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Abstract: In S-N diagrams for high strength steels, the duplex S-N curves for surface-initiated failure
and interior inclusion-initiated failure were usually confirmed in the very high cycle regime. This
trend is more distinct in the loading type of rotating bending, due to the stress distribution across the
section. In the case of interior failure mode, the fish-eye is usually observed on the fracture surface
and an inclusion is also observed at the center of the fish-eye. In the present work, the authors
attempted to construct a probabilistic model on the statistical fatigue property in the interior failure
mode, based on the distribution characteristics of the location and the size of the interior inclusion at
the crack initiation site. Thus, the P-S-N characteristics of the bearing steel (SUJ2) in the very high
cycle regime were successfully explained.

Keywords: probabilistic model; very high cycle fatigue; duplex S-N curves; rotating bending;
inclusion; fish-eye; inclusion size; inclusion depth

1. Introduction

From both viewpoints of economical design of mechanical structures and reduction
of the environmental load, elongation of the design life for every product in the wide
range of industries, is an important subject. In such a circumstance, for train axles and
wheels, load bearing parts of automobiles, turbine rotors of the power plants and so on,
the number of loading cycles reaches over 109 cycles, during the service period of the
respective mechanical components [1–4]. One of the typical aspects of fatigue property in
the very high cycle regime for structural steels is the fact that the duplex S-N characteristics
consisting of the respective S-N curves for the surface-initiated and the interior-initiated
failures are observed, as reported by many researchers [3,5–7]. The term “S-N curve” refers
to the relationship between the stress level [S] and the number of stress cycles to failure
[N]. Expressions of S-N property and S-N characteristics are also used in this paper, based
on a similar sense. In the case of interior-initiated failure, an inclusion is usually found at
the core portion of the fish-eye formed on the fracture surface [3,5,8]. Thus, the interior
inclusion at the crack initiation site plays a dominant role to govern the fatigue strength
and fatigue life of the specimen.

It is well-known that the fatigue limit of the metallic material can be evaluated by
combining the material hardness and the concept of

√
area for the defect size proposed

by Murakami et al. [9]. Another important factor to control the fatigue property is the
location of the inclusion, since the stress distribution across the section has a steep slope in
rotating bending [10]. Accordingly, the fatigue property of those metallic materials should
be analyzed as a function of the size and the location of the interior inclusions, together
with the hardness. However, both the size and the location of the inclusions inside the
material have particular distributions, depending on the fabrication process of the actual
metallic materials [11–13].
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From this point of view, the authors attempted to construct a probabilistic model
on the very high cycle fatigue property for the bearing steel of SUJ2 in rotating bending,
by combining the distribution characteristics of the size and the location of the interior
inclusion. In this model, a two-parameter Weibull distribution was accepted for the
distribution pattern of the inclusion size, whereas the random distribution was accepted
for the location of the inclusion. Since the scatter of the hardness is sufficiently small, the
hardness of this steel was supposed to be constant for the sake of simplicity. Although some
number of papers analyzing the statistical aspects of S-N property were published [14–19],
the main target of those research is the statistical property within the usual life region,
which is less than 107 cycles. Considering this point, the main aim of the present study
was set to the physical interpretation of the statistical aspects of the S-N characteristics of a
bearing steel, in the very high cycle regime.

2. Experimental Fatigue Test Data Referred in This Study

Sufficient number of fatigue test data are required to analyze the statistical fatigue
property of metallic materials. However, the fatigue test in the very high cycle regime
occupies a long time. For example, at the usual loading frequency of 50–60 Hz, it takes
around 200 days to reach the loading cycles of N = 109. In such a circumstance, the authors
extracted a series of fatigue test results obtained as round robin tests by the Research Group
on Statistical Aspects of Materials Strength [RGSAMS] [3]. These fatigue tests were performed
in rotating bending in very high cycle regime over N = 109 cycles, for a bearing steel of
JIS:SUJ2, by using the same type of testing machine and common specimens. Since such
fatigue test results give useful data for discussion on the very high cycle fatigue property of
metallic materials, they are often referred to by many researchers in this area [3,7,20,21].

