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Abstract: At relatively low effort level tasks, surface electromyogram (sEMG) spectral parameters
have demonstrated an inconsistent ability to monitor localized muscle fatigue and predict endurance
capacity. The main purpose of this study was to assess the potential of the endurance time (Tend)
prediction using logarithmic parameters compared to raw data. Ten healthy subjects performed five
sets of voluntary isotonic contractions until their exhaustion at 20% of their maximum voluntary
contraction (MVC) level. We extracted five sEMG spectral parameters namely the power in the
low frequency band (LFB), the mean power frequency (MPF), the high-to-low ratio between two
frequency bands (H/L-FB), the Dimitrov spectral index (DSI), and the high-to-low ratio between
two spectral moments (H/L-SM), and then converted them to logarithms. Changes in these ten
parameters were monitored using area ratio and linear regressive slope as statistical predictors and
estimating from onset at every 10% of Tend. Significant correlations (r > 0.5) were found between
log(Tend) and the linear regressive slopes in the logarithmic H/L-SM at every 10% of Tend. In
conclusion, logarithmic parameters can be used to describe changes in the fatigue content of sEMG
and can be employed as a better predictor of Tend in comparison to the raw parameters.

Keywords: electromyography; muscle; endurance capacity; isotonic; prediction capability

1. Introduction

In everyday life, low-moderate level isotonic exercise is the natural way of human
activity and includes a concentric contraction and an eccentric contraction. Concentric
contractions are the primary functions of biceps brachii muscles, and endurance contrac-
tions primarily work to slow twitch fibers and develop such fibers in their efficiency and
resistance to fatigue [1]. Fatigue can be defined as the exercise-induced decrease in the
ability to produce force [2] and has been measured by using surface electromyography
(sEMG) as an assessment tool in prevention, monitoring, and rehabilitation fields [3].

Endurance capacity is the ability to sustain a given force over time, while measure-
ment of the endurance time (Tend) is an indicator of the muscle resistance to fatigue [4–6].
Although widely used in clinical practice, it is problematic to measure the effect of physical
and psychological factors such as pain and motivation [7,8]. Thus, methods that enable
reliable estimates of muscle endurance time during the time shorter than the endurance
time are of great importance for studying muscle function and motor control. A lot of
researchers have studied endurance time prediction due to the fact that firing statistics of
the active motor units (MU) were shown to affect the sEMG power spectrum toward lower
frequencies as spectral compression [9–12]. In addition, sEMG has been shown to be a more
objective approach to measuring muscle fatigue which is generally accompanied by an
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increase in amplitude of the sEMG signal because of the firing rates of increased motor unit
recruitment [13,14]. Badier et al. (1993) found a significant relationship between Tend and
the time-constant of a high-to-low ratio with the fixed frequency band as computed within
the first 10–20 s of contraction [15]. Hanayama (1994) found no significant correlation
beween Tend and the decreasing changes of muscle fiber conduction velocity (MFCV) [16].
After that, extrapolation of Tend based on linear regressive slopes of sEMG power spec-
trum has been reliable when computed over submaximal durations more than 50% Tend
whatever the level of contraction considered [17–20]. In addition, Maïsetti et al. (2002)
demonstrated that the area ratio which was proposed by Merletti et al. (1991) as changes of
the low frequency band (LFB), as estimated around the first 25% of Tend, were significantly
correlated with Tend. Lee et al. (2011) found the sustained times around 31% of Tend,
when the Dimitrov spectral index (DSI) (Dimitrov et al. 2006) was above 130% of the first
value, were significantly correlated with Tend. Lee et al. (2017) proposed high-to-low ratio
between two signal spectral moments without choosing the optimal border frequencies of
the low and high bands (H/L-SM). The experimental result obtained showed that linear
regressive slopes of H/L-SM over the first 30% of Tend were significantly correlated with
Tend [21–23].

