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Abstract: Breast cancer metastasis can have a fatal outcome, with the prediction of metastasis being
critical for establishing effective treatment strategies. RNA-sequencing (RNA-seq) is a good tool for
identifying genes that promote and support metastasis development. The hub gene analysis method
is a bioinformatics method that can effectively analyze RNA sequencing results. This can be used to
specify the set of genes most relevant to the function of the cell involved in metastasis. Herein, a new
machine learning model based on RNA-seq data using the random forest algorithm and hub genes
to estimate the accuracy of breast cancer metastasis prediction. Single-cell breast cancer samples
(56 metastatic and 38 non-metastatic samples) were obtained from the Gene Expression Omnibus
database, and the Weighted Gene Correlation Network Analysis package was used for the selection of
gene modules and hub genes (function in mitochondrial metabolism). A machine learning prediction
model using the hub gene set was devised and its accuracy was evaluated. A prediction model
comprising 54-functional-gene modules and the hub gene set (NDUFA9, NDUFB5, and NDUFB3)
showed an accuracy of 0.769 £ 0.02, 0.782 £ 0.012, and 0.945 + 0.016, respectively. The test accuracy
of the hub gene set was over 93% and that of the prediction model with random forest and hub
genes was over 91%. A breast cancer metastasis dataset from The Cancer Genome Atlas was used for
external validation, showing an accuracy of over 91%. The hub gene assay can be used to predict
breast cancer metastasis by machine learning.

Keywords: sequence analysis; RNA /history; gene expression profiling /methods; models; statistical;
algorithms; biomarkers; tumor

1. Introduction

RNA-sequencing (RNA-seq) is being used to diagnose cancer and predict the behavior
of cancer cells [1], which is directly linked to the expression of certain genes. Thus, it is
possible to diagnose breast cancer and predict metastasis by analyzing gene expression
profiles [2]. Genes involved in metastasis can be identified by comparing RNA-seq results of
confirmed metastatic and non-metastatic breast cancer samples. Genes such as SETDB1 [3],
MALAT1 [4], EHMT?2 [5], RAB11B-AS1 [6], STAT3 [7], and RAS [8] were identified to
play a role in lymph node metastasis of breast cancer. However, it is still impossible to
effectively predict lymph node metastasis of breast cancer solely through gene expression
analysis, although several studies have explored these particular genes. This limitation is
because RNA-seq results only indicate the current state of breast cancer cells. Nevertheless,
it is possible predict the behavior of breast cancer cells to some extent by analyzing the
expression status of genes related to metastasis and grasping the current metastasis status
of breast cancer [9], but the accuracy of such assessment is not high enough for clinical
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application. Hub gene was used to obtain more accuracy to represent the function of
cells than single gene analysis from RNS-sequencing in the cancer studies [10]. Hub gene
was defined as genes having top 10% of connectivity in individual gene module related
gene function [11]. The gene modules were created by a systematic biological strategy for
evaluating gene association patterns among different samples with bioinformatics tools
like WGCNA or GSEA [12].

Machine learning is a field of artificial intelligence that learns using algorithms based
on real data, which is then used to design predictive models [13]. Such models are being
actively investigated in different fields, including for the prediction of cancer prognosis
using nuclear imaging [14]. However, prediction models building on nuclear imaging data
still lack accuracy, making it difficult to apply clinically. This poor response of prediction
models based only on imaging data can be explained as several factors can contribute to the
cancer progression pattern. Recently, a prediction model with high accuracy was created
by Dai et al. using genomic sequencing data of cancer cells that have metastasized from
the colorectal cancer site to the lymph nodes [15]. This previous report demonstrates that
it is possible to use next generation sequencing (NGS) data as input of prediction models
with high accuracy.

In this study, a machine learning model based on RNA-seq data was developed
using the random forest algorithm and hub genes to estimate the accuracy of the breast
cancer metastasis prediction model. The accuracy of the prediction model with total genes,
functional group genes, and hub genes was compared using various methods to identify a
suitable machine learning algorithm for prediction of breast cancer metastasis.