All experimental results are plotted as an S-N diagram in Figure 1, in which fatigue
test data obtained at different laboratories in seven universities in Japan were indicated
altogether. Open symbols represent the S-N data for the surface-induced fracture, whereas
solid symbols indicate the results for the interior-induced fracture. Several data points
attached arrows around N = 109, which indicate runout specimens without fracture. The
solid and dotted curves indicate the S-N curves fitted to the respective fracture modes,
using the JSMS Standard of “Standard Regression Method of S-N Curves”, accepting the
semi-logarithmic bilinear model [22]. The fatigue limit for the surface-induced fracture was
σw = 1278 MPa, as given by the horizontal portion of the solid S-N curve. This conventional
fatigue limit cannot provide the true fatigue limit, since fatigue fractures take place in
the very high cycle region, at stress levels lower than the horizontal portion of the solid
S-N curve. For the experimental data in the interior-induced fracture mode, the linear
regression line was indicated by a dotted line. Although the horizontal line was also
indicated from the point of N = 109 along the dotted S-N curve, further experimental
reconfirmation would be required in order to make clear the appearance of the horizontal
portion in the fracture mode by continuing fatigue tests, until further long life region.
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Typical examples of fracture surfaces in the respective fracture modes are shown in
Figure 2, where (a) gives the SEM observation of the fracture surface in the surface-induced
fracture mode and (b) is the fracture surface in the interior-induced fracture mode [23]. The
fatigue crack occurs at the specimen surface in the short life region at a relatively high stress
level, as shown in Figure 2a. However, a clear fish-eye is found on the fracture surface in
the very high cycle region, at low stress levels, as shown in Figure 2b. In such a case, an
inclusion is also found at the core site of the fish-eye. This fact means that the fatigue crack
takes place around the inclusion at the crack initiation site, in a very high cycle regime.
The main aim of this study was to analyze the statistical distribution characteristics of the
S-N property in the interior inclusion-induced fracture mode, by combining distribution
characteristics of the inclusion size and the inclusion depth.
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Figure 2. SEM observations of fracture surfaces in surface-induced fracture and interior inclusion-induced fracture.

For the sake of important reference, static mechanical properties such as the tensile
strength and the Vickers’ hardness were examined, prior to performing fatigue tests of this
bearing steel. Experimental results of these properties are indicated in Table 1.

Table 1. Static mechanical properties of the material.

Tensile strength 2316 (MPa)

Vickers’ hardness 778 (HV)

3. Probabilistic Model to Explain the Statistical Fatigue Property in Interior-Induced
Fracture
3.1. Effects of Size and Depth of Inclusions on the Fatigue Strength

According to the
√

area model proposed by Y. Murakami [9], the fatigue limit of a
metallic material, σw, was well provided by the defect size ρ and the Vickers’ hardness HV
(kgf/mm2), as follows;

σw = α(HV + 120)/
(√

area
)1/6, (1)

where area indicates the area of the defect projected perpendicular to the longitudinal
direction of the specimen, and the factor of α was given by α = 1.43 for surface defect and
α = 1.56 for interior defect, respectively.

When this concept of
√

area was applied to the fatigue strength at N = 109 cycles as an
attempt, assuming a spherical interior inclusion with a radius of ρ, the fatigue strength at
N = 109, σw9, was given by the following expression,

σw9 = 1.56(HV + 120)/
(√

πρ2
)1/6

. (2)
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Since the Vickers’ hardness of this bearing steel (JIS:SUJ2) was reported as HV = 778 [3],
Equation (2) was reduced as follows;

σw9 = 1273ρ−1/6 (3)

Equation (3) indicates the relationship between the fatigue strength at N = 109 and the
inclusion size (radius) for this steel.

Such a relationship is depicted in Figure 3. When the inclusion size is small, those inclu-
sions have no harmful effect on the fatigue strength, as reported by many researchers [24,25].
From this point of view, if the critical small size is assumed as ρ = 3 µm in this study, the
upper bound of the fatigue strength given by Equation (3) becomes σw9 = 1060 MPa, as
indicated in Figure 3. On the other hand, an inclusion larger than 40 µm (ρ > 40 µm) is
seldom found in the present steel. In such an assumption, the lower bound of the fatigue
strength given by Equation (3) becomes σw9 = 689 MPa, as indicated by the horizontal
dotted line in Figure 3. Thus, the distribution range of the fatigue strength at N = 109 due
to the distribution of the inclusion size would be 689 MPa~1060 MPa.
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In the case of the rotating bending, the stress distribution across the specimen section
has a distinct gradient, such that the stress on the surface gives the maximum and the
stress becomes zero at the center of the section. Accordingly, the inclusion depth is another
important factor to govern the fatigue strength of σw9, even if the inclusion size is fixed
to a certain value. When the fatigue strength at the depth ξ is denoted as σw9, the fatigue
strength evaluated by nominal bending stress on the specimen surface, σ∗w9, is given as
follows [26];

σ∗w9 =
r

r− ξ
σw9 =

1.5
1.5− ξ

σw9 (4)

where r indicates the radius of the critical portion of the specimen. Here, substituting
Equation (3) into Equation (4), we have the following expression;

σ∗w9 =
1.5

1.5− ξ
× 1273ρ−1/6 =

1910
1.5− ξ

ρ−1/6 (5)

Consequently, the fatigue strength of σ∗w9 for the specimen with an inclusion size of ρ
and a depth of ξ could be calculated by Equation (5).

