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Abstract: The advances achieved in recent decades regarding cardiac surgery have led to a new risk
that goes beyond surgeons’ dexterity; postoperative hours are crucial for cardiac surgery patients
and are usually spent in intensive care units (ICUs), where the patients need to be continuously
monitored to adjust their treatment. Clinical decision support systems (CDSSs) have been developed
to take this real-time information and provide clinical suggestions to physicians in order to reduce
medical errors and to improve patient recovery. In this review, an initial total of 499 papers were
considered after identification using PubMed, Web of Science, and CINAHL. Twenty-two studies
were included after filtering, which included the deletion of duplications and the exclusion of titles
or abstracts that were not of real interest. A review of these papers concluded the applicability and
advances that CDSSs offer for both doctors and patients. Better prognosis and recovery rates are
achieved by using this technology, which has also received high acceptance among most physicians.
However, despite the evidence that well-designed CDSSs are effective, they still need to be refined to
offer the best assistance possible, which may still take time, despite the promising models that have
already been applied in real ICUs.

Keywords: clinical decision support; computerized physician order entry; intensive care units;
cardiac surgery

1. Introduction

Advances in cardiac surgery have enabled the performance of these procedures in
patients with the most complex cardiac pathologies and with the highest perioperative
risks. These patients are likely to experience complications during the postoperative
period. Cardiogenic shock (CS), low cardiac output syndrome (LCOS), stroke, kidney
failure, gastrointestinal problems, and respiratory distress are the main issues that may
arise during this period, entailing the highest mortality [1–3].

Patients undergoing heart surgery require long stays in intensive care units (ICUs),
compared to other types of surgery, due to the aforementioned complications [4,5]. These
include vasospasm, altered platelet–endothelial cell interactions, and a generalized in-
flammatory response due to blood contacting the synthetic surfaces of the bypass equip-
ment [6–8]. The result is low flow in the microcirculation of the heart, brain, and other
organs, which may lead to organ dysfunction [9,10]. In addition, these patients demand
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the use of broad resources during their stay, such as high-level surveillance and monitoring
and a quick analysis of the parameters or adjustments in their medical treatment [11,12].
The assistance of vital support for these patients is made through the maintenance of vital
signs in a target range, the coordination of early therapy directed by objectives in cardio-
genic shock, and the hemodynamic stabilization of LCOS. These techniques can speed up
postoperative recovery, decrease hospital stays or the use of mechanical ventilation, and
reduce ICU days [13,14].

In ICUs, physicians must control these parameters, care for subjects’ needs, and pre-
vent complications in order to achieve the optimal conditions of these patients. Therefore,
professionals must make elaborate decisions in some situations and make modifications in
treatment [15–17]. These situations cause high pressure and intense burden that can cause
medical errors and may negatively influence patients’ outcomes [18,19]. According to Farzi
et al., ICU patients are exposed to an average of 1.7 errors per day; specifically, medication
errors represent 78% of serious medical errors [20]. The application of artificial intelligence
techniques can provide support to health professionals in decision making related to the
treatment of patients [21,22]. The use of clinical decision support systems (CDSSs) can be
very appropriate, supporting doctors to improve the clinical progress of patients [23,24].
The development and impact of these systems in the different fields of medicine have been
very important [25].

1.1. Background of Decision Support Systems

CDSSs are programs based on artificial intelligence (AI) and machine learning (ML)
in statistical patterns [26]. CDSSs are a tool increasingly used by clinicians and can in-
volve difficulties in understanding the logic used by AI or integrating different clinical
devices [27]. CDSSs also have two other classifications: active or passive based on the
design and action of the system. The temporal classification depends on the system’s
moment of intervention [28].

One of the main objectives of CDSSs is the analysis of patient databases, the extraction
of prognostic variables, and the determination of factors to know a patient’s evolution [29].
Accordingly, several studies have focused on the Medical Information Mart for Intensive
Care III (MIMIC-III), being the largest free access clinical database associated with ICUs [30].
Reports such as those by Bashar et al. have highlighted that MIMIC-III, using a large
amount of data, including laboratory tests, procedures, medications, caregivers’ notes,
image reports, and mortality, allows us to improve relevant clinical outcomes [31,32].