2. Materials and Methods
2.1. Data Availability

Single-cell RN A-seq data deposited in the National Center for Biotechnology Infor-
mation (NCBI) GEO database (Accession number: GSE75688), was used for data analysis.
RNA-seq data of 94 single-cell samples from one double-positive (ER* /HER2") breast
cancer patient were used for this analysis. Illumina sequencing platform (HiSeq 2000,
San Diego, CA, USA) was used to sequence cDNA libraries of 56 single-cell metastatic and
38 single-cell non-metastatic samples. Quality check was performed by fastQC (v.1.1.0).

2.2. Data Processing

Sequence data from patients were aligned to hg38 as a reference using STAR (version
2.7.0a) [16] with default parameters. Relative gene expression was determined by high-
throughput sequencing (HTseq) [17]. To normalize gene expression levels, transcripts per
million (TPM) (referenced by hg38) [18] were used. The selected data had a TPM value
of greater than 1. To detect the differences in gene expression between metastatic and
non-metastatic breast cancer, the DESeq2 package (version 1.24.0) in R was used [19]. Differ-
entially expressed genes exceeding the cut off (p-value < 0.05 and |log2fold-change| > 1)
were selected and their functions in metastasis were analyzed. Information on gene func-
tions in metastasis was taken from the Human Cancer Metastasis Database (HCMDB) [20].

2.3. Principal Component Analysis (PCA) and Volcano Plot

For PCA, we filtered the data selecting TPM values greater than 1 from at least
10 samples. For the PCA plot, the prcomp function in “devtools” R package was used and
ggbiplot package in R was used for visualization [21]. For visualization of the result of
differentially expressed gene test, we used the ggplot package in R. In the volcano plot,
the x-axis indicates the log2-fold change and y-axis indicates the p-value.

2.4. Weighted Gene Co-Expression Network Analysis

Weighted correlation network analysis (WGCNA) in R package was used to cluster
genes and identify hub genes [22]. Before WGCNA, a matrix of unsigned Pearson cor-
relations between all samples of transcripts was computed. The adjacency matrix, aij,
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was calculated and the connection strength between each pair of nodes was determined
using the following equation:

Sij = |cor(Xi, Xj)|aij = SijB,

where Xi and Xj are vectors of the expression values for genes i and j, Sij represents
Pearson’s correlation coefficient of genes i and j, and aij indicates the network connection
strength between genes i and j. We used the power at 3 = 9 (scale free R2 = 0.9) as a
soft threshold parameter to ensure a scale-free network. In the co-expression network,
genes with high absolute correlations were clustered into the same module. The WGCNA
method considers the association between two connected genes as well as associated genes.
Modules were also identified via hierarchical clustering of the weighting coefficient matrix.
To further identify functional modules in the co-expression network with these 2863 genes,
the adjacency matrix was transformed to a topological overlap matrix (TOM) to reduce
noise and errors. The TOM was constructed using the following equation:

YN Aik x Ak,j+ Ajj
min(Ki, Kj) +1 — Ai,j

TOMi,j =

where A is the weighted adjacency matrix given by Aij = |cor(xi, x j)I f and p =9 is
the soft threshold power. According to the TOM-based dissimilarity measure with a
minimum size (gene group) of 30 for the gene dendrogram, average linkage hierarchical
clustering was conducted, and genes with similar expression profiles were classified
into one gene module using the DynamicTreeCut algorithm. To analyze average linkage
hierarchical clusters and genes with similar expression patterns clustered together, 1-TOM
was used. The expression profile of a given module was represented by its first principal
component (module eigengene, MEs), which explained most of the variation in the module
expression levels. The module eigengene-based connectivity of each gene was calculated
by determining the correlation of the gene expression profile with the MEs. In addition,
the gene significance (GS) was defined as the median p-value of each gene (GS =1gP) in
the linear regression between gene expression and clinical traits. Module significance (MS)
was defined as the average GS of all genes involved in the module and was measured to
incorporate clinical information into the co-expression network.