3.2. Distribution Characteristics of Inclusion Size and Inclusion Depth

The inclusion size is not constant, and therefore, the size has its own distribution
characteristics peculiar to the fabrication process of the metallic material [11–13]. Of
course, since the inclusion size ρ is always positive, we have ρ > 0. In other words, the
lower bound of the inclusion size is assumed “0”. In addition, a size larger than 40 µm
is seldom found in the bearing steel. Distribution pattern of the inclusion size with the
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above feature is well-represented by a two-parameter Weibull distribution [27], without
a location parameter. The probability density function and the cumulative distribution
function are given as follows:

f0(ρ) =
a
b

(ρ

b

)a−1
exp
{
−
(ρ

b

)a}
, (6)

and
F0(ρ) = 1− exp

{
−
(ρ

b

)a}
, (7)

where a is the shape parameter and b is the scale parameter, respectively.
When the number of inclusions included within the critical volume of a specimen is

denoted by n, the inclusion with the maximum size would be the crack starter under the
cyclic loadings. Accordingly, the distribution characteristics of the maximum size among
n of inclusions in the critical volume become the most important factor to control the
fatigue strength and fatigue life of the metallic material. Based on the concept of extremes’
distribution [28], the probability density function of the maximum size among n inclusions,
f (ρn), is provided by

f (ρn) = n{F0(ρn)}n−1 a
b

(ρn

b

)a−1
exp
{
−
(ρn

b

)a}
(8)

Although we have to know the original distribution of the inclusion size ρ itself, it is
difficult to directly observe such a distribution pattern. In such a circumstance, the authors
determined the respective parameters of the original size distribution, so as to satisfy the
following conditions:

P[1 µm < ρ < 15 µm] = 0.8, F0 = 0.1 at ρ = 1 µm and F0 = 0.9 at ρ = 15 µm.

This condition for the inclusion size was introduced here as a possible assumption
supposed from the observation results by Toriyama et al. [12]. Thus, we obtain the results
for the Weibull parameters as a = 1.139 and b = 7.214, respectively. In addition, since the
number of inclusions inside the critical volume, n, is also unknown, the authors analyzed
the distribution of the extremes by supposing various values as the number of inclusions,
like n = 2, 3, 5, 6, 10, 20, and 40, respectively. Probability density functions of the maximum
inclusion size thus calculated by Equation (8) are depicted in Figure 4, where f (ρ1) plotted
by a fine dotted curve in the most left hand side indicates the original probability density
function of the inclusion size. The mode of the largest inclusion size, i.e., the inclusion size
at each peak of the probability density function, tends to shift into the right hand side, with
an increase in the number of inclusions in the critical volume of the specimen.

As described in Section 3.1, the inclusion depth at the crack initiation site, ξ, plays an
important role to control both the fatigue strength and fatigue life of the metallic material,
in the case of the rotating bending, due to the steep slope of the stress distribution across
the section. Figure 5 indicates the distribution feature of the inclusions projected to the
specimen section, assuming random distribution (uniform distribution) [23]. Here, if
the inclusion depth from the surface is denoted as ξ1, ξ2, . . . , ξn, from the most shallow
inclusion, one can obtain the one-dimensional distribution of the inclusion depth. As
reported in another paper [26], the probability density function of the inclusion depth ξ
can be represented by the following expression:

f (ξ) =
2
r

(
1− ξ

r

)
, [0 < ξ < r]. (9)
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In Equation (9), r indicates the radius of the specimen. The probability density of
Equation (9) becomes a maximum at the specimen surface (ξ = 0), whereas the density
becomes zero at the center of the specimen section. As reported by several researchers [5,29],
the depth of the crack initiation site is restricted within the thin surface layer of ξ < 250 µm
in rotating bending. Therefore, the probability density function of Equation (9) should be
normalized as the conditional distribution, under the condition of ξ < 250 µm. Thus, we
have the actual probability density function of ξ, as follows:

f0(ξ) =
2

rFc

(
1− ξ

r

)
, [0 < ξ < 250 µm], (10)

where Fc indicates the probability giving the condition of 0 < ξ < 250 µm and its proba-
bility becomes Fc = 0.3055 in the condition of the present work. The probability density
function thus normalized by Equation (10) is depicted in Figure 6.
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3.3. Joint Distribution of Inclusion Size and Inclusion Depth and Analysis of Fatigue
Strength Distribution