Another type of CDSS focuses on patient safety and drug administration [33]. The
Computerized Physician Order Entry (CPOE) offers support to avoid errors in the dosages
and improves the adjustment according to a patient’s comorbidities [34,35]. Databases are
also important in ICUs, because they can enhance learning about the knowledge of the
evolution and act in advance to prevent or act in each clinical situation [36]. Analysis of
data has provided prognostic or evolutionary factors that have allowed the improvement
of clinical results [37]. CDSSs can analyze different information obtained from electronic
health records (EHRs) such as the sociodemographic, social, and epidemiological data of
patients [38]. EHRs create alerts related to early diagnosis and trends that warn about
bad prognosis indicators, allowing early modifications in treatment and modifications
in clinical evolution [34,39]. CDSSs can be combined with other devices. Some studies
have concluded that the combination of CDSSs and CPOE can be considered the most
powerful tool for the prevention and reduction in potentially dangerous errors and for
greater adjustment according to a patient’s comorbidities [40,41].

Some reviews related to CDSSs have been conducted, examining the outcomes associ-
ated with CDSSs and CPOE in inpatient settings, but few have focused on the impact that
these systems have on cardiac patients in ICUs. Reviews focused on cardiac patients refer
only to the economic costs and benefits of CDSSs [42,43]. Another one of these reviews
focused on assessing the costs of hospitalization [44]. McKibbon et al. reviewed the effec-
tiveness of these tools on patients in ICUs [45]. Sutton et al. analyzed the benefits and risks
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of CDSSs under a global point of view [46]. The remaining reviews focused specifically on
pediatric patients [47–49].

1.2. Objectives

Given the importance of knowing the impact of these tools, this review aimed to
determine the impact of clinical decision systems on cardiac patients in ICUs. The specific
objectives were: (1) to examine and describe the evolution, detection of medical com-
plications, interventions, and treatment response in the postoperative period of cardiac
surgery; (2) to describe the rating and satisfaction of health professionals regarding the use
of decision systems in ICUs.

2. Materials and Methods

The authors conducted this review between 2019 and 2020. This review was guided fol-
lowing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement [50] (see File S1). Relevant studies were selected and analyzed regarding clinical
decision support, and a summary of their findings is shown in the Results section.

2.1. Eligibility Criteria

In this review, we decided to include only those studies that (1) studied ICU patients
of any age with cardiac pathologies and associated problems; (2) analyzed the use of EHRs,
CPOE, or MIMIC-III in the data systems’ inpatient follow-up; (3) described the combination
of CDSSs with previous systems for the improvement of healthcare; (4) provided predictive
values for the implementation of these tools in ICUs. Articles that did not meet the
following requirements were excluded: (1) articles not published in English, (2) articles
without metadata, and (3) studies not published between 2001 and 2020.

2.2. Search Strategy

A search was conducted to find relevant published literature related to alert systems
and cardiac patients in ICUs (2001–present). The search was performed on three databases:
PubMed, Web of Science, and CINAHL (see Table S1). Moreover, scientific meetings pro-
ceedings or textbooks on Google Scholar were reviewed to identify significant publications
about these topics.

The selection of studies was carried out through an iterative process to identify
possible additional studies. In addition, the Boolean operators “OR” and “AND” were
used, and some filters such as English language restrictions and publication date restrictions
were employed.

The search combined different controlled terms (Mesh) (see Appendix A) for each
database, as well as natural language. The main terms used for the search were: (“Inten-
sive Care Units” OR “Critical Care”) AND (“Artificial Intelligence” OR “Big Data”) AND
(“Electronic Medical Record” OR “Computerized Medical Record” OR “Clinical Decision
Support” OR “Computerized physician order entry” OR “Database”) AND (“cardiogenic
shock” OR “post-cardiac”). In addition, some additional articles were found for possi-
ble inclusion in the review through the reference section of full-text articles and related
systematic revisions.

2.3. Study Selection

A total of 499 results were obtained in the literature search, including 462 from the
search and 37 from the bibliographies of other studies. After eliminating duplicates, two
authors read the titles and abstracts generated by the search strategy independently, but
at the same time, in order to identify eligible articles and to maintain consistency in the
review. Thus, they excluded all studies that did not fulfill the selection criteria determined
in the review. When the eligibility and relevance of articles were unclear, they were
discussed with the primary authors, who examined in detail the study according to the
eligibility criteria. In some situations, they contacted the authors of these researchers for
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the clarification of some questions. So, the authors excluded 301 articles because they were
not focused on the review topic.