2.5. Hub Gene Identification and Validation

The connectivity of genes was calculated by Pearson’s correlation. Genes were con-
sidered as hub genes in the module when they showed high within-module connectivity
(cor.geneModuleMembership; MM > 0.8). Hub genes in a given module tended to be
strongly correlated with a certain clinical trait, which was measured as the absolute value
of the Pearson’s correlation (cor.geneTraitSignificance; GS > 0.8, p-value < 0.05). Hub gene
clustering was visualized using the Contextual Hub Analysis Tool (CHAT) application
in Cytoscape [23]. The functions of each gene set were investigated using the DAVID
web tool (ver 6.8). Gene set with function in mitochondrial metabolism related to breast
cancer metastasis [24] was selected for the prediction model. The hub gene processing was
represented in diagram in Figure 1.
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Figure 1. Diagram of hub gene identification process.

2.6. Evaluation of the Metastasis Prediction Model

To predict metastasis, we used machine learning techniques [25] such as logistic
regression (LR) [26], linear discriminant analysis (LDA) [27], K-nearest neighbor algorithm
(KNN) [28], classification and regression trees (CART) [29], naive Bayes classifier (NB) [30],
support vector machine (SVM) [31], random forest (RF) [32], and gradient boost (GB) [33].
The machine learning prediction model was used to evaluate the accuracy, precision,
and recall score using test data. An average of 10 predictions was taken as the final
value [34]. The total gene expression model, selected module, and hub gene set were used
for prediction using the machine learning algorithms. For external validation, RNA-seq
data of 96 breast cancer samples, from The Cancer Genome Atlas (TGCA), were used.
This data set consisted of 72 M0 macrophage non-metastatic and 24 M1 macrophage
metastatic samples. To validate the prediction model, genes from the hub gene set was
used in external validation with RE.

3. Results
3.1. Difference between Breast Cancer and Metastatic Breast Cancer

In this study, 94 single-cell samples from one breast cancer patient were used. Through
RNA-seq analysis, 38 samples were defined as non-metastatic, and 56 samples as metastatic.
These data were taken from the GEO database, which was developed by a previous
breast cancer study that defined the cancer cell detected from lymph node of patients as
metastatic cell, and the one detected from breast cancer as the non-metastatic one [31].
Low-quality reads (quality under 20) and short sequences (<35 base pairs) were trimmed.
The distribution of each sample is displayed in PCA graph (Figure 1). After analysis of
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differentially expressed genes and selection of genes as previously described, we identified
2683 genes showing significant differences between metastatic and non-metastatic samples.
The results were visualized using a volcano plot (Figure 2). Gene expression in each sample
type was visualized using pheatmap package in R (Figure 2). The top 20, most expressed
genes (up/down regulated gene) are listed in Table 1.

(a) nlki.\h.l‘“l‘\h (b) lcslsul'\ce\u!fnsllive
@ NonMeta
@
® )
e =1
® F =
< () s
2 (X .( £
g ) L
” .
®
o o
e
by
© PC1(16.43%) Log2FoldChange

N s T e e [T

Type N

I 4 Type
Metastasis

Non-metastasis

2

0
| .
- -

Figure 2. (a) PCA plot of samples showing distribution of each samples. (b) Volcano plot of differentially
expressed genes. (c) Heatmap of gene expression in metastatic and non-metastatic samples.

Table 1. Fold change of genes by differentially expressed gene assay. The top-20 most up/down
regulated genes by comparing non-metastatic breast cancer with metastatic breast cancer.

