v2ndo f

 (13)
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with entries defined by

g11 = (−1)2ndo f

∫ 2ndo f

t0

(∆t)(2ndo f )xi(t)

g12 =
1

∑
k=0

(−1)2ndo f−k (2ndo f )!(1)!
k!(2ndo f − k)!(1− k)!

∫ (2ndo f−1+k)

t0

(∆t)2ndo f−kxi(t)

... =
... (14)

g1,2ndo f−1 =

2ndo f−2

∑
k=0

βk

∫ (2+k)

t0

(∆t)(2ndo f−k)xi(t)

g1,2ndo f =

2ndo f−1

∑
k=0

γk

∫ (1+k)

t0

(∆t)(2ndo f−k)xi(t)

where xi(t) is a single available output measurement. Notice that none of Equation (15)’s
expressions depend on the initial conditions of the considered output xi(t). In (15), ∆t = t− t0,
and the notation

∫ (k)
t0

ϕ(t) represents iterated integrations of the form

∫ t

t0

∫ τ1

t0

· · ·
∫ τk−1

t0

ϕ(τk)dτk · · · dτ1 (15)

where k is a positive integer. The constants βk, γk used in (15) are defined as

βk = (−1)2ndo f−k (2ndo f )!(2ndo f − 2)!
k!(2ndo f − k)!(2ndo f − 2− k)!

(16)

γk = (−1)2ndo f
(2ndo f )!(2ndo f − 1)!

k!(2ndo f − k)!(2ndo f − 1− k)!

Finally, the first element v1 of the vector V = [v1 v2 · · · vndo f ], defined in Equation (13),
is obtained as follows

v1 = −
2ndo f−1

∑
k=0

λk

∫ (k)

t0

(∆t)(2ndo f−k)xi(t) (17)

where the constants λk are calculated by using the expression

λk = (−1)2ndo f−k (2ndo f )!(2ndo f )!
k!(2ndo f − k)!(2ndo f − k)!

(18)

The iterated integrations of Equations (15) and (17) lead to the rest of the entries or
components of the matrix G and the vector V

gij =
∫

t0

gi−1j, vi =
∫

t0

vi−1 (19)

with i = 2, . . . , 2ndo f and j = 1, . . . , 2ndo f . It is possible to estimate the desired coefficients
by using Cramer’s rule. The iterated integration m times of the numerator and denominator
leads to smooth estimations with the consequent slower convergence of the calculations.
Let us rewrite Equation (12) with no changes in the final result as

e−γ(t−t0)|∆|âk = e−γ(t−t0)


|∆1|
|∆2|

...
|∆n|

 (20)
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âk =
e−γ(t−t0)

∫ (m)
t0
|∆k−1|

e−γ(t−t0)
∫ (m)

t0
|∆|

, k = 1, 2, · · · , 2ndo f − 1 (21)

where |·| denotes absolute value, m is an integer, ·̂ denotes estimated, and γ1 > 0 is a low-
pass filter coefficient used to smooth the online estimations [28]. Thus, from the algebraic
estimation of the coefficients âk, it is possible to obtain the components of the characteristic
polynomial and, hence the natural frequencies and damping ratios, as reported in [26]

r̂i = ς̂i + jω̂di, r̂∗i = ς̂i − jω̂di, i = 1, 2, · · · , ndo f (22)

here, ς̂i and ω̂di are the estimates of the damping factors and damped natural frequencies,
respectively. Consequently, the estimates of the natural frequencies and damping ratios are
given by

ω̂ni =
√

ς̂2
i + ω̂2

di, ξ̂i = −
ς̂i√

ς̂2
i + ω̂2

di

(23)

It is important to remark that this identification approach can also be extended to the
case of velocity measurements, available with laser vibrometry, by multiplying Equation (24)
by the complex variable s so we can describe a velocity output as

veli(s) =
ndo f

∑
j=1

ψij(α0,is + α1,is2)

(s2 + 2ξiωnis + ωn2)
(24)

where veli(s) = sxi(s) is a particular and available velocity output test point in the complex
domain s, and then, it is possible to follow the proposed identification methodology as re-
ported in [26], and experimentally verified in [27], where the algebraic identification approach
was evaluated for the particular case of acceleration measurements. Finally, to depict the
proposed approach graphically, we present a block diagram in Figure 2 that describes the
corresponding process of the algebraic identification of parameters. The proposed algebraic
and on-line modal parameters identification scheme is limited to determining two modal
parameters, natural frequencies, and modal damping ratios.