For the first review, 349 articles were selected, whereas 48 were collected in the second
review; finally, 22 results were included. In the second and third revisions, the authors
evaluated the full texts and determined the final set of included studies. Figure 1 shows
the selection process.
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2.4. Data Extraction and Quality Assessment

Two researchers independently undertook data abstraction from each study. Data
were abstracted onto a customized data extraction sheet. The variables included: author
and year; the title of the study; country of origin; type and number sample; event identified;
type of CDSS; study associated with the database, CPOE, and EHR; description (aim of
study and results). The key findings from each study were summarized and presented
in tables.

The reviewers coded the variables and resolved any disputes through mutual discus-
sion. We followed three main steps in conducting an interpretive synthesis of our findings:
(1) noting the range of functions and the uses of alert systems to promote/improve the
situation in ICUs in cardiac patients, (2) developing a synthesis of the findings of included
studies, and (3) exploring the relationships in the findings. Automated alerts were used all
along the study process in order to keep the review up to date.
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The reviewers assessed the methodological quality of the included studies, based on
the criteria of the Effective Public Health Practice Project (EPHPP). This tool was employed
for evaluating quantitative studies by previous systematic reviews. Studies are rated based
on six components: (a) selection bias, (b) study design, (c) confounders, (d) blinding,
(e) data collection methods, and (f) withdrawal and drop-outs.

2.5. Statistical Analysis

Each study was classified according to whether it was a CDSS, CPOE, EHR, or database
system, as well as a combination of these decision support systems. On the contrary, the
studies were grouped by the measurement of the results; thus, they were grouped according
to development forecast, medication errors, warning systems, standardization of the proto-
cols, adjustment to the objectives, cost reduction, and acceptance by health professionals.

3. Results

3.1. Study Characteristics

Twenty-two studies met our inclusion criteria. Table 1 summarizes and shows the
characteristics of the studies. Fourteen studies evaluated the functionality of CDSSs in
ICUs [51–64], three examined the applicability of databases in ICUs [65–67], one studied
investigated the usefulness of EHRs [68], and another one considered CPOE [69]. Lastly,
three analyzed the function of combinations of CDSS/CPOE and CDSS/EHR [70–72].

Fifteen studies involved patients over 18 years [51–55,57–59,61,64–69], five studies fo-
cused on pediatric patients [56,63,70–72], one used data from both populations [62], and exam-
ined professionals [60]. Most studies were conducted in the United States [51,52,55,56,58,62,65–68],
Germany [64,72], and the United Kingdom [53,59,63]. Moreover, one was developed each in
Spain [69], Israel [71], France [70], Australia [60], Sweden [61], Japan [54], and Canada [57].

The publication dates of these studies ranged from 2006 to 2018. Seven studies
focused on the development and validation of information systems [51,53,57,59,64,66,72],
five studies used retrospective analysis [52,55,56,58,67], three were prospective cohort
studies [63,69,71], two studies conducted had an experimental design [60,65], and one
was a controlled trial [54,61]; the remaining were a performance study [70], a multicenter
study [62], and an observational cohort study [68].

The results of this review were organized according to the application area (see Table 2).
Therefore, they were grouped into six main blocks: development forecast, medication errors,
warning systems, standardization and compliance with protocols, precise adjustment to
objectives, cost reduction, and acceptance. Table 2 shows the classification of the results.
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Table 1. Summary of the data extracted from the 22 selected studies.

Reference Country
Sample

Event Identified
Associated to Description

Type Number CDSS CPOE Database EHR Purpose of the Study Main Findings

Armada et al.,
2014 [69] Spain Adult patients 137

Cardiogenic shock,
acute coronary
syndrome, and

malignant arrhythmias

x

This study analyzed the
effects of the

Computerized Physician
Order Entry (CPOE)

system in cardiac patients
by detecting medication
errors and evaluating the

use of electronic
prescription by

health professionals.

The results concluded
that CPOE was safe in
practice and was well

received by health
professionals, and its use

reduced errors
in the prescription.

Aushev et al.,
2018 [65] USA Adult patients 75 Cardiogenic shock

and septic shock x

The aim of the study was
to identify clinical

features that can predict
mortality associated with

cardiogenic or
septic shock.

This study determined
that the application of
different models for

prediction can
prognosticate the risk of
death in the acute phase

of cardiogenic and
septic shock.

Banner et al.,
2008 [51] USA Adult patients 87 Respiratory failure x

This study aimed to
validate the advisory

system recommendation,
compared to

the experienced
physician’s decision.

The results indicated that
there were not significant

differences in either
system. The advisory

system was well
evaluated due to its

forecasts in settings of
pressure support
ventilation (PSV).
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Table 1. Cont.