In the previous section, distribution characteristics on the size and the depth of
the inclusion are discussed, and the probability density functions of f (ρn) and f0(ξ) are
derived as Equations (8) and (10). Since both ρn and ξ are statistically independent random
variables, the joint probability density function, h(ρn, ξ), is given by

h(ρn, ξ) = f (ρn)· f0(ξ) = n{F0(ρn)}n−1 a
b

(ρn

b

)a−1
exp
{
−
(ρn

b

)a}
· 2
rFc

(
1− ξ

r

)
(11)

By putting n = 5, a = 1.139, b = 7.214, r = 1.5, and Fc = 0.3055 along the previous
example, the joint probability density function of h(ρn, ξ) was numerically calculated. The
result of h(ρn, ξ) thus obtained is depicted in Figure 7, where the joint probability function
of h(ρn, ξ) gives the curved surface like a mountain range. In the figure, ∆H(ρn, ξ) corre-
sponding to the volume of the vertical column indicates the probability that ρn and ξ are
within the square region of ∆ρn × ∆ξ. The dashed line appearing on the ξ − h(ρn, ξ) plane
corresponds to the marginal distribution for the inclusion depth ξ, as given by Equation (10).
On the other hand, another dashed curve appearing on the ρn − h(ρn, ξ) plane corresponds
to the marginal distribution for the inclusion size of ρn, given by Equation (12).

f (ρn) =

ξc∫
0

h(ρn, ξ)dξ = n{F0(ρn)}n−1 a
b

(ρn

b

)a−1
exp
{
−
(ρn

b

)a}
(12)

In this place, let us divide the ρn − ξ plane into fine meshes of ∆ρn × ∆ξ and consider
the mesh at the arbitrary point of (ρn, ξ), as shown in Figure 7. Then, the probability that
the inclusion size ρn and the inclusion depth ξ yield within the area of ∆ρn×∆ξ is provided
by the volume of the vertical column raising at this mesh of ∆ρn × ∆ξ. In other words, the
volume of this column corresponds to the probability that the fatigue strength at N = 109 is
given by Equation (5). Thus, we have the following equation,

P[ρn ∈ ∆ρn ∩ ξ ∈ ∆ξ] = h(ρn, ξ)∆ρn∆ξ = P[σ∗w9 ∈ ∆σ∗w9] (13)

Based on the repetition of numerical calculations by Equation (13), the probability density
function f (σ∗w9) and the cumulative distribution function F(σ∗w9) can be analyzed numerically.
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4. Results and Discussions
4.1. Distribution Characteristics of Fatigue Strength σ∗w9

Since the number of inclusions included within the critical volume of a specimen
is unknown, the authors analyzed the distribution characteristics of the fatigue strength,
σ∗w9, assuming several numbers of inclusions like n = 2, 3, 5, 6, 10, 20, and 40, respectively.
Among them, the analytical results of the fatigue strength distribution obtained for n = 2, 5,
and 20, by the method in the previous section are indicated in Figure 8 as typical examples.
Figure 8a shows the probability density functions under these three cases of n = 2, 5, and
20, whereas Figure 8b indicates the cumulative distribution functions corresponding to
the respective cases. Weibull parameters a and b in Equation (8) are provided to satisfy
the condition of P[1 µm < ρ < 15 µm] = 0.8. It is found that the peak (mode) and the
standard deviation of the fatigue strength distribution tends to decrease with an increase
in the inclusion number.
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Figure 8. Distribution patterns of fatigue strength.

In order to investigate the effect of the condition for the dispersion of the inclusion size of ρ,
similar analyses were performed, giving some other conditions of P[1 µm < ρ < 10 µm] = 0.8
and P[1 µm < ρ < 5 µm] = 0.8. Among these analyses, only the results of the cumulative
distribution functions are indicated in Figure 9, due to article page limit. As seen in
Figures 8b and 9, median of the fatigue strength distribution tends to increase with a
decrease of the dispersion of the inclusion size, while standard deviation of the fatigue
strength distribution tends to decrease a little, depending on the decrease of the dispersion
of the inclusion size.
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Comparing these analytical distribution characteristics of the fatigue strength σ∗w9 in
Figures 8 and 9 with the experimental result in Figure 1, the distribution feature of the
fatigue strength σ∗w9 under the conditions of P[1 µm < ρ < 15 µm] = 0.8 and n = 5 was
roughly in agreement with the experimental distribution aspect of the fatigue strength at
N = 109. The most preferable number of inclusions, n, is further discussed again in Section 4.4.