Figure 2. Algebraic identification approach.

Non-Linearity Analysis

In order to enhance the reliability of the modal parameters identification scheme
proposed here, it is important to verify the presence of the significant non-linearities in the
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inherent system dynamic response that could compromise the performance of the algebraic
identifier (21). Even though the algebraic identification technique has been numerical
and experimentally verified for non-linear mechanical systems, see [20,29], the main aim
of this work is to analyze the linear part of the dynamic response for modal parameters
identification purposes. To achieve this particular objective, there are numerical methods
for determining the influence of non-linearities present in the system dynamics, and these
methods are well reported in [17] and references therein. Despite the numerous advantages
of the linearity assumption on mechanical systems, there exist cases where the linear
methods are ineffective or inoperative; therefore, we need to analyze and quantify the
presence of non-linearities on the particular mechanical system numerically.

The Hilbert transformation [18,29,30] is a popular and well-founded mathematical tool
widely used to analyze the dynamic behavior of mechanical systems due to its particular
properties when it is applied to experimental frequency response functions. Since the
Hilbert transform maps the functions under consideration into the same domain, when
applying the Hilbert transform to a FRF, let it beR(jω), then, the imaginary and the real
parts of the FRF are related as follows:

Re(R(jω)) = − 1
π

η
∫ ∞

−∞

Im(R(jω))

ω−ωc
djω (25)

Im(R(jω)) =
1
π

η
∫ ∞

−∞

Re(R(jω))

ω−ωc
djω (26)

where j =
√
−1 and η denotes the Cauchy principal value of the integral, which is neces-

sary to consider due to the singularity of (25) and (26) present at ω = ωc. The equations or
relations (26) and (25) are known as the Hilbert transform pairs [18,30]. It is well known
that, for non-linear systems, the pairs do not comply and the Hilbert transform will return
a distorted version ofR(jω). As a result, we have a non-linearity indicator by analyzing
the level of distortion on the original FRFR(jω) by using cross-correlation as follows:

σH = ‖QHR(0)‖2 (27)

where ‖QHR(0)‖ is the normalized cross-correlation coefficient and QHG is given by

QHR(∆jω) =
∫ ∞

−∞
H(jω)R(jω + ∆jω)djω (28)

where R(jω) is the original FRF of the system and H is the Hilbert transformation of R.
This coefficient is a numerical indicator of the non-linear behavior of the system at a specific
amplitude of the input force. We use this index to study the presence of non-linearities in
the system under study, such that when σH diverges from 1, the system shows a behavior
that is mainly non-linear; that is, for a linear system, the expected value of σH is precisely
1. It is important to consider that the Hilbert transform is a numerical method; then, we
need to consider some linearity criterion. Therefore, as reported in [17,29,30], we can
consider the set of values 0.9 ≤ σH ≤ 1 for a linearity assumption of the dynamic behavior
of the system.

4. An Experimental Case Study

The proposed modal parameters estimation scheme was evaluated on a fiberglass
wind turbine blade. First, a traditional impact test modal analysis was conducted to
determine the presence of non-linearities due to the inherent nature of the composite
material used for the base of the blade. Simultaneously, by performing a traditional modal
testing on the blade, a reference is obtained and used to evaluate the performance of the
proposed scheme. Figure 3 shows the experimental set-up for the traditional modal testing.
Two different modal parameter extraction techniques were applied to the experimental
data; the classic one degree of freedom peak picking method detailed in [3], and the



Appl. Sci. 2021, 11, 3016 9 of 20

multiple degrees of freedom rational fractional polynomials method, known as RFP and
reported in [31].

Figure 3. Blade set-up for modal testing based on impact hammer excitation.

