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Abstract: The purpose of this research was to investigate the effect of mechanical features and
geometrical parameters on the stress–strain state of a cracked layered plate under pure bending
(bending moments are uniformly distributed at infinity). The sixth-order bending problem of
an infinite, symmetric, three-layer plate with two coaxial through cracks is considered under the
assumption of no crack closure. By using complex potentials and methods of the theory of functions
of a complex variable, the solution to the problem was obtained in the form of a singular integral
equation. It is reduced to the system of linear algebraic equations and solved in a numerical manner
by the mechanical quadrature method. The distributions of stresses and bending moments near
the crack tips are shown. Numerical results are presented as graphical dependences of the reduced
moment intensity factor on various problem parameters. In this particular case, the optimum ratio of
layer thicknesses is determined.

Keywords: bending; layered plate; crack; complex potential; moment intensity factor

1. Introduction

Plate-shaped structures are widely used in engineering and are often operated un-
der bending loads. Their destruction is largely caused by crack propagation, therefore,
acquiring information about crack tip stresses under such conditions is very important.

Two-dimensional sixth-order plate theories are popular in the scientific community.
They use simpler (compared to the three-dimensional theories) relations of the elasticity
theory and at the same time, they allow one to take into account the plate thickness and
material anisotropy. The results of the first investigations into the stress–strain state of
cracked plates have been collected in the handbook [1]. The stress and displacement
distribution near the crack tips are described in [2]. These, and most later published
cracked plate bending investigations refer to homogeneous plates [3,4]. The bending
of a homogeneous plate with coaxial cracks in terms of sixth-order theories has been
investigated, for example, in [5–7]. Anisotropic and composite plates have not remained
unheeded either. However, such investigations are mostly devoted to tensile loads [8],
smooth-shaped cracks [9], anisotropic non-layered plates [10] and sandwich-structured
non-cracked plates [11,12]. For plates with straight through cracks under bending load, the
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finite element method is usually used, for example [13]. Recently, new approaches have
been proposed, for example, an energy-based modal decomposition method [14].

Analytical research of cracked layered plates in the frame of sixth-order theories was
initiated by [15,16]. Models from these studies were adapted to the method of singular
integral equations by [17].

Due to the lack of publicly available numerical and experimental research of the
bending of layered plates with a system of through cracks, especially on the basis of refined
theories, we decided to fill this gap, starting with a study of the effect of the presence of
two coaxial cracks on the stress–strain state of the symmetric three-layer composite plate.

Mark meanings are listed in Table 1 to improve the understanding of the article by
readers.

Table 1. Mark meanings.

Mark Mark Meaning

h plate thickness

E1
Young′s modulus of outer layers in the plane of

isotropy

E2
Young′s modulus of inner layer in the plane of

isotropy

ν1 Poisson′s ratio of outer layers in the plane of isotropy

ν2 Poisson′s ratio of inner layer in the plane of isotropy

G′1
shear modulus of outer layers in the transverse

direction

G′2
shear modulus of inner layer in the transverse

direction

2l crack length

xj coordinates of the center of j-th crack

2c distance between inner tips of cracks

M bending loads at infinity

My bending moments

Hxy twisting moments

Qx, Qy shear forces

u(k), v(k), w(k) components of displacement vector in the k-th layer

σ
(k)
x , σ

(k)
y , τ

(k)
xy , τ

(k)
z̃x , τ

(k)
z̃y

components of stress tensor in the k-th layer

W(x, y), F(x, y), Ω(x, y) unknown functions

z complex variable

Φ(z), Ψ(z) complex potentials

Ki(x) Macdonald function of i-th order

K±M bending moment intensity factor

K reduced moment intensity factor

2. Materials and Methods

Consider an infinite, thin, three-layer plate of thickness h. The plate has physical and
geometrical symmetry about its middle plane. The origin O of a chosen global Cartesian
coordinate system Oxyz̃ is placed at the center of symmetry, the xy-plane coincides with
the middle plane of the plate and the z̃−axis is directed along the downward vertical plane.
The transverse isotropy of each layer is assumed (the planes of isotropy are parallel to
the middle plane). The material of the outer layers is characterized by Young’s modulus
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E1, Poisson’s ratio ν1 in the plane of isotropy and the shear modulus G′1 in the transverse
direction, the material of the inner layer—by E2, ν2 and G′2, respectively. We also require
the conditions of an ideal mechanical contact at the interfaces z̃ = ±h1/2.