Mean power frequency (MPF), median frequency (MDF), and high-to-low ratio with
fixed frequency band (H/L-FB) are proposed as the spectral parameters related to the
spectral compression of the sEMG signal, which decline throughout fatigue trials [24–26].
However, their consistent changes have been documented especially for relative high effort
levels [27]. In contrast, these parameters have yielded an inconsistent pattern during sus-
tained contractions at low level efforts. González-Izal et al. (2010) employed the logarithmic
transformation of DSI as a predictor of the performance change in muscle power to reduce
the large variability [28]. Lee et al. (2017; 2019) proposed the H/L-SM and converted
it to logarithms to monitor the more sensitive activity of biceps femoris muscles during
treadmill walking [23,29]. Yassierli and Nussbaum (2003; 2008) demonstrated that the
Poisson-fit model using the logarithmic transformation could be more sensitive in localized
muscle fatigue in sEMG-based assessments [30,31]. In myoelectric pattern recognition,
logarithmic parameters in sEMG are especially useful to decode limb movements regarding
the control of powered prostheses [32]. To our knowledge, the ability to predict Tend using
logarithmic parameters at submaximal time periods shorter than Tend during the isotonic
contraction test is limited.

Our study was designed to test whether changes in the logarithmic parameters cal-
culated over a shorter duration than Tend could predict the endurance time of the biceps
brachii muscle. Thus, sEMG parameters such as LFB, MPF, H/L-FB, DSI, and H/L-SM
were converted to logarithms, and two types of changes were calculated by using the area
ratio and the slope of linear regression model as predictors of Tend. Subsequently, the
relationships between Tend and predictors were analyzed and evaluated.

2. Materials and Methods
2.1. Subjects

Ten healthy subjects (5 males and 5 females) with no history of cardiovascular, neu-
rological, and musculoskeletal disorders, volunteered for this study. Their demographics
(age, height, and mass) were measured and are described in Table 1. The subjects were
informed of the purpose of the study before their consent was obtained. This study was
approved by the Institutional Bioethics Committee of the Catholic Kwandong University,
South Korea.

Table 1. Subject demographics data.

Variable Mean Standard Deviation

Age (yrs) 26.0 2.7
Height (cm) 165.4 6.2
Weight (kg) 63.7 12.5
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2.2. Apparatus
2.2.1. MMT

The manual muscle tester (MMT) (Model: 01163, Manufacture: Lafayette Instru-
ment Company, Sagamore Pkwy, IN, USA) was used to measure the maximal voluntary
contraction (MVC) in accordance with the manufacture’s manual (Figure 1).
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Figure 1. Manual muscle tester. 
Figure 1. Manual muscle tester.

The arm was at 110◦ flexion under the forearm in neutral position to measure the
MVC of the subject using the MMT. The subject performed three maximal contractions
3 s long with 3 min rest period between them. The MVC was determined as the highest
measured value.

2.2.2. Electromyography (EMG)

Surface EMG recordings were obtained from the biceps brachii muscles using bipolar
surface electrodes (2 cm apart), which were connected to the measuring apparatus My-
oTrace 400 with MyoResearch 3.6 software (Noraxon, AZ, USA). The sampling frequency
was set at 1 kHz and boundaries of the band pass filter were set at 6 and 500 Hz (Figure 2).
The electrodes were placed on the skin with anti-allergic tape after the skin was cleaned
with alcohol and placed on the area of greatest muscle bulk along the longitudinal midline
of the muscle [33,34].
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2.3. Experimental Protocol

A schematic diagram of isotonic contraction of the biceps brachii muscles is shown
in Figure 3. The subjects were asked to stand erect with their upper arm fixed and to
move their lower arm through a range of motion from full extension to 110◦ flexion at a
speed of 25 repetitions per minute using a metronome. Each repeated contraction was
observed by an investigator and was considered successful if performed with the full range
of motion within the metronome-guided time interval (2.4 s). During one set of the isotonic
contraction trials, the subject was asked to continue repetitive contractions until exhaustion.
The time of termination was determined when the participant indicated that they could
no longer continue the full range of motion with the metronome speed for more than two
repetitions, despite verbal encouragement without threats. This time point was noted as
the Tend for each subject. Ten subjects completed five sets of the isotonic contraction trials
until their exhaustion at 20% MVC. Two hours of rest was provided between three sets
of trials conducted over 1 day, and the subsequent two sets of trials were conducted after
3 days to avoid fatigue.
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2.4. Surface EMG Signal Acquisition

Surface EMG signals were collected using MyoResearch 3.6 software which guided
the data acquisition steps. Figures 4 and 5 show the initial screen using this software, and
the time-based graphic screen in the real-time progress, respectively.
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2.5. Mathematical Models