Figure 3 shows a clamped free blade used to match boundary conditions for opera-
tional conditions of the blade when the brake is applied. The test was performed using
single output velocity measurements employing a laser vibrometer model PDV-100 and
its corresponding data acquisition hardware connected via USB to a laptop computer.
The measured FRF corresponding to velocity measurements of one single output or de-
gree of freedom is shown in Figure 4, where only the first six resonances are considered.
The curve in the solid blue line corresponds to the experimental FRF, while the dotted red
and black lines correspond to synthesized FRFs obtained by applying the peak picking [3]
and RFP methods [2,31,32], respectively.

Figure 4. FRF (frequency response function) of the velocity measurements.

Notice that the first modes are difficult to detect and analyse in the frequency domain,
even though the deflection of the blade at low frequencies is evident. A second impact
hammer test was performed using IEPE accelerometer sensors to compare and validate
the former test results. The corresponding FRF for the acceleration measurements case is
shown in Figure 5, where the two first bending modes are easily located at a low frequency
band [33].
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Figure 5. FRF of the acceleration measurements.

In Figure 6, the first 6 modal shapes are shown in a three-dimensional graph. The differ-
ent deformation patterns were obtained using the traditional impact hammer test described
in the literature [3], in six different points of the blade, uniformly spaced. In addition, one
point was taken as a reference. In the plane perpendicular to the deformation, the first six
modes of vibration are shown in Figure 7, while the corresponding modal vectors obtained
are reported in Table 1.

Figure 6. Graph of the six bending modes at six first resonant frequencies.

Figure 7. First six bending mode shapes of the blade.
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Table 1. Normalized modal vectors.

Test Point Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

1 −0.0189 −0.0480 −0.1040 0.3852 −0.2265 0.3477
2 −0.0487 −0.1956 −0.1342 0.3141 0.0564 0.0851
3 −0.0890 −0.4033 0.0873 −0.1753 0.2796 −0.2464
4 −0.1389 −0.4995 0.4308 −0.5095 −0.0129 0.1940
5 −0.1976 −0.2155 0.2811 −0.2561 −0.2325 0.4023
6 −0.2637 0.3627 −0.8022 0.3088 0.0696 −0.1520

Remark: It is important to clarify that the reported results are the product of a tradi-
tional experimental modal analysis, whose objective is to provide the parameters that serve
as a reference to make a comparison of the performance of the proposed online algebraic
estimator defined by (21) and (23). The modal shapes were obtained through the excitation
technique by using an impact hammer and the synthesis of FRFs employing the meth-
ods of extraction of modal parameters peak picking and rational fractional polynomials
RFP [2,3,31,32].

The modal assurance criterion known as MAC [33] is a graphic indicator used to
indicate the degree of consistency or similarity between modes obtained by two different
methods. The expected value of the MAC between two consistent modes is 1. In Figure 8,
the modal assurance criterion for the modes obtained by the two sets of measurements,
velocity and acceleration, is graphically shown. It is clear to verify the consistency of the
data obtained from both tests.

Figure 8. Modal Assurance Criterion (MAC).

In order to determine the influence of non-linearities in the dynamic response of the
blade, Hilbert transform analysis of the velocity FRF was performed. First, we apply the
Hilbert transform algorithm to the original FRF, and then we compare both of the FRFs to find
possible distortions. The resulting transformation is shown in Figure 9, where the original
FRF is shown in a continuous blue line and the transformation in bold black. The zoom in
the three-dimensional chart in Figure 9 shows the low distortion level for the range of the
second resonant frequency. A visual inspection of Figure 9 confirms that the original FRF
does not present an important distortion after applying the Hilbert transformation; therefore,
we can consider the blade as a linear system under these excitation and deflection amplitudes.
The proposed non-linearity index expressed in Equation (27) is:

σH = ‖RHR(0)‖2 = 0.93 (29)
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Figure 9. Original FRF (blue line) and its corresponding Hilbert transformation with first mode detail.

The Argand diagram of the FRF and its Hilbert transformation is shown in Figure 10,
where the original response is depicted in a blue and continuous line. In contrast, the corre-
sponding Hilbert transformation is represented in a bold black line.

Figure 10. Argand diagram of the original FRF (blue continuous line) and its Hilbert transformation
(black marked line).