Reference Country
Sample

Event Identified
Associated to Description

Type Number CDSS CPOE Database EHR Purpose of the Study Main Findings

Campion et al.,
2011 [52] USA Adult patients 179,452

Emergency general
surgery, vascular

surgery, and cardiac/
thoracic surgery

x

The objective of this
study was to determine

the effects and conditions
resulting from nurses’

override of clinical
decision support system

(CDSS) recommendations
in ICUs.

The study concluded that
the nurses accepted

among 95% of dosing
recommendations. The

evaluation of the
frequency, direction, and
resistance of the intensive

insulin therapy (IIT) of
the CDSS overrides may

be interesting for the
health professionals

and researchers.

Denaï et al.,
2009 [53]

United
Kingdom Adult patients 7 Impaired cardiac

function x

The aim of the study was
to develop a CDSS for

clinicians’ decision
making in post-cardiac

surgery patients
weaned from

cardiopulmonary bypass.

The study showed good
feasibility for applying

CDSS to control the
cardiovascular system in

post-surgery patient.

Gouyon et al.,
2017 [70] France Pediatric

patients 760 Lower gestational age x x

This project evaluated the
performance of the

CDSS/CPOE
combination, using the
out-of-range dose rate.

The conclusion was that
the CDSS/CPOE system

was feasible for the
prescription of all drugs

in ICUs. This system
allows for the evaluation
and comparison of drugs.

Hsu et al.,
2013 [54] Japan Adult patients 380 Respiratory failure x

The objective was to
verify the effectiveness of

a CDSS to predict and
reduce the use of

ventilator weaning.

This CDSS was effective
in the identification of the
earliest time of ventilator
weaning for a patient to

resume and sustain
spontaneous breathing.
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Table 1. Cont.

Reference Country
Sample

Event Identified
Associated to Description

Type Number CDSS CPOE Database EHR Purpose of the Study Main Findings

Jalali et al.,
2016 [55] USA Adult patients 4000 Cardiac surgery

and infections x

The study’s purpose was
to develop a CDSS

algorithm for predicting
the prognostic of patients

in ICUs.

The conclusions
demonstrated that CDSSs

can resolve complex
situations in ICUs.

Jalali et al.,
2018 [56] USA Pediatric

patients 71 Periventricular
leukomalacia x

The aim was to design a
classifier adaptable to the
patient and incorporated

into the experts’
opinion in the

classification process.

This project collected data
from a highly reliable

digital instrument with
greater frequency,

expanding the set of
features, pre-classifying

patients according
to the diagnosis.

Johnson et al.,
2016 [66] USA Adult patients 38597

Coronary disease,
cardiac surgery, trauma,
and surgical procedure

x

This study wanted to
determine the

accessibility of the
Medical Information Mart

for Intensive Care III
(MIMIC-III) database for
the scientific community.

The study concluded that
the MIMIC-III database
allowed access to ICU

data at an international
level, improving the

quality of academic and
industrial research.

Kallet et al.,
2007 [57] Canada Adult patients NA Pulmonary and cardiac

surgery x

This paper reviewed the
use of the National

Institutes of Health acute
respiratory distress
syndrome (ARDS)
network positive

end-expiratory pressure
(PEEP)/ inspired oxygen
fraction (FIO2) titration

tables to the treatment of
patients with ARDS.

The study determined
that the PEEP/FIO2

tables were a
good option for the
treatment of ARDS.
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Table 1. Cont.

Reference Country
Sample

Event Identified
Associated to Description

Type Number CDSS CPOE Database EHR Purpose of the Study Main Findings

May et al.,
2014 [58] USA Adult patients 114 Cardiac surgery x

This project’s purpose
was to determine if
CDSSs will facilitate

better compliance with
project measures and
improve healthcare.

Through CDSSs,
compliance with national

surgical quality
was improved.

Rojas et al.,
2018 [68] USA Adult patients 24885 Medical, surgical, and

coronary care x

The aim was to use an
automatic learning

technique to derive an
ICU readmission model
with electronic medical

record variables
in real time.

The study developed and
validated readmission
prediction modeling of
ICUs through a novel

machine modeling
technique.

Ross et al.,
2009 [59]

United
Kingdom Adult patients 3 Cardiac surgery x

The study determined
whether the CDSS

process provides clinical
decision-making advice

to anesthesiologists.

CDSSs developed
proposed real-time

diagnostic and
therapeutic advice based

on the continuous
monitoring of
cardiovascular

hemodynamic patients.