4.2. Expansion of the Probabilistic Model to Analyze P-S-N Characteristics in
Interior-Induced Fracture

Target of the probabilistic model described in Section 3 is the distribution character-
istics of the fatigue strength only at stress cycles of N = 109. Accordingly, the analytical
model should be conceptionally expanded to interpret the whole statistical aspect of the
S-N property, in the interior inclusion-induced fracture mode. From this point of view,
denoting the fatigue strength at any stress cycle, N f ix, by σw, Equation (3) is rewritten
as follows:

σw = 1273·ρ−1/6 + β, (14)

β = λ
{

log
(

N f ix

)}
+ γ. (15)

Based on the dotted S-N curve in Figure 1, parameters λ and γ in Equation (15) were de-
termined from two points

(
N = 106, σ∗w9 = 1424 MPa

)
and

(
N = 109, σ∗w9 = 920 MPa

)
as λ =−168 and γ = 1512, respectively. Substituting these values into Equations (14) and (15),
Equation (14) is rewritten as

σw = 1273·ρ−1/6 − 168·
{

log
(

N f ix

)}
+ 1512. (16)

Here, σw − ρ relationships under the fixed numbers of the fatigue life of N = 106, N = 107,
N = 108, and N = 109 are depicted in Figure 10. As suggested from Equations (14)–(16),
analytical curves in Figure 10 tend to shift in parallel along the ordinate. Of course, the
curve tends to shift downwards with an increase in the fixed number of stress cycles.
Applying the concept of Equation (4), one could calculate the fatigue strength σ∗w by

σ∗w =
1.5

1.5− ξ

[
1273·ρ−1/6 − 168·

{
log
(

N f ix

)}
+ 1512

]
. (17)
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Figure 10. σw- ρ relationships at several given numbers of stress cycles.

Equation (17) includes arbitrarily given number of stress cycles N f ix, together with the
inclusion size ρ and the inclusion depth ξ. Therefore, combining the joint probability func-
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tion in Figure 7 with Equation (17), one could analyze the distribution characteristics of the
fatigue strength at any number of stress cycles N f ix by repeating the numerical calculations.

Probability density functions of the fatigue strength thus obtained at N = 106, 107, 108,
and 109 are indicated at the respective numbers of the stress cycles in Figure 11. These
analytical results are roughly in agreement with the overall feature of the experimental
aspect on the statistical fatigue characteristics. The scale of the axis for the probability
density is adjusted to correspond to each value listed in the table attached in the right-hand
side in Figure 11. The percentile points of F = 1%, 10%, 50%, 90%, and 99% for the
fatigue strength are indicated by marks of 3’s along the vertical axis of the probability
density functions. The respective thin dotted lines passing through the percentile points
corresponding to the same probability give the P-S-N curves representing the statistical
fatigue characteristics of this steel. All data points yield within the range of 1–99% in
Figure 11. This fact suggests that the probabilistic model developed in this study has an
availability to interpret the physical meaning of the statistical fatigue property in the very
high cycle regime.
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Figure 11. Fatigue strength distributions and P-S-N curves in very high cycle regime.

4.3. Analysis of the Fatigue Life Distributions in Interior-Induced Fracture Mode

Although distribution characteristics of the fatigue strength σ∗w at the given number
of stress cycles were analyzed in the previous section, the fatigue life distributions could
also be analyzed based on Equation (17), by giving any value of the stress amplitude
σ∗w. Applying this method, fatigue life distributions were calculated at σ∗w = 1400 MPa,
1200 MPa, 1000 MPa, and 900 MPa, respectively. The probability density functions thus
obtained were indicated at the respective stress levels in Figure 12. Since the fatigue
life increased logarithmically with decrease of the stress level, the probability density at
the peak of the density function tended to decrease such that the integrated value of the
density function maintained unity. Values of the peak density at the respective stress
levels are indicated on the right-hand side, in Figure 12. As shown in this table, the peak
density varied drastically, depending on the stress level, due to the above described reason,
but the distribution curves were drowned when they had the same height for the sake
of convenience.

In order to distinguish the fatigue strength distribution and the fatigue life distribution,
the notations of f (σw) and F(σw) are used for the fatigue strength distribution, whereas
other notations of g(σw) and G(σw) are accepted for the fatigue life distribution. Similar
to Figure 11, the percentile points of G = 1%, 10%, 50%, 90%, and 99% for the fatigue
life are indicated by marks of 3’s along the horizontal lines, at the respective stress levels.
The respective thin dotted lines passing through the percentile points corresponding to
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the same probability give the P-S-N curves of this steel. All experimental data in the
interior-induced fracture appear within the range of 1–99% in Figure 12. Thus, it was finally
noted that the statistical fatigue property in the interior-induced fracture of this steel could
be well explained from either one of the fatigue strength distribution and the fatigue life
distribution, through the probabilistic model proposed in this study.
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Figure 12. Fatigue life distributions and P-S-N curves in a very high cycle regime.