In this study, we used the five raw parameters from the sEMG power spectrum namely
LFB, MPF, H/L-FB, DSI, and H/L-SM, and then converted these parameters to logarithms.
The definitions of these logarithmic parameters are as follows [35].

logLFB = log

{
fL2

∑
f=fL1

P(f)

}
(1)

logMPF = log

∑fs/2
f=f0

fP(f)

∑fs/2
f=f0

P(f)

 (2)

logH/L − FB = log

∑
fH2
f= fH1

P( f )

∑
fL2
f= fL1

P( f )

 (3)

logDSI = log

∑
fs/2
f= f0

f−1P( f )

∑
fs/2
f= f0

f 5P( f )

 (4)

logH/L − SM = log

 ∑
fs/2
f= f0

f 5P( f )

∑
fs/2
f= f0

f−1P( f )

 (5)

Here,

fL1 = 15 Hz, fL2 = 45 Hz and ( f ): power spectrum in expression (1);
f0 = 6 Hz and fS

2 = 500 Hz in expression (2), (4) and (5);
fH1 = 95 Hz, fH2 = 500 Hz, fL1 = 15 Hz, fL2 = 45 Hz in expression (3).

In the curly brackets of Expressions (1)–(5), first, LFB in expression (1) is the power in
the low frequency band of the sEMG power spectrum. MPF in expression (2) refers to the
high-to-low ratio between the order 1 and the order 0 spectral moments as a measure of the
change in muscle fiber propagation velocity. H/L-FB in expression (3) is the high-to-low
ratio between two high and low bands with fixed border frequencies, whereas, DSI in
expression (4) is the order (−1) spectral moment normalized by the order 5 moment, while
DSI revealed a more notable change in muscle fatigue than MPF. Lastly, in expression (5),
H/L-SM is similar to H/L-FB, and could be calculated without the fixed border frequencies.
Following the definitions in expressions (1)–(5), these five sEMG spectral parameters were
converted to logarithms. Logarithmic transformation has been widely used in biomedical
and psychosocial research to deal with inconsistent data [36].

2.6. Data Analysis

Data analysis was performed using personal computer. For accurate spectral analysis
of the sEMG signals (Figure 6) in isotonic contraction cycles (2.4 s), we used a 1 s time
Hamming window every 0.3 s. Short-time Fourier transformation was conducted on
each windowed segment to calculate the power spectrum, which was used to estimate
the raw parameters such as LFB, MPF, H/L-FB, DSI, and H/L-SM in the curly brackets
of expression (1)–(5). These parameters except MPF were normalized and expressed as
percentages of initial values, and converted to logarithms. The coefficient of variation
(CV) is known as the relative standard deviation and defined as the ratio of the standard
deviation to the mean [37]. We used the CV to compare variability between the five raw
and the five logarithmic parameters.

The Tend of each subject was divided into 10 equal intervals at every 10% of Tend to
evaluate the relationships between Tend and the statistical predictors such as the area ratio
and the slope of linear regression model as estimated over the shorter periods than the
Tend [38]. For this purpose, we used the predictors as follows.
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1. The area ratios in the five raw parameters
2. The area ratios in the five logarithmic parameters
3. The slopes in the five raw parameters
4. The slopes in the five logarithmic parameters

These four predictors were estimated over the periods from the onset to every 10% of
Tend. The one-way ANOVA was used to compare the changes of each predictor according
to the 10 periods. Pearson’s correlation coefficient was used to quantify the performance
of the relationships between Tend and these values. The level of significance was set at
p < 0.05.
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3. Results
3.1. MVC and Tend

MVC was 19.1 (5.9) kgf and Tend was 53.7 (19.6) s during isotonic contractions at 20%
MVC. Endurance times were sorted in descending order and displayed according to the
isotonic contraction sets of the 10 subjects in Figure 7.
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3.2. Changes in sEMG Parameters and Predictors

Figure 8 showed the five raw and the five logarithmic parameters over the whole
endurance time (Tend) for the subject whose Tend was almost the same as the mean of the
endurance times of all subjects. The left column (a) displays the five raw parameters, and
the right column (b) displays the five logarithmic ones with respect to time. The ripple
period in LFB and logLFB time series in Figure 8a,b is 2.4 s which can be calculated as 50 s
divided by 21 ripples, and the same as the repeated period during the isotonic contractions.
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The time series of LFB, DSI, logLFB, and logDSI increased, and those of the other pa-
rameters decreased during the endurance contractions, because muscle fatigue is generally
accompanied by an increased firing rate of motor unit recruitment and spectral parameters
related to spectral compression during static and dynamic contractions [39]. Similar results
were reported in previous studies [9,23,27].