Saeed et al.,
2011 [67] USA Adult patients 22,870 Cardiac diseases and

coronary problems x

The study’s purpose was
to develop an ICU
research database

through automated
techniques to aggregate

high-resolution
diagnostic and

therapeutic data in ICU
adult patients.

The study concluded that
the MIMIC-II database is
a resource that supports

decision making.
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Table 1. Cont.

Reference Country
Sample

Event Identified
Associated to Description

Type Number CDSS CPOE Database EHR Purpose of the Study Main Findings

Sintchenko
et al., 2006 [60] Australia Specialists

Intensive Care 31 None x

The aim was to examine
the impact of CDSSs for

ICU antibiotic
prescribing.

The study concluded that
CDSSs are an important
factor in the process of
complex decisions; it
supported decision

making and the
functionality of
different tasks.

Sondergaard
et al., 2012 [61] Sweden Adult patients 24

Pancreatic cancer, heart
transplants, and

intestinal carcinoid
diseases

x

The study’s purpose was
to research the

performance of CDSSs in
achieving some

parameters in patients
with major

abdominal surgery.

The results demonstrated
that there was a

concordance between the
recommend treatments of
CDSSs and the treatments

of anesthetists.

Thompson
et al., 2008 [62] USA

All adult and
pediatric
patients

148

Pulmonary,
neurological,

cardiovascular,
gastrointestinal, and
multisystem diseases

x

The aim was to determine
the effectiveness,
satisfaction, and

acceptance of
eProtocol-insulin in ICUs.

eProtocol-insulin was
generally accepted in

ICUs. This study
demonstrated that it can

be a decision-support tool
and a method for use in

practices and
clinical research.

Vardi et al.,
2007 [71] Israel Pediatric

patients 105

Congenital heart
diseases, metabolic
diseases, multiple

traumas, head traumas,
respiratory diseases,

and sepsis

x x

The objective was to
determine the impact of

CDSS/CPOE in the
preventions of medical

errors in medication
resuscitation orders.

The project considered
that this warning system
is a support tool in drug

treatment, leading to
medical error reductions.
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Table 1. Cont.

Reference Country
Sample

Event Identified
Associated to Description

Type Number CDSS CPOE Database EHR Purpose of the Study Main Findings

Warrick et al.,
2011 [63]

United
Kingdom

Pediatric
patients NA None x

The study wanted to
determine the effect of

electronic prescribing (EP)
on prescribing errors and
doses in pediatric ICUs.

The study determined
that EP increases

medication safety in
pediatric ICUs.

Wulff et al.,
2018 [72] Germany Pediatric

patients 16 None x x

The aim was to develop
and evaluate an open

electronic health record
(EHR) for systemic

inflammatory response
syndrome (SIRS)

detection in
pediatric ICUs.

The study found that the
inclusion of an open EHR
in a CDSS can bridge the

interoperability gap
between local

infrastructure in
said CDSS.

Zaslansky
et al., 2014 [64] Germany Adults

patients 40,898 Pain x

The aim was to develop
and validate a medical
registry to measure and
identify some aspects

regarding pain.

This pain-related CDSS
provides health

professionals with easy
access to data on the

clinical management of
pain, supporting the

decision-making process.
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Table 2. Summary of the results field of the study.

Patient Application Area

Before admission Forecast and evolutionary prediction

During admission

Reduction in medical errors

Alerts, fast detection of alterations,
and treatment settings

Achievement of objectives and
maintenance in established ranges

After admission
Reduction in health costs

Level of satisfaction in health personnel

3.2. Thematic Categories

3.2.1. Development Forecast

Five studies examined the use of CDSSs as a tool to predict the evolution that patients
may have after heart surgery [55–57,67,68]. All five positive results obtained on the use
of support systems to assess the evolution of patients in ICUs by analyzing multiple
biomedical parameters [55–57,67,68]. Jalali et al. stated that the use of CDSSs can allow
us to detect a rapid deterioration of a patient and be able to predict and achieve better
results of concordance compared to classic scales of the sequential organ failure (SOFA)
score and the simplified acute physiology score (SAPS) II [55]. The use of CDSSs, through
the analysis of variables and clinical data associated with the function of the organs, results
in a 45% higher F-score than the more classic tools (SOFA and SAPS-II are 26 and 29%,
respectively) [55].

Another study by Jalali et al. involved the development of a CDSS for the prediction
of periventricular leukomalacia, resulting in improved survival rates of neonates who
underwent cardiac surgery. Survival rates were improved due to the average reduction in
the time between surgery and diagnosis to six days. In addition, the results showed a high
F-score (0.8) for the way the system ranks [56].