4.4. Reconfirmation of the Number of Inclusions in the Critical Volume

As described in Section 4.1, since the number of inclusions included in the critical
volume is unknown, the analysis was carried out by setting three conditions of n = 2, 5,
and 20, as the inclusion number. Then, the condition of n = 5 was tentatively selected as a
preferable number of inclusions. However, in order to confirm the most reasonable number
of inclusions, the fatigue life distributions were additionally analyzed, under conditions
of n = 6, 8, and 10, respectively. Based on the series of analytical results, percentile points
of the fatigue life distribution corresponding to G = 1%, 10%, 50%, 90%, and 99% were
determined; the relationship between those percentile points and the number of inclusions
are depicted in Figure 13. Comparing five solid curves carefully with the dispersion aspect
of the experimental results in an interior-induced fracture in Figure 12, it was finally noted
that the analytical result at n = 6 was well fitted compared to the result at n = 5.
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Based on this evidence, the statistical fatigue properties (P-S-N properties) in
Figures 11 and 12 were numerically analyzed by putting n = 6 for the number of inclusions
included in the critical volume of the specimen.

4.5. Mutual Relationship between Both Distributions of Fatigue Strength and Fatigue Life

In this study, the authors showed that both fatigue strength distribution and fatigue
life distribution could be derived from the joint probability density function of h(ρn, ξ),
given by Equation (11). It was also confirmed that the analytical results were in good
agreement with the statistical aspect of the experimental fatigue data in the very high
cycle regime. In this place, mutual relationship between the distribution aspects of the
fatigue strength and the fatigue life is further discussed to reconfirm the reasonability of the
present probabilistic model for the P-S-N characteristics. The mutual relationship between
both distributions is illustrated in Figure 14, where the ordinate is the fatigue strength σ∗w
and the abscissa is the fatigue life N. When any point P(Nfix, σ∗w) is taken in this diagram,
the probability that the fatigue life at the stress level σ∗w is less than Nfix always corresponds
to the probability that the fatigue strength at the definite stress cycles Nfix is lower than σ∗w.
In other words, the cumulative probability of Nfix, G(Nfix,σ∗w), always corresponds to the
cumulative probability of σ∗w, F(Nfix,σ∗w) [30]. G(Nfix,σ∗w) gives the distribution function of
the fatigue life at σ∗w and F(Nfix,σ∗w) gives the distribution function of the fatigue strength at
Nfix. Thus, we have

G(Nfix, σ∗w ) = F(Nfix, σ∗w) (18)
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Equation (18) implies that the dashed area G(Nfix,σ∗w) is always equal to the other
dashed area F(Nfix,σ∗w) in Figure 14.

Based on this equality of Equation (18), one could obtain the S-N curve correspond-
ing to any level of the fracture probability. Thus, the probabilistic S-N curves at the
respective fracture probabilities could be analyzed as P-S-N curves. As described in
Sections 4.2 and 4.3, the distribution characteristics of the experimental S-N data were well
explained from either viewpoint of the fatigue strength distribution or the fatigue life
distribution. The equality of Equation (18) is the reason why the reasonable P-S-N curves
could be equally obtained from different viewpoints of the fatigue strength distribution
and the fatigue life distribution.

5. Conclusions

Main conclusions obtained in this study are summarized as follows.

1. The probability density functions of the inclusion size at the crack initiation site, f (ρn),
was successfully derived by combining the Weibull distribution and the concept of
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extreme distribution. In addition, the probability density function of the inclusion
depth, f0(ξ), was also derived from the uniform distribution of the location of the
inclusion in the material space.

2. Since the inclusion size ρn and the crack depth ξ are statistically independent, the
joint probability density function of these random variables, h(ρn, ξ), is given by
the direct multiplication of the above two probability density functions, such as
h(ρn, ξ) = f (ρn)· f0(ξ).

3. For the hourglass type specimen of a bearing steel with the definite hardness, the
rotating bending fatigue strength of the specimen with any size ρ and depth ξ of the
inclusion at the arbitrarily given number of stress cycles Nfix is analytically provided
in the very high cycle regime.

4. Based on the above joint probability density function of h(ρn, ξ), repeating the numer-
ical calculations following P[ρn ∈ ∆ρn ∩ ξ ∈ ∆ξ] = h(ρn, ξ)∆ρn∆ξ = P[σ∗w9 ∈ ∆σ∗w9],
one could obtain the fatigue strength distribution at any number of stress cycles and the
fatigue life distribution at any stress level. The analytical results thus obtained were in
good agreement with the statistical feature of the experimental fatigue test data.

In the construction of the probabilistic model in this study, several assumptions were
introduced for the sake of simplicity. In order to reconfirm the reasonability of such
assumptions, sufficient number of experimental results should be further filed up in the
future. In addition, it is still unknown whether the fatigue limit exists for the interior
inclusion-induced fracture mode. This is one of the most important issues to be solved in
the near future.