The CVs of the five raw and the five logarithmic parameters are compared in Table 2
which shows that the CV of the logarithmic parameter is less than that of the raw one.
These results revealed that the logarithmic transformation could reduce the large variability
in the raw parameter.

Figures 9 and 10 with Tables 3 and 4 show the time series of two predictors namely the
area ratio and the slope in the raw and the logarithmic parameters as estimated over every
period of 10% of Tend, respectively. In Figure 9 and Table 3, the area ratios in LFB, DSI,
logLFB, and logDSI decreased linearly, and those in the others increased linearly, because
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the definition varied between 0 and 1 for decreasing patterns and is negative for increasing
patterns. In contrast, slopes in LFB, DSI, logLFB, and logD SI decayed exponentially, and
those in the others rose exponentially as shown in Figure 10 and Table 4. One-way ANOVA
was conducted on changes with respect to every period of 10% Tend in each parameter.
There were significant differences for the two predictors of all parameters (p < 0.05). Thus,
these results showed that the time series of the area ratios and the slopes of the raw and
the logarithmic parameters varied independently.

Table 2. Mean and standard deviation of coefficient of variation (CV) of all parameters.

- LFB MPF H/L-FB DSI H/L-SM

Raw 0.27 ± 0.51 0.19 ± 0.11 0.20 ± 0.15 0.26 ± 0.24 0.20 ± 0.18

Logarithm 0.12 ± 0.04 0.17 ± 0.13 0.12 ± 0.05 0.14 ± 0.08 0.17 ± 0.09
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(a) Mean area ratios in the raw parameters 
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Figure 10. The time series of slopes in the sEMG raw parameters (a) and logarithmic ones (b) with respect to time as
estimated over every 10% of Tend (White circle: LFB and logLFB; Black circle: MPF and logMPF; White triangle: H/L-FB
and logH/L-FB; Black triangle: DSI and logDSI; Black square: H/L-SM and logH/L-SM).
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Table 3. Area ratios (mean and S.D.) in the sEMG raw parameters (a) and logarithmic ones (b) with respect to time as
estimated over every 10% of Tend (S.D.: standard deviation).

(a) Mean area ratios in the raw parameters

%Tend 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

LFB
Mean 0.00 −0.15 −0.27 −0.39 −0.50 −0.62 −0.75 −0.91 −1.07 −1.27
S.D. 0.00 0.17 0.23 0.26 0.31 0.36 0.41 0.48 0.57 0.71

MPF
Mean 0.00 0.02 0.03 0.05 0.05 0.06 0.08 0.09 0.10 0.11
S.D. 0.00 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04

H/L-FB
Mean 0.00 0.04 0.08 0.10 0.12 0.14 0.16 0.18 0.21 0.23
S.D. 0.00 0.07 0.09 0.09 0.10 0.10 0.11 0.11 0.11 0.10

DSI
Mean 0.00 −0.09 −0.19 −0.28 −0.37 −0.46 −0.56 −0.67 −0.81 −0.96
S.D. 0.00 0.10 0.16 0.24 0.33 0.34 0.36 0.38 0.46 0.49

H/L-SM
Mean 0.00 0.07 0.14 0.18 0.22 0.25 0.29 0.32 0.35 0.38
S.D. 0.00 0.06 0.08 0.10 0.10 0.11 0.11 0.12 0.11 0.11

(b) Mean area ratios in the logarithmic parameters

%Tend 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

logLFB Mean 0.00 −0.03 −0.04 −0.06 −0.08 −0.09 −0.10 −0.12 −0.13 −0.15
S.D. 0.00 0.03 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06

logMPF Mean 0.000 0.004 0.009 0.012 0.014 0.017 0.020 0.023 0.026 0.029
S.D. 0.000 0.006 0.008 0.009 0.011 0.011 0.011 0.011 0.012 0.012

logH/L-FB Mean 0.00 0.01 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.06
S.D. 0.00 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03

logDSI Mean 0.00 −0.02 −0.03 −0.05 −0.06 −0.07 −0.08 −0.09 −0.10 −0.12
S.D. 0.00 0.01 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.04

logH/L-SM Mean 0.00 0.02 0.04 0.05 0.06 0.08 0.09 0.10 0.12 0.13
S.D. 0.00 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.05

Table 4. Slopes (mean and S.D.) in the sEMG raw parameters (a) and logarithmic ones (b) with respect to time as estimated
over every 10% of Tend (S.D.: standard deviation).