The averaged modal parameters estimated by the traditional rational fractional poly-
nomials and peak picking techniques are reported in Table 2 for the first six bending
vibration modes.

Table 2. Offline modal parameters estimation, averaged peak picking, and rational fractional polyno-
mial (RFP) methods.

Mode Frequency [Hz] Damping Ratio %

1 9.15 1.5
2 32.59 0.9
3 74.75 1.43
4 141.0 2.8
5 175.1 2.0
6 213.24 1.8

The modal parameters reported in Table 2 were obtained by applying the traditional
and experimental modal analysis techniques that are inherently offline and frequency
domain. Those experimental techniques are reported in [2,3,31,32]. Those parameters are
used as a comparative reference for evaluating the performance of the online and algebraic
approach for the first six bending vibration modes.
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Moreover, based on the results obtained with the application of the non-linearity index,
whose numerical value is σH = 0.93, it is perfectly valid to use the velocity measurements
of the analyzed output for the synthesis of the algebraic identifier (21), given that the
dynamic behavior of the blade is dominantly linear and, as a consequence, the condition
Φ(x, ẋ) ≈ 0 is satisfied.

Wind Tunnel Experiments

Experiments were carried out in the atmospheric boundary layer wind tunnel of the
Institute of Engineering of the National Autonomous University of Mexico and FiiDEM
Alliance. The 2 m high and 3 m wide test section has two rotary tables separated by 14 m.
The 5.5× 5.5 m contraction at the inlet nozzle, together with a series of honeycomb and a set
of fine-grid screens, allows a remarkably low turbulence level (I < 1%). The flow is acceler-
ated at a velocity between 0.2 m/s and 30 m/s in a closed-loop configuration. Figure 11
shows a schematic view of the test section. Rotary Table 2 was used for the measurements.

Figure 11. Atmospheric boundary layer wind tunnel of the II-UNAM and FiiDEM Alliance. The ex-
periments were carried out in rotary table 2; the passive grid was fixed to 5 m upstream of the rotary
table 2.

In the first instance, a test was carried out considering laminar flow conditions;
however, the dynamic behavior of the blade was not observed. Subsequently, a specially
designed grid was used to generate a turbulent flow, which is produced by the shedding
of vortices downstream of the bars. The grid characteristics are the following; the width
of the bars b = 5 cm, mesh size M = 35 cm (i.e., the distance between the centreline of
the bars), and the downstream distance from the grid to the section where measurements
were performed x = 5 m, see Figure 12. The x/M > 14 rate assures a homogeneous
and isotropic turbulent flow [34], whose main characteristics are a turbulence intensity of
I = 4.2% and an integral length L = 0.2 m.

In a second instance, in order to the evaluate the proposed algebraic identifier of
Equation (21), we exposed the wind turbine blade to turbulent flow conditions with a
wind speed of 20 m/s in a time span of 0–18 s. At this point, the wind tunnel fan was
turned off to generate a free decay response for the interval of 18–40 s, which is then used
to synthesize the on-line algebraic identifier (21). Turbulence was generated by placing a
fixed pattern grid in front of the blade, as shown in Figure 12, where the measured point
on the blade is the same that we used for impact hammer testing.
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Figure 12. Experimental set-up for wind tunnel experiments: passive grid, blade, and laser vibrometer.

Time-domain velocity measurements are shown in Figure 13. After 18 s of running
the test, as shown on the right side of Figure 13, the fan of the wind tunnel was powered
off to generate the free vibrations condition for the blade; at this moment, the algebraic
identifier is engaged to estimate in an online fashion the natural frequencies and damping
ratios of the first six modes of the blade.

Figure 13. Free decay response in time domain. Complete experiment and decay with fan turned off.

In order to derive a method to determine the moment when the algebraic estimator
converges to stable calculations, we propose to use a sentinel variable that has a known
value of 1, as shown in Figure 14. This unitary variable comes from the characteristic
polynomial (11), where the N − th power coefficient of the complex variable s precisely
equals 1.
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Figure 14. Convergence of the sentinel parameter.