Up-Regulated Genes Down-Regulated Genes
Gene logFC p-Value Gene logFC p-Value
IGLV3-19 14.31 7.2 x 10716 IGLV2-14 —14.10 1x107°
RP1-298M8.1 12.98 13 x 1071 IGLV1-44 —10.86 2 x 1077
IGHV3-48 12.56 6.5 x 10712 IGHV4-31 -10.75 2 x 1077
RP11-39K24.12 12.50 6.6 x 10712 IGLV1-40 —10.25 2 x 1077
ANXA1 12.31 11x10°Y IGLV1-47 -9.93 7 x 1077
RP11-39K24.13 12.03 1.6 x 1071 IGKV2-28 —9.92 3x 1077
RPL17P35 11.91 2.0 x 10712 AIF1 —9.76 5x 1077
RN7SL318P 11.81 9.6 x 10~11 IGLV7-46 —9.68 1x10°°
RNU1-8P 11.74 6.4 x 10712 IGKV1D-39 —9.32 4%x10°°
OR10G3 11.73 1.8 x 10712 SNORA70G —9.17 6 x 1077
RP11-83M16.2 11.62 12 x 10710 IGHV3-30 -9.16 8x10°°
AC007560.1 11.54 29 x 1077 RN7SL237P —8.97 2x 1074
FCGR2A 11.47 8.7 x 10711 RP11-90023.1 —8.89 2 x 1074
RN7SL321P 11.46 1.9 x 1010 TRBV5-6 —8.82 2 x 1074
RNU4ATAC16P 11.46 1.9 x 1010 RP11-571F15.3 —8.81 2 %1075
KRT19P2 11.42 7.1 x 1071 RP11-613F22.5 —8.79 5x107°
BRS3 11.33 13 x 10711 IGKV1-39 —8.77 2 %1074
PSMAG6P4 11.27 84 x 10711 IGLV10-54 —8.67 2x 1074
RP11-64K12.1 11.23 3.6 x 10710 IGKV1-5 —8.66 1x10°*
CYCSP39 11.22 3.7 x 10710 RP11-389C8.3 —8.56 3x 1074

3.2. Weighted Co-Expression Network Construction and Key Module Identification

Co-expression analysis was carried out to construct a co-expression network (Figure 3).
Soft-thresholding power in WGCNA was determined for clustering gene expression
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(Figure 4). We found 2147 genes of genes of most variance genes (MVGs) with simi-
lar gene expression patterns. These genes were included in the modules following cluster
analysis. Eight modules showing the same gene expression patterns were identified and
analyzed, two of which were related to the metastatic stage and the other six modules were
related to the non-metastatic stage. We visualized the gene network with a heatmap and
meta-modules (Figure 5). Each colored module represents a gene group with similar gene
expression patterns, calculated by WGCNA function. We selected the brown module for
analysis, which was the most closely associated with the metastatic stage; this module was
crucial to evaluating breast cancer metastasis (R = 0.39, p-value = 1 x 10~%).
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Figure 3. Clustering dendrogram of 94 samples.
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Figure 4. Determination of soft-thresholding power in WGCNA. (a) Analysis of the scale-free fit
index for various soft-thresholding powers (). (b) Analysis of the mean connectivity for various
soft-thresholding powers. (b) Evaluating the scale free topology when 3 =9.
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Figure 5. Identification of modules associated with the clinical traits of breast cancer. (a) Dendrogram
of all differentially expressed genes clustered based on a dissimilarity measure (1-TOM). Eight mod-
ules were identified by WGCNA assay. (b) Heatmap of the correlation between module eigengenes
and clinical traits of breast cancer. Two modules have non-metastasis related gene expression pattern
and rest 6 modules have metastasis related gene expression pattern. (c) Distribution of average
gene significance and errors in the modules associated with metastasis and non-metastasis breast
cancer. The brown module was selected for assay because it had the highest gene significance in
metastasis statement.