(a) Mean slopes in the raw parameters

%Tend 10 20 30 40 50 60 70 80 90 100

LFB
Mean 17.09 11.25 9.90 8.79 8.48 7.99 7.54 8.18 8.10 8.21
S.D. 28.55 14.74 13.83 13.15 11.72 11.01 8.70 9.46 8.90 8.02

MPF
Mean −1.02 −0.55 −0.49 −0.39 −0.32 −0.30 −0.29 −0.28 −0.28 −0.27
S.D. 1.82 0.63 0.39 0.31 0.27 0.22 0.18 0.16 0.15 0.13

H/L-FB
Mean −2.27 −1.35 −1.25 −1.11 −0.83 −0.73 −0.72 −0.76 −0.76 −0.76
S.D. 8.36 2.48 1.20 0.78 0.67 0.58 0.52 0.49 0.46 0.40

DSI
Mean 13.24 7.65 7.82 7.51 7.62 7.09 6.55 6.67 7.17 7.45
S.D. 20.77 8.53 10.01 11.32 12.19 7.77 5.28 4.89 5.80 5.21

H/L-SM
Mean −4.30 −2.64 −2.33 −1.93 −1.53 −1.39 −1.30 −1.23 −1.17 −1.12
S.D. 8.63 2.42 1.44 1.29 0.84 0.78 0.71 0.65 0.61 0.58

(b) Mean slopes in the logarithmic parameters

%Tend 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

logLFB Mean 2.74 1.48 1.04 0.88 0.77 0.69 0.66 0.65 0.61 0.59
S.D. 5.70 2.01 1.10 0.74 0.69 0.52 0.44 0.37 0.30 0.25

logMPF Mean −0.007 −0.004 −0.004 −0.003 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002
S.D. 0.013 0.005 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001

logH/L-FB Mean −0.95 −0.43 −0.38 −0.32 −0.26 −0.23 −0.24 −0.25 −0.26 −0.26
S.D. 2.59 0.79 0.39 0.25 0.20 0.18 0.17 0.17 0.16 0.14
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Table 4. Cont.

logDSI Mean 1.57 0.88 0.78 0.68 0.60 0.57 0.54 0.54 0.53 0.53
S.D. 2.39 0.77 0.54 0.49 0.44 0.39 0.34 0.32 0.30 0.26

logH/L-SM Mean −1.52 −0.85 −0.75 −0.66 −0.58 −0.54 −0.52 −0.52 −0.51 −0.51
S.D. 2.44 0.77 0.55 0.49 0.42 0.36 0.30 0.27 0.25 0.21

3.3. Relationships between Tend and Predictors

The correlation coefficients between Tend and the changes in the raw and the log-
arithmic parameters as computed over every 10% of Tend are shown in Tables 5 and 6.
When the changes were estimated using the area ratio, no significant correlations between
the endurance time and the changes in the raw and logarithmic parameters were found
(Table 5).

On the other hand, there were significant correlations between Tend and the changes in
the raw and the logarithmic parameters as estimated using the slope, except for LFB slopes
estimated over longer periods than 50% of Tend and DSI slopes over 100% Tend (Table 6).

These results showed that the slopes in the logarithmic parameters correlated signifi-
cantly with Tend. Table 6 shows that mean correlation coefficient of the raw parameters is
0.44 and that of the logarithmic ones 0.56, while the percentage increase was 26.3%. The
predictor whose significant correlation was larger than 0.50 was the slope in logH/L-SM.
Scatter plots of two predictors using the area ratio and the slope against Tend and log(Tend)
are shown in Figures 11 and 12, comparing the two predictors using the raw and the loga-
rithmic parameters. Mean correlation coefficients between Tend and the slopes in the raw
and the logarithmic parameters are shown in Figure 13 In a recent study, logH/L-SM was
found to be more sensitive to muscle fatigue than the existing sEMG parameters such as
RMS (root mean square), MPF and H/L-FB. It could be speculated that the more sensitive
the parameter to muscle fatigue the better the correlation with endurance capacity.