The plate contains two equal through coaxial cracks of length 2l. The centers Oj

(hereinafter j = 1, 2) of the cracks have the coordinates xj = (−1)j(c + l), yj = z̃j = 0 and
are the origins of local Cartesian coordinate systems Ojxjyj z̃j (see Figure 1).
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Figure 1. Plate geometries and load scheme.

Let us determine and compute the moment intensity factor under pure bending
(bending moments M∞

y = M are applied at infinity and there is no contact between
the faces of cracks). The absence of contact can be ensured by tensile loads at infinity,
the contribution of which to the stress state of the plate can be obtained from the known
solution of the plane problem of the elasticity theory [18]. The solution to the given problem
is a superposition of the solutions to the following two problems: bending of the solid
plate and of the plate with cracks under the corresponding load applied to their faces. We
restrict ourselves to the second one, the boundary conditions of which in local coordinate
systems are as follows:

M+
y −M−y = H+

xy − H−xy = Q+
y −Q−y = 0,

∣∣xj
∣∣ < l, (1)

M+
y −M−y = 2M, H+

xy + H−xy = Q+
y + Q−y = 0,

∣∣xj
∣∣ < l, (2)

where My, Hxy, and Qy are bending moments, twisting moments and shear forces, respec-
tively; superscripts “+” and “−” stand for limits at y→ ±0 .

According to [15], the through-the-thickness displacement variation in the k-th layer
can be expressed in the following form:

u(k) − iv(k) = −2
∂

∂z

{
z̃W + f̃k(z̃)[F− iΩ]

}
, w(k) = W, k = 1, 2, 3, (3)

where u(k), v(k) and w(k) are components of displacement vector; z = x + iy ∈ C,
∂
∂z = 1

2

(
∂

∂x − i ∂
∂y

)
; W(x, y), F(x, y) and Ω(x, y) are unknown functions; f̃k(z̃) are odd

functions which satisfy the condition f̃3(z̃) = − f̃1(−z̃) and matching conditions for the
displacements and shear stresses at the interfacial zones between layers

f̃1

(
−h1

2

)
= f̃2

(
−h1

2

)
, G′1

d f̃1

dz̃

(
−h1

2

)
= G′2

d f̃2

dz̃

(
−h1

2

)
, (4)
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and the additional condition
d f̃1

dz̃

(
−h

2

)
= 0. (5)

The stress distribution in the k−th layer is obtained by inserting (3) to the Hooke law:

σ
(k)
x + σ

(k)
y = − 4Ek

1− νk

∂2

∂z∂z

{
z̃W + f̃k(z̃)F

}
,

σ
(k)
y − σ

(k)
x + 2iτ(k)

xy =
4Ek

1 + νk

∂2

∂z2

{
z̃W + f̃k(z̃)[F− iΩ]

}
, (6)

τ
(k)
z̃x − iτ(k)

z̃y = −2G′k f̃ ′k(z̃)
∂

∂z
{F− iΩ},

where
∂

∂z
=

∂

∂z
, E3 = E1, ν3 = ν1, G′3 = G′1.

Instead of stress tensor components (6) we will use integral parameters of stress state
(bending moments Mx and My, twisting moment Hxy and shear forces Qx and Qy) which
are the following

Mx + My =
3

∑
k=1

z̃k∫
z̃k−1

z̃
(

σ
(k)
x + σ

(k)
y

)
dz̃ = 4

∂2

∂z∂z
{mW − m̃F},

My −Mx + 2iHxy =
3

∑
k=1

z̃k∫
z̃k−1

z̃
(

σ
(k)
y − σ

(k)
x + 2iτ(k)

xy

)
dz̃ = 4

∂2

∂z2 {nW + ñ[F− iΩ]}[F− iΩ], (7)