Rojas et al. assessed the probability of needing readmission in ICUs with the devel-
opment of a prediction model using automatic learning techniques. With the use of the
machine-learning-derived model, a lower area of the curve (0.76) was obtained, which
was more favorable than the “Stability and Workload Index for Transfer “(SWIFT) score
(0.65) or the “Modified Early Warning Score” (MEWS) (0.58). The results showed that this
model better predicted ICU readmission compared to the SWIFT score and the MEWS.
In addition, it had a higher area under the receiver operating curve (AUC) for predicting
readmissions (p < 0.001) [68]. Other studies proved the effectiveness of these support
systems in predicting the evolution of the patient in the weaning process and with the
MIMIC-II [57,67].

3.2.2. Medication Errors

Four studies [63,69–71] focused on the analysis of the performance of support sys-
tems, specifically on the tools applied to CPOE systems in the prevention of errors in the
pharmacological treatment of patients in ICUs. In general terms, these studies evidence an
improvement in hospital care after the use of CPOE, such as a reduction in errors observed
after its application [69,71].

Three of the studies indicate clinically significant changes in the incidence of medica-
tion errors [69–71]. Vardi’s study reported that before CPOE use, there were three errors
for every 13,142 orders, while after its application, no medical errors were found [71].
Armada et al. found a reduction in errors from 92 to 98% in two experimental periods [69].
Gouyon et al. combined CPOE and a CDSS to avoid medicals errors for improving pa-
tient care safety. Approximately 30–40% of neonates had at least one of the licensed
prescriptions [70].
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In addition, the studies refer to the common causes of medical errors [63,69,70]. Ar-
mada et al. determined that some factors, such as lapses of health professionals, a lack of
information, or inappropriate use of the computer system, can cause medical errors [69].
Other studies indicate that medical errors are caused by the inadequate selection of the
dosage of some drugs [63,70].

Two studies analyzed the types of errors found; the most frequent errors were found
to be mistakes in the name of the drug, the number of doses, or the units of measurement
of doses [69,71]. These aspects were reduced with the use of support systems. Finally, one
study reported that with the applicability of the CPOE system, the time of administration
of drugs reduced from 14 min 42 s (standard deviation, 05:03) to 2 min 14 s (standard
deviation, 00:39) [71].

3.2.3. Warning Systems: Early Detection and Early Action

Four studies analyzed the incorporation of CDSSs into surveillance and continuous
analysis to allow the fast detection of clinical alterations [51,58,65,72]. Two studies exam-
ined the use of CDSSs in cardiac surgery patients. These systems monitored and controlled
different parameters, such as blood glucose levels, or the presence of some conditions,
such as the automated systematic inflammatory response syndrome (ARS) [58,72]. One
of the studies reported that the system effectively warned healthcare professionals about
B-blocker therapy before the operation and alerted them to the B-blocker restart [58]. Wulff
et al. demonstrated a high agreement between the system and health professionals. The
results showed a sensitivity of 1.00, a specificity of 0.94, and a kappa of Cohen of 0.92 [72].

Aushev et al. developed an automatic learning algorithm (ShockOmics) for predicting
mortality in patients with cardiogenic shock for early detection. The results reported
that the system had high sensitivity and specificity. Thus, an early alert reduced the
risk of mortality in the acute phase of cardiogenic and septic shock, improving patients’
evolution [65]. Another study analyzed the applicability of VentAssit as an alert system,
which resulted in changes in the pressure support prescription for mechanically ventilated
patients using the real-time measurement of power breathing. The results demonstrated an
agreement with the intensivist’s decision [51].

3.2.4. Standardization and Compliance with Protocols

Three studies included in the review examined the use of support systems as a
necessary tool in the application and diagnostics of complex protocols [54,57,64]. Two
studies reported that the application of a CDSS, as an essential tool for different estab-
lished protocols, can improve decision making and diagnostics compared to traditional
protocols [54,57].

Hsu et al. reported that the use of a CDSS helped health professionals to make
decisions about those patients who presented a clinical situation that was suitable for being
detested [54]. Likewise, these advanced protocols promoted a better evolution of patients
through the improvement of the different biomedical parameters [54].

On the contrary, Zaslansky et al. proved CDSSs can be helpful in the diagnosis and
the implementation of protocols for the improvement of treatments. The results presented
that 60% of the cases following the recommendations of the protocols. These protocols are
characterized by their parameters, such as performance assessment or benchmarking [64].