Author Contributions: T.S. has performed fatigue tests and organized whole of this work. A.N.
and Y.N. have analyzed experimental data and prepared all of diagrams. N.O. has prepared fatigue
specimens and performed fatigue tests. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bathias, C. There is no infinite fatigue life in metallic materials. Fatigue Fract. Eng. Mater. Struct. 1999, 22, 559–565. [CrossRef]
2. Mughrabi, H. Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. Int. J. Fatigue 2006, 28, 1501–1508. [CrossRef]
3. Sakai, T.; Takeda, M.; Shiozawa, K.; Ochi, Y.; Nakajima, M.; Nakamura, T.; Oguma, N. Experimental reconfirmation of character-

istic S-N property for high carbon chromium bearing steel in wide life region in rotating bending. J. Soc. Mat. Sci. Jpn. 2000,
49, 779–785. [CrossRef]

4. Bathias, C.; Paris, P.C. Gigacycle Fatigue in Mechanical Practice; Marcel Deckker: New York, NY, USA, 2005.
5. Sakai, T.; Sato, Y.; Oguma, N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life

fatigue. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 765–773. [CrossRef]
6. Sakai, T.; Sato, Y.; Nagano, Y.; Takeda, M.; Oguma, N. Effect of stress ratio on long life fatigue behavior of high carbon chromium

bearing steel under axial loading. Int. J. Fatigue 2006, 28, 1547–1554. [CrossRef]
7. Sakai, T.; Lian, B.; Takeda, M.; Shiozawa, K.; Oguma, N.; Ochi, Y.; Nakajima, M.; Nakamura, T. Statistical duplex S-N characteristics

of high carbon chromium bearing steel in rotating bending in very high cycle regime. Int. J. Fatigue 2010, 32, 497–504. [CrossRef]
8. Oguma, N.; Lian, B.; Sakai, T.; Watanabe, K.; Odake, Y. Long life fatigue fracture induced by interior inclusions for high carbon

chromium bearing steels under rotating bending. J. ASTM Int. 2010, 7, 1–9. [CrossRef]
9. Murakami, Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions; Elsevier: Oxford, UK, 2002; pp. 88–94.
10. Takeda, M.; Sakai, T.; Oguma, N. Rotating bending fatigue property and fractography for high strength steels and carbon steel

over ultra wide life region. Trans. JSME Ser. A 2002, 68, 977–984. [CrossRef]
11. Murakami, Y.; Kodama, S.; Konuma, S. Quantitative evaluation of effects of nonmetallic inclusions on fatigue strength of high

strength steel. Trans. JSME Ser. A 1988, 54, 688–696. [CrossRef]
12. Toriyama, T.; Murakami, Y.; Makino, T. Database of nonmetallic inclusions and its application to the fatigue strength prediction

method of high strength steels. J. Soc. Mat. Sci. Jpn. 1991, 40, 1497–1503. [CrossRef]
13. Adachi, A.; Shoji, H.; Kuwabara, A.; Inoue, Y. Rotating bending fatigue phenomenon of JIS SUJ2 bearing steel. DENKI SEIKO

1975, 46, 176–182. [CrossRef]
14. Barbosa, J.F.; Correia, J.A.F.O.; Junior, R.C.S.F.; De Jesus, A.M.P. Fatigue life prediction of metallic materials considering mean

stress effects by means of an artificial neural network. Int. J. Fatigue 2020, 135, 105527. [CrossRef]

http://doi.org/10.1046/j.1460-2695.1999.00183.x
http://doi.org/10.1016/j.ijfatigue.2005.05.018
http://doi.org/10.2472/jsms.49.779
http://doi.org/10.1046/j.1460-2695.2002.00574.x
http://doi.org/10.1016/j.ijfatigue.2005.04.018
http://doi.org/10.1016/j.ijfatigue.2009.08.001
http://doi.org/10.1520/JAI102540
http://doi.org/10.1299/kikaia.68.977
http://doi.org/10.1299/kikaia.54.688
http://doi.org/10.2472/jsms.40.1497
http://doi.org/10.4262/denkiseiko.46.176
http://doi.org/10.1016/j.ijfatigue.2020.105527


Appl. Sci. 2021, 11, 2889 15 of 15

15. Gope, P.C.; Mahar, C.S. Evaluation of fatigue damage parameters for Ni-based super alloys Inconel 825 steel notched specimen
using stochastic approach. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 427–443. [CrossRef]