Qx − iQy =
3

∑
k=1

z̃k∫
z̃k−1

(
τ
(k)
z̃x − iτ(k)

z̃y

)
dz̃ = −2ρ̃

∂

∂z
{F− iΩ},

where

z̃3 = −z̃0 =
h
2

, z̃2 = −z̃1 =
h1

2
, m =

h3

12

[
E
(
γ3 − 1

)
1− ν

− E1γ3

1− ν1

]
,

m̃ =
3

∑
k=1

z̃k∫
z̃k−1

Ek
1− νk

z̃ f̃k(z̃)dz̃, n =
h3

12

[
E
(
1− γ3)
1 + ν

+
E1γ3

1 + ν1

]
,

ñ =
3

∑
k=1

z̃k∫
z̃k−1

Ek
1 + νk

z̃ f̃k(z̃)dz̃, ρ̃ =
3

∑
k=1

G′k
(

f̃k(z̃k)− f̃k(z̃k−1)
)

.

Suppose that f̃k(z̃) is given by the following cubic polynomials:

f̃1(z̃) = Az̃ + Bz̃3
(

h1

2
≤ |z̃| ≤ h

2

)
, f̃2(z̃) = z̃ + Cz̃3

(
|z̃| ≤ h1

2

)
. (8)

The values of A, B and C are obtained from (4) and (5): A
B
C

 =
2

(1− β)γ2 + 3β− 1

 β
−4β/

(
3h2)

2
[
(β− 3)γ2 + 3(1− β)

]
/
(
3h2

1
)
, γ =

h1

h
, β =

G′2
G′1

, (9)
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It is shown in [13] that following equations take place

∆∆W = 0, F =
ρ

2ρ̃
∆W, Ω− 2ρ̃

ñ
Ω = 0, (10)

where ∆ is a Laplace operator, ρ = n−m.
Represent W in terms of analytical functions ϕ(z) and χ(z) by the Goursat′s formula

W = Re(zϕ(z) + χ(z)). Therefore, from (10) we obtain F = 2ρ
ρ̃ ReΦ(z), where (z) = ϕ′(z).

Taking into account (8) and (9), the integral parameters (7) can be written as follows

My + iHxy = 2mReΦ(z) + n
[
zΦ′(z) + Ψ(z)

]
+

2ρ

k2

[
2

∂2Φ(z)
∂z2 − i

∂2Ω̃(z, z)
∂z2

]
; (11)

Qx − iQy = −ρ

[
2

∂Φ(z)
∂z

− i
∂Ω̃(z, z)

∂z

]
, (12)

where

Ω̃(z, z) =
2ρ̃

ρ
Ω, ∆Ω = k2Ω,

k2 =
40
h2

2 + γ(β− 1)
(
3− γ2)

E
G′(1+ν) (γ

5 − 5γ3 + 4) + E1γ3

G′1(1+ν1)
[(1− 2β)γ2 + 6β− 1]

,

Ψ(z) = χ′′ (z).

Using the approach from [5], represent Φ(z) and Ω̃(z, z) in the form

Φ(z) =
1

2πi

∫
L

f (t)dt
t− z

, Ω̃(z, z) =
1

πi

∫
L

wK1(w)

(
1

t− z
− 1

t− z

)
f (t)dt, (13)

where L = {x|c < |x| < c + 2l}, w = k
√
(t− x)2 + y2, hereinafter Ki(x) is the Macdonald

function of i−th order, f (t) is an unknown real-valued function.
By introducing the new functions

V(z) =
m
n

Φ(z) + zΦ′(z) + Ψ(z), Φ(z) = Φ(z),Ψ(z) = Ψ(z),

Ω1(z, z) =
∂Ω̃
∂z
− 1

πi

∫
L

f (t)dt

(t− z)2 , Ω2(z, z) =
∂2Ω̃
∂z2 −

2
πi

∫
L

f (t)dt

(t− z)3 ,

and using (13) we rewrite (11) and (12) as follows:

My + iHxy = n
[

m
n

Φ(z) + V(z) + (z− z) Φ′(z) + i
2ρ

nk2 Ω2(z, z)
]

, (14)

Qx − iQy = −iρΩ1(z, z), (15)

where

Ω1(z, z) =
i
π

∫
L

[
w2K̃′1(w)

(t− z)2 +
(t− z)k4(t− x)

w2

]
f (t)dt,

Ω2(z, z) =
1

πi

∫
L

[
w2K̃2(w)