3.2.5. Precise Adjustment to Objectives

Six studies analyzed the applicability of these systems for maintaining biological
constants within a more precise target range [51–54,59,61]. Five of these studies reported
that the application of CDSSs kept patients’ constants stable, improving the evolution of
the patients who were submitted to cardiac surgery [51–54,59].

Hsu et al. reported that CDSSs helped to maintain the stability of the biomedical
parameters of the patients in the study group compared to those of the patients in the control
group, resulting in a statistically significant relationship (p < 0.01) [54]. Moreover, Campion
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et al. determined the applicability of a CDSS for administering or adjusting insulin doses.
The results showed that the recommended doses were accepted to a greater extent (83%)
than higher doses (78%), with a statistically significant relationship (p < 0.001) [52].

Another field of application deals with hemodynamic parameters. Monitors such as
pulse wave cardiac output lithium dilution cardiac output (LIDCOPLUS) provide computa-
tional intelligence to facilitate clinical decision making. Two studies proved LIDCOPLUS to
be useful for patients undergoing cardiac surgery to maintain hemodynamic constants by
assessing continuous monitoring and suggesting measures needed to keep them in range.
In vasoactive drug infusion, the system modifies the doses or proposes a dose modification,
measuring the improvement in the quality and efficiency of healthcare [53,59]. Likewise,
VenAssit achieved a range of 84% by stabilizing six parameters such as plateau pressure,
tidal volume, respiratory rate, Wob, tidal end CO2, and O2 saturation [51].

Finally, Sondergaard et al. used a target-directed therapy (TGT) to diagnose and
administration a real-time pharmacological treatment regularly used. The results showed
that there was no difference in the mean percentage time spent in the target zone (36.7% in
control group and 35.5% in the intervention group), and there were no differences in the
fluid balance, but there was a high level of concordance between both groups [61].

3.2.6. Cost Reduction

Three studies analyzed the use of CDSSs in reducing healthcare costs [65,68,69]. All the
studies reported that CDSSs provide real-time diagnostic and therapeutic advice through
the continuous monitoring of patients in cardiovascular dynamics, promoting a reduction
in health costs. Its use has reduced medical errors and has shown a hospital stay reduction
(length of stay (LOS)) and mortality [65,68,69].

Rojas et al. implemented a model of readmission in the ICU in real time. The results
showed that 11% of the readmissions occurred during hospitalization; there was a greater
probability of receiving more interventions and medications, which promoted a higher-
quality stay [68]. One of the studies examined the use of CPOE in medical error preventions,
resulting in a reduction in hospital stays and improved healthcare [69]. Aushev et al.
concluded that identifying the most relevant features of patients with cardiogenic shock by
CPOE reduces mortality rates and results in improved patient conditions, reduced burden,
and reduced hospital care [65].

3.2.7. Acceptance

Six studies analyzed the acceptance of health professionals about support systems
in clinical practice [52,53,59,60,62,69]. Four studies reported that these support systems
can be accepted in the different fields of both treatments and diagnoses [52,53,59,69]. The
recommendations of these support systems were accepted by the majority of critical care
professionals, and they were considered a useful tool in clinical practice. Moreover, the
combination of these systems was valued positively [69]. On the contrary, few studies
showed negative results about the system’s use in clinical practice but suggested the
system’s complexity and the overload of work [60,62].

4. Discussion

This review focused on the applicability of CDSSs, databases, CPOE, and EHRs in
cardiac surgery patients in ICUs. The objectives were focused on summarizing the recent
scientific evidence on this subject in order to investigate clinical decision support systems.
Decision-making aids have been studied in different fields and types of patients.

The results showed an emerging area associated with the development forecast. Some
studies referred to CDSSs, analyzing the predisposing parameters and supporting the
forecast of the evolution and the readmission that a patient may present [56,67,68]. CDSSs
use multiple parameters to determine the prognostics, such as patient characteristics,
comorbidities, reasons for admission, and scales [55,73].
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Specifically, the studies of Jalali et al. referred to the prediction of development
in said studies. Both studies focused on patients with neurocritical and periventricular
leukomalacia patients. They reported that a rapid prediction of a patient’s development
can reduce mortality levels or hospital stay, among others [55,56].

The databases through CDSSs, including the parameters, proved their usefulness
in predicting evolution, such as demographic data, laboratory data, and admission diag-
noses [57,67]. Some reviews support the above. These reviews focused extensively on
analyzing the prediction ranges of tools such as databases or CDSSs [74,75].