3.3. Gene Ontology (GO) and Pathway Enrichment Analysis

We performed functional genes assay of genes from the brown module that have
significant metastatic activity. The identified genes were categorized into three func-
tional groups: biological process, cellular component, and molecular function (BP, CC,
and ME respectively). In the BP group, mRNA catabolic process, translation initiation,
nuclear-transcribed mRNA catabolic process, nonsense-mediated decay, protein targeting
to membrane, protein targeting to ER, establishment of protein localization to endoplasmic
reticulum, protein localization to endoplasmic reticulum, SRP-dependent co-translational
protein targeting to membrane, and co-translational protein targeting to membrane were
mainly enhanced; in the CC group, ribosome, ribosomal subunit, cytosolic part, cytosolic
ribosome, focal adhesion, cell-substrate adhesion junctions, apical junction complex, lateral
plasma membrane, and apicultural plasma membrane increased; and in the MF group,
structural constituent of ribosome, cell adhesion molecule binding, cadherin binding, ubig-
uitin protein ligase binding, unfolded protein binding, ribonucleoprotein complex binding,
rRNA binding, threonine-type endopeptidase activity, threonine-type peptidase activity,
and mRNA 5'-UTR binding were enhanced. According to Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis, our results demonstrated that these genes were
mainly involved in ribosome, spliceosome, proteasome, and Parkinson disease. These
results indicate that the genes from the brown module are involved in cell proliferation
and cell migration (Figure 6).
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Figure 6. Gene ontology and pathway enrichment analysis of blue module genes. X-axis reveal the
—log10 (p-value). (a) Cellular component analysis. (b) Biological process analysis. (c) Molecular
function analysis. (d) KEGG pathway analysis.

3.4. Estimation of the Prediction Model

Total expression genes (16,482 genes), selected modules (54 genes), and hub gene
set (3 genes) were used for evaluating the prediction model of metastasis. The hub gene
set consisted of 3 genes: NDUFA9, NDUFB5, and NDUFB3 (Figure 7). RF algorithm was
selected for the prediction model because it had highest test accuracy with the hub gene
set. The accuracy of the total genes test, the functional gene modules, and for the hub gene
set test was highest with RF (0.769, 0.782, and 0.945, respectively). The train accuracy and
test accuracy were both found to be 0.910, by external validation with breast cancer patient
data from TCGA and RF (Table 2).

Figure 7. Hub genes (in squares) that showed the strongest relationship with mitochondrial
metabolism, and other genes that interact with the hub genes (in circles).
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Table 2. RNA-sequencing data of accuracy of various machine learning techniques in breast cancer result. Test accuracy of

each algorithm using total gene, functional gene module, and hub gene set (3).

Machine Total Gene (16,482) Functional Gene Module (54) Hub Gene Set (3) External Validation (3)

Learr}lng Test Train Test Train Test Train Test Train
Algorithm

LR 0.571 0.571 0.429 0.593 0.714 0.587 0.759 0.746
LDA 0.429 0.429 0.429 0.614 0.522 0.603 0.759 0.746
KNN 0.429 0.831 0.571 0.714 0.714 0.757 0.667 0.825
CART 0.457 0.55 0.528 0.592 0.761 0.575 0.731 0.627
NB 0.571 0.571 0.571 0.582 0.571 0.566 0.655 0.642
SVM 0.841 0.841 0.788 0.661 0.571 0.571 0.746 0.746
RF 0.769 0.769 0.782 0.866 0.945 0.945 0.910 0.910
GB 0.758 0.758 0.844 0.852 0.857 0.852 0.897 0.881

4. Discussion

In this study, we applied the hub gene set from RNA-seq and machine learning
algorithms for the first time to construct predictive models for breast cancer metastasis with
high accuracy, contrasting with most of the previous studies that have focused on nuclear
imaging data. Although the results of analyzing imaging factors, such as computerized
tomography and magnetic resonance imaging were applied to machine learning to estimate
the accuracy of the predictive model, it is still difficult to apply in the clinical setting. Genetic
data obtained by next generation sequencing can describe the patient clinical condition
more accurately than data obtained solely by image analysis. Therefore, we expected
that in the construction of this prediction model, higher accuracy than the existing image
analysis-based prediction model could be estimated.