Table 5. Correlation coefficients between the endurance times and area ratios as predictors estimated
over the time periods of every 10% of Tend.

(a) Raw parameter slopes v.s. Tend

%Tend 10 20 30 40 50 60 70 80 90 100 Mean

LFB n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.44 a 0.60 b n.s.

MPF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

H/L-FB n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

DSI n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

H/L-SM n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Mean n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

(b) Logarithmic parameter slopes v.s. log(Tend)

%Tend 10 20 30 40 50 60 70 80 90 100 Mean

logLFB n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

logMPF n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

logH/L-FB n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

logDSI n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

logH/L-SM n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Mean n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

n.s.: non-significant; a: p < 0.05 indicates that the correlation coefficient is significant; b: p < 0.05 indicates that the
correlation coefficient is significant and larger than 0.5.
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Table 6. Correlation coefficients between the endurance times and slopes as predictors estimated over the time periods of
every 10% of Tend.

(a) Raw parameters slopes v.s. Tend

%Tend 10 20 30 40 50 60 70 80 90 100 Mean

LFB 0.42 a 0.34 a 0.36 a 0.31 a 0.31 a n.s. n.s. n.s. n.s. n.s. n.s.

MPF 0.50 b 0.43 a 0.58 b 0.56 b 0.54 b 0.60 b 0.59 b 0.60 b 0.53 b 0.50 b 0.54

H/L-FB 0.42 a 0.32 a 0.44 a 0.59 b 0.45 a 0.48 a 0.38 a 0.45 a 0.48 a 0.49 a 0.45

DSI 0.43 a 0.42 a 0.42 a 0.39 a 0.41 a 0.52 b 0.53 b 0.47 a 0.32 a n.s. 0.41

H/L-SM 0.43 a 0.45 a 0.58 b 0.54 b 0.68 b 0.69 b 0.63 b 0.64 b 0.56 b 0.47 a 0.57

Mean 0.44 0.39 0.48 0.48 0.48 0.51 0.46 0.45 0.38 n.s. 0.44

(b) Logarithmic parameters slopes v.s. log(Tend)

%Tend 10 20 30 40 50 60 70 80 90 100 Mean

logLFB 0.49 a 0.48 a 0.57 b 0.69 b 0.62 b 0.65 b 0.65 b 0.64 b 0.55 b 0.47 a 0.58

logMPF 0.57 b 0.49 a 0.62 b 0.58 b 0.57 b 0.63 b 0.57 b 0.56 b 0.45 a 0.40 a 0.54

logH/L-FB 0.52 b 0.39 a 0.47 a 0.59 b 0.59 b 0.57 b 0.41 a 0.45 a 0.45 a 0.46 a 0.49

logDSI 0.57 b 0.53 b 0.60 b 0.60 b 0.64 b 0.66 b 0.60 b 0.58 b 0.51 b 0.45 a 0.58

logH/L-SM 0.57 b 0.55 b 0.59 b 0.60 b 0.66 b 0.70 b 0.66 b 0.65 b 0.57 b 0.51 b 0.61

Mean 0.54 0.49 0.57 0.61 0.61 0.64 0.58 0.58 0.51 0.46 0.56

n.s.: non-significant; a: p < 0.05 indicates that the correlation coefficient is significant; b: p < 0.05 indicates that the correlation coefficient is
significant and larger than 0.5.
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4. Discussion

The main object of this study was to assess the predictability of the endurance time
using logarithmic parameters during isotonic contractions at low-moderate intensity. Pre-
vious studies had only focused on relatively high contraction levels which are generally
uncommon in daily activities. In the present study, at 20% MVC the predictors such as the
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area ratio and the slope using the raw and the logarithmic sEMG parameters were estimated
from the onset to every 10% of Tend, and their relationships with Tend were evaluated.