16. Lehner, P.; Krejsa, M.; Parenica, P.; Krivy, V.; Brozovsky, J. Fatigue damage analysis of a riveted steel overhead crane support truss.
Int. J. Fatigue 2019, 128, 105190. [CrossRef]

17. Tomaszewski, T.; Strzelecki, P.; Wachowski, M.; Stopel, M. Fatigue life prediction for acid-resistant steel plate under operating
loads. Bull. Pol. Acad. Tech. 2020, 68, 913–921. [CrossRef]

18. Feng, L.; Zhang, L.; Liao, X.; Zhang, W. Probabilistic fatigue life of welded plate joints under uncertainty in arctic areas. J. Constr.
Steel Res. 2021, 176, 106412. [CrossRef]

19. Caiza, P.D.T.; Ummenhofer, T. A probabilistic Stussi function for modelling the S-N curves and its application on specimens
made of steel S355J2+N. Int. J. Fatigue 2018, 117, 121–134. [CrossRef]

20. Mughrabi, H. Zur Dauerschwingfestigkeit im Bereich extrem hoher bruchlastspielzahlen: Mehrstufige lebensdauerkurven.
HTM/Harterei-Tech. Mitt. 2001, 56, 300–303.

21. Harlow, D.G.; Wei, R.P.; Sakai, T.; Oguma, N. Crack growth based probability modeling of S-N response for high strength steel.
Int. J. of Fatigue 2006, 28, 1479–1485. [CrossRef]

22. Sakai, T. Chair of Editorial Committee. In Standard Evaluation Method of Fatigue Reliability for Metallic Materials—Standard Regression
Method of S-N Curves; JSMS-SD-11-07; The Society of Materials Science: Kyoto, Japan, 2007.

23. Nakagawa, A.; Sakai, T.; Harlow, D.G.; Oguma, N.; Nakamura, Y.; Ueno, A.; Kikuchi, S.; Sakaida, A. A probabilistic model on
crack initiation modes of metallic materials in very high cycle fatigue. Procedia Struct. Integr. 2016, 2, 1199–1206. [CrossRef]

24. Kitagawa, H.; Takahashi, S. Fracture mechanics study on small fatigue crack growth and the condition of its threshold. Trans.
JSME Ser. A 1979, 45, 1289–1303.

25. Tanaka, K.; Nakai, Y.; Yamashita, M. Fatigue growth threshold of small cracks. Int. J. Fract. 1981, 17, 519–533.
26. Nakamura, Y.; Sakai, T.; Harlow, D.G.; Oguma, N.; Nakajima, M.; Nakagawa, A. Probabilistic model on statistical fatigue property

in very high cycle regime based on distributions of size and location of interior inclusions. In Proceedings of the VHCF-7,
Dresden, Germany, 3–5 July 2017; pp. 81–86.

27. Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297.
28. Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958; pp. 75–78.
29. Shiozawa, K.; Lu, L.-T.; Ishihara, S. Subsurface fatigue crack initiation behavior and S-N curve characteristics in high carbon-

chromium bearing steel. J. Soc. Mat. Sci. Jpn. 1999, 48, 1095–1100. [CrossRef]
30. Sakai, T.; Sakaida, A.; Fujitani, K.; Tanaka, T. A study on statistical fatigue properties of metallic materials with particular attention

to relation between fatigue life and fatigue strength distributions. Mem. Res. Inst. Sci. Eng. 1982, 42, 79–91.

http://doi.org/10.1111/ffe.13369
http://doi.org/10.1016/j.ijfatigue.2019.105190
http://doi.org/10.24425/bpasts.2020.134184
http://doi.org/10.1016/j.jcsr.2020.106412
http://doi.org/10.1016/j.ijfatigue.2018.07.041
http://doi.org/10.1016/j.ijfatigue.2005.05.019
http://doi.org/10.1016/j.prostr.2016.06.153
http://doi.org/10.2472/jsms.48.1095

	Introduction 
	Experimental Fatigue Test Data Referred in This Study 
	Probabilistic Model to Explain the Statistical Fatigue Property in Interior-Induced Fracture 
	Effects of Size and Depth of Inclusions on the Fatigue Strength 
	Distribution Characteristics of Inclusion Size and Inclusion Depth 
	Joint Distribution of Inclusion Size and Inclusion Depth and Analysis of Fatigue Strength Distribution 

	Results and Discussions 
	Distribution Characteristics of Fatigue Strength w9*  
	Expansion of the Probabilistic Model to Analyze P-S-N Characteristics in Interior-Induced Fracture 
	Analysis of the Fatigue Life Distributions in Interior-Induced Fracture Mode 
	Reconfirmation of the Number of Inclusions in the Critical Volume 
	Mutual Relationship between Both Distributions of Fatigue Strength and Fatigue Life 

	Conclusions 
	References