Another result that emerged strongly in the selected articles was medical errors. Specif-
ically, the tools applied to CPOE systems were assessed in relation to their strong impact
on the prevention of drug-related errors [63,69–71]. According to the evidence, CPOE tools
prevent the wrong administration of drugs and help to make dosage adjustments con-
sidering comorbidities, which are among the most common confounding factors [76–78].
These dose modifications could eventually lead to a reduction in critical events such as
cardiorespiratory arrest [71].

In addition, the results indicate that drug administration times were significantly
reduced after the use of CPOE. Among the studies that were analyzed, the improvement in
healthcare after the use of CPOE is meaningful, since errors of administration were recorded
before and after its application, and a reduction was observed [63,69–71]. The reduction in
the incidence of drug administration errors and the reduction in time to administration is
of paramount importance in the pandemic situation because of the shortage in resources in
critical care settings, and it must not be overlooked [79,80]. Although this situation does
not directly affect the tasks usually performed by physicians or nursing professionals, it is
considered one of the most limiting factors in providing the necessary care on time, so any
tool capable of alleviating burdens should be considered potentially useful [78].

Moreover, the results suggest that these tools can detect difficulties in a patient’s
situation for rapid action [54,64,65]. Considering the evidence, CDSSs and EHRs allow
continuous monitoring for detecting clinical alterations at the precise moment they take
place. This is relevant in postoperative patients, as they have a greater risk of suffering
significant complications [79].

CDSSs also offer a precise adjustment of dosage or flux to maintain a variable in the
desired range [51–54,59,61]. Some examples of the already developed CDSSs on this subject
matter belong to the field of hemodynamic advanced measurement devices, such as cardiac
output (CO) [53,59]. These studies dealt with the utilization of a CDSS combined with a
continuous monitor of cardiovascular function [52,54]. The systems were able to select and
advise reasonable treatments under different clinical conditions [51].

These systems are able to select and advise reasonable treatments under different
clinical conditions. However, some of the analyzed results showed no significant statistical
differences, and the lack of significant differences should not impede the relevance of these
findings [61]. It is remarkable to find such high concordance between specialists trained
in intensive care and decision support systems and their ability to reach an equivalent
fluid balance. As mentioned before, any tool with the ability to perform successfully while
keeping high standards of care must be considered potentially useful, since it may allow
dedicating human resources to more sophisticated tasks in healthcare.

Finally, the degree of acceptance of systems that report high levels of acceptance
was evaluated for these systems for treatment and diagnosis [60,62] Other studies have
considered it negative in terms of a lack of confidence in the decisions suggested, as occurs
in nursing staff, about the regulation of glucose levels by prolonging the time to accept
or reject the suggestion, concluding that these tools represent low impact on their work
activities [69]. Doubt then arises about whether the correct implementation of CDSSs,
despite their initial investment, guarantees a cost reduction at any hospital, as the shorter
the patient needs to stay in ICUs, the lower amount of money will be necessary to invest.
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5. Conclusions

In this systematic review, CDSSs were proven to be a useful tool, especially in the
three categories of reductions in prescription errors, with a near total in certain types of
error reduction, the prediction of evolution and prognosis, with a higher capacity than
the scales commonly used to predict readmission and even an in-mortality reduction in
the context of infant heart surgery, and in the of costs reduction, by reducing stay times
and complications.

In the other categories, i.e., the standardization of protocols, adjustment with a target,
warning systems, and acceptance, the results were less consistent and sometimes con-
tradictory. Clarification will have to wait for new systems to be developed, so that their
usefulness in ICUs can be assessed.
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Appendix A. Search Terms

Keywords Mesh Terms

Intensive Care Units
Intensive Care Units (Coronary Care Units;

Intensive Care Units, Pediatric; Intensive Care
Units, Neonatal)

Critical Care
Critical Care (Early Goal-Directed Therapy;

Intensive Care)

Artificial Intelligence
Artificial intelligence (Computer Heuristics;
Expert Systems; Fuzzy Logic; Knowledge

Bases; Machine Learning)

Big Data Big Data

Electronic Medical Records
Electronic Health Records

(Health Information Exchange)

Clinical Decision Support Systems Decision Support Systems, Clinical

Computerized Physician Order Entry Medical Order Entry Systems

Database Database Management Systems

Cardiogenic Shock Shock, Cardiogenic

Post-Cardiac Post-Cardiac Arrest Syndrome
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