4.1. Changes in sEMG Parameters

The area ratio and the linear regressive slope as two statistical predictors of Tend
were used to estimate Tend in this study. The area ratios varied linearly with respect
to time (Figure 9). Maïsetti et al. (2002) obtained similar results showing that the area
ratios in sEMG parameters were statistically linear with respect to time [8]. In contrast,
the slopes varied exponentially with respect to time (Figure 10) in MPF and H/L-FB,
while H/L-SM increased during the first part of the low-moderate level endurance test,
probably because the behavior of the time series of the sEMG signal might be related to
additional recruitment of motor units which occurred throughout sustained contractions at
low contraction levels [40]. Similar results were obtained in the isometric endurance test of
Van Dieёn et al. (1998) and in the isotonic test of Lee et al. (2017) [20,23].

4.2. Comparison of Relationships

There were no significant correlations between Tend and the predictor using the area
ratio (Table 3), and scatter plots showed that the coefficients of determination were not
enough to have significant correlation with Tend (the column (a) in Figures 11 and 12).
Maïsetti et al. (2002) also reported no correlations between Tend and the area ratio in MPF,
MDF, and MFCV with the exception of the highestt area ratio of LFB (6–30 Hz) observed
for quadriceps muscles at 50% MVC [8]. In addition, Boyas et al. (2009) demonstrated
that no correlations between Tend and the changes in MPF using the area ratio were found,
but there were significant correlations between Tend and the changes in MPF using the
linear regressive slope [38]. In the present study, when using the slope, we also found
significant correlations between Tend and the changes in the raw and the logarithmic
parameters (Table 6), and the scatter plots showed their relationships (the column (b)
in Figures 11 and 12), although spectral parameters have produced inconsistent trends
during sustained contractions at low level.

As shown in Table 6, the mean correlation coefficient using the logarithmic parame-
ters was increased by 26.3% compared to that using the raw parameters, and significant
correlations larger than 0.50 were found between log(Tend) and the slopes in logH/L-SM
over the duration periods of every 10% of Tend. Previous studies showed that the slope in
the spectral parameters as estimated over a shorter period than Tend could be a suitable
predictor and correlated with Tend significantly. The logarithmic transformations were
used to reduce the large variability in the raw parameters, and to show more sensitivity in
localized muscle fatigue in sEMG-based assessments.

4.3. Limitations

The spectral parameters namely LFB, MPF, H/L-FB, DSI, and H/L-SM were extracted
from the sEMG signal which, however, was non-stationary during the test, and wasaf-
fected by many confounding factors [41], including electrode location, thickness of the
subcutaneous tissues, the detection system used to obtain the recording, changes in the
transmembrane action potential, and cross-talk from nearby muscles.

Due to all these confounding factors, caution is needed when using changes in the
sEMG parameter as a predictor of the level of muscle fatigue. Although these factors could
not be entirely excluded and do affect the estimated spectral parameters, we followed the
recommendations that the careful placement of the electrodes between the innervation
zone and the tendon and the normalized amplitudes should minimize the influence on
the results.

The logarithmic transformation was used to convert the sEMG spectral parameters
during the endurance dynamic contractions to minimize the effects of these factors [42].
MacIsaac et al. (2001) demonstrated that muscle fatigue could be assessed during dynamic
contractions using a short-term Fourier transformation [43]. Some authors extracted
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the signal spectral moments as spectral parameters using Fourier transformation [44].
Coorevits et al. (2008) found that continuous wavelet transformation and traditional
Fourier transformation are generally reliable to assess muscle fatigue [45].

As mentioned in the introduction, the endurance capacity is problematic in measuring
the effect of physical and psychological factors such as pain and motivation. Because
many factors can influence sEMG spectral parameters, the correlation of their changes with
endurance might be lower than expected.

5. Conclusions

The present study demonstrated that the slope of the logarithmic parameter was a
suitable predictor for monitoring biceps brachii muscle fatigue and for predicting Tend,
even when it was estimated over every 10% of Tend during isotonic fatiguing contractions
at a low-moderate level. The main conclusions of this study can be stated as follows:

(1) The linear regressive slope was a more suitable predictor of Tend than the area ratio.
(2) Significant correlations using the logarithmic parameters were about 26.3% higher

than those using the raw ones.
(3) Significant correlations larger than 0.5 were found between log(Tend) and the slopes

of logH/L-SM over a duration time of every 10% of Tend.

From a clinical perspective, this sEMG method is useful to predict Tend compared to
the mechanical method of measuring Tend, in reducing the length of the endurance test
and in minimizing the influence of physical and psychological factors. Further studies
are needed to evaluate this method for the muscles of the lower limbs and to develop the
predictability using a combination of the parameters.
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