RNA-sequencing techniques and machine learning algorithms was used to build a
model to predict breast cancer metastasis, which is promoted by genetic changes within
cancer cells. Such a model can be used as the basis for diagnosis and treatment of breast
cancer by analyzing changes in genetic events. In the past, only a limited number of
genes could be analyzed to profile cancer cells, but advances in technology have enhanced
the analytical methods, allowing the assessment of the genetic landscape of cells at once.
RNA-seq is believed to hold the power to explain the behavior of cancer by identifying
key genes. However, the behavior of cancer cells is difficult to explain based solely on
the gene expression of one gene. To overcome this limitation, herein we used the concept
of a functional group gene and a hub gene. The expression of a hub gene can accurately
determine the function of a cell rather than using a single gene since it is closely related
to the function of the cell. Several genes were found to be involved when the cancer cell
function was addressed. Hence, genes involved in the same function were defined as
the functional group genes, among which genes with the most essential functions were
selected and defined as the hub genes.

WGCNA, a bioinformatics analysis method, was used to identify the functional group
gene and the hub gene [35]. This approach allows to evaluate the expression pattern of a
gene and construct a module of genes with similar expression patterns, which is generally
used for gene analysis of cancer cells [36]. This method has the advantage of being able to
search for a function related to a highly expressed gene among the functions of a cell, as it
analyzes only the expression pattern of the gene. Gene modules were defined as functional
groups, and hub genes were retrieved from within. The hub gene was selected as the
gene with the most connections after confirming the association between the genes in the
analyzed module using CHAT app in Cytoscape [37]. Therefore, the identified functional
group and three hub genes could represent a more detailed and reliable indicator of lymph
node metastasis in breast cancer.

A detailed analysis of the functional group genes revealed that they were mainly
involved in cell division and proliferation (Figure 6). Epithelial mesenchymal transition
(EMT) is the most frequently expressed function in tumor metastases, and cell division and



Appl. Sci. 2021, 11, 2897

10 of 12

proliferation are active and essential actions during EMT and cancer cells spreading [38].
The identified hub genes (NDUFB3, NDUFB5, and NDUFA9) are mitochondrial genes
that have various functions, but are known to be involved in mitochondria metabolism.
This function is known to play an important role in metastasis of cancer cells and is
reported to be overexpressed when metastasis of breast, rectal, and head and neck cancers
occurs [39-41].

We used a machine learning method to construct a highly accurate predictive model for
breast cancer metastasis. Several algorithms could be used for the machine learning process;
hence, since it was not known which algorithm was suitable for breast cancer metastasis,
we tested various algorithms. Among the algorithms used to estimate the predictive
model, RF and GB showed the highest accuracy. These two most suitable algorithms
revealed the highest degree of analysis because the number of analyzed samples was small,
and a prediction model was constructed by extracting the most suitable few factors for
analysis [42,43]. The sample used to design the predictive model was not general result
since it was based on single cell RNA-seq data. Therefore, a large-scale breast cancer
metastasis TCGA RNA-seq dataset was used for external validation, which was classified
into the M0 or M1 group with reference to the clinical data. The breast cancer metastasis
model using RF showed a high accuracy of 94%, and the external validation also showed a
high accuracy of 91%.

5. Conclusions

In this study, we applied RNA-seq data and machine learning algorithms for the first
time to construct a highly accurate predictive model to predict breast cancer metastasis.
The field of predicting patient prognosis using machine learning has been mainly applied
to nuclear imaging. Although the results of analyzing imaging factors, such as computer-
ized tomography and magnetic resonance imaging, were applied to machine learning to
estimate the accuracy of the predictive model, it is still difficult to apply such approaches
in the clinical setting. Genetic data obtained by RNA sequencing can describe the patient
condition more accurately than data obtained by image analysis. Therefore, we expect that
the novel predictive model may pave the way for enhance prognosis assessment of patients
with breast cancer. Additionally, as we combined RNA-seq data with machine learning
to estimate predictive models with high levels of accuracy, applying nuclear imaging and
RNA-seq to predictive models at the same time will allows us to estimate better predictive
models. It is expected that the predictive model estimated through this combined approach
may be used in clinical practice.
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