The fast and online estimations of the modal parameters are shown in Figures 15 and 16,
where the dotted line is the numerical value obtained by the classic off-line peak picking
and RFP techniques. Notice that it takes less than a second for the algebraic identifier
to give smooth and stable estimations of the modal parameters obtained by solving the
roots of the estimated characteristic polynomial of coefficients âk. Results of the online
modal parameters estimation are reported in Table 3, in addition, the results obtained by
the traditional off-line peak picking and RFP methods are compared to the results obtained
with the time domain and online algebraic technique.

The performance of the evaluated algebraic identifier implies the effective, online, and
time-domain determination of two important modal parameters of the system; natural fre-
quencies and damping ratios. As reported in important and interesting contributions [15,16]
on structural health monitoring (SHM), the effective detection of changes in these modal
parameters results in a reliable indication of the physical conditions of the systems under anal-
ysis. In addition, a desirable feature of structural monitoring techniques is a fast performance
with a limited number of sensors and as little post-processing as possible. The identification
scheme evaluated in this work achieves those characteristics and is feasible for its application
in real-time and online structural monitoring schemes.

Finally, the real time and online determination of the mode shapes with the evaluated
algebraic scheme, will be a natural extension, part of future works, in the context of structural
health monitoring (SHM) applications.

Table 3. Results summary and comparison.

Frequency [Hz]

Mode Off-Line On-Line Difference %

1 9.15 9.26 1.29
2 32.59 33.40 2.51
3 74.45 72.51 2.6
4 141.0 145.23 3.0
5 175.1 178.25 1.8
6 213.24 210.04 1.5

Damping Ratio %

Mode Off-Line On-Line Difference %

1 1.5 1.55 2.9
2 0.9 0.85 5.1
3 1.43 1.25 1.26
4 2.8 2.88 3.0
5 2.0 2.16 7.8
6 1.8 1.74 3.5
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Figure 15. Algebraic and on-line estimation of natural frequencies.
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Figure 16. Algebraic and on-line estimation of damping ratios.

In the spectrogram shown in Figure 17, it is possible to observe that for t > 18 s, the
frequency components of the signal vanish according to the slow and gradual decay in the
velocity response.
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Figure 17. Spectrogram of the velocity measurements.

The dominant mode for this particular case (velocity measurements) is the one centred
at 74 Hz, which is dominantly linear and time invariant for the particular turbulent wind
speed of 20 m/s. The spectrogram shown in Figure 17 also reinforces the conclusion
of the linearity assumption of the dynamic behaviour of the blade in those wind speed
conditions, numerically quantified by the evaluated non-linearity index defined by (27)
and the numeric result given by (29).

5. Conclusions

We proposed and evaluated an algebraic identification approach for the on-line esti-
mation of the natural frequencies and damping ratios for an experimental case study of a
particular wind turbine blade. We computed the natural frequencies and damping ratios
based on the coefficients of the characteristic polynomial.

We used only measurements of a single velocity output or test location for the construc-
tion of the on-line algebraic estimator. It is important to mention that the approach presented
can be easily extended for situations where acceleration measurements are preferred, since
the characteristic polynomial is the same for both cases. The algebraic modal parameter
identification method was evaluated on a wind turbine blade in a wind tunnel facility,
excited by a turbulent wind flow that produces a change of its initial position and condition.
The non-linearity indicator tested is easy to program and test for having a numeric and
graphic indicator of the effects of the non-linearities present in the system due to its inner
nature, e.g., construction based on composed materials, geometric non-linearities, etc.

On the other hand, it is necessary to carry out a precise analysis of the numerical meth-
ods applied to the original data to have a more rational criterion for the final determination
of the presence of non-linearities; that is, care must be taken when defining an acceptable
value of η to consider the system as non-linear. Here, we have assumed a value of η ≤ 0.9
to establish that a given system is dominantly non-linear.
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Abbreviations
The following abbreviations are used in this manuscript:

FRF Frequency response function
H Hilbert transformation operator
RFP Rational fractional polynomial
η Principal Cauchy Value
dof degree of freedom
ωni Natural frequency of the ith mode or resonance
ξi Damping ratio of the ith mode or resonance
s Complex variable s = jω
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