(t− z)3 −
ik2

2
Im
(

wK1(w)

t− z

)
+ 1

ik6y(t− z)(t− x)K1(w)

w3

]
f (t)dt,

K̃1(x) = K1(x)− 1
x

, K̃2(x) = K2(x)− 2
x2 .
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Functions Ω1 and Ω2 have the following properties:

Ω+
1 (x, x) = Ω−1 (x, x) = 0, Ω+

2 (x, x) = Ω−2 (x, x) = −k2 f (x), x ∈ L. (16)

Taking into account (14)–(16) from the boundary conditions (1), we obtain a linear
conjunction problem

V+(x)−V−(x) =
(

3m
n
− 2
)

f (x), x ∈ L. (17)

Problem (17) has the solution

V(z) =
(

3m
n
− 2
)

1
2πi

∫
L

f (t)dt
t− z

. (18)

Satisfying conditions (1), we conclude that g1(t) = 0,g2(t) =
( 3m

n − 2
)

f (t).
Taking into account (14), (15), (18) and the symmetry of the problem, and satisfying the

boundary conditions (2), leads to the following singular integral equation in an unknown
function g(x̃) = f (lx̃).

1
π

1∫
−1

R(t, x̃)g(t)dt = −2M
n

, −1 < x̃ =
x2

l
< 1, (19)

with kernel

R(t, x̃) =
a + bK̃2(w̃(t, x̃))

t− x̃
+

a + bK̃2(w̃1(t, x̃))
t + x̃ + d + 2

,

where

a = 2
(

1− 2m
n

)
, b = 4

(
1− m

n

)
, d =

2c
l

, w̃(t, x̃) = kl|t− x̃|,

w̃1(t, x̃) = kl|t + x̃ + d + 2|.

Equation (19) must be solved under the additional condition

1∫
−1

g(t)dt = 0, (20)

which ensures that displacements are single-valued when bypassing the contours of cracks.
Bending moment intensity factors are defined as

K(j)±
M = ±m

√
l lim
x̃j→±1

[√
1− x̃j

2g
(

x̃j
)]

, K(1)+
M = K(2)−

M , (21)

where signs “+” and “−” correspond to crack tips xj = l and xj = −l, respectively.
Distributions of bending moments, twisting moment, shear forces and stresses in the

k−th layer near the crack tip are [15]: Mx
My
Hxy

 =
KM√

2r

 cos θ
2 −

1
2 sin θ sin 3θ

2
cos θ

2 + 1
2 sin θ sin 3θ

2
1
2 sin θ cos 3θ

2

+ O(1),Qx = Qy = O(1),

σ
(k)
x + σ

(k)
y = − EkKM

m(1 + νk)
√

2r

[(
2(1 + νk)

1− νk

)
z̃ cos

θ

2

]
+ O(1),

σ
(k)
y − σ

(k)
x = − EkKM

m(1 + νk)
√

2r

{[
2
(

1 +
m
n

)
z̃− hρ

ñ
fk

(
2z̃
h

)]
cos

θ

2
−
[

z̃− hρ

2ñ
fk

(
2z̃
h

)]
sin θ sin

3θ

2

}
+ O(1),
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τ
(k)
xy = − EkKM

m(1+νk)
√

2r

{[
hρ
2ñ fk

(
2z̃
h

)
−
(
1 + m

n
)
z̃
]

sin θ
2

− 1
2

[
z̃− hρ

2ñ fk

(
2z̃
h

)]
sin θ cos 3θ

2

}
+ O(1),τ(k)

z̃x = τ
(k)
z̃y = O(1),

where r, θ are polar coordinates that originate at the crack tip.

3. Results and Discussions

The system of integral Equations (19) and (20) is solved in a numerical manner, with
the help of the mechanical quadrature method [18] of E1

G′1
= 4, E2

G′2
= 2.5, ν1 = ν2 = 0.3

and for various values of β, h
l , d and γ. The nodal values of the sought-for function at

zeros of the first kind Chebyshev polynomials, as solutions to system of linear equations,
are obtained using Python′s NumPy library (the solve method from the linalg module).
The bending moment intensity factor (21) is calculated for one of the two cracks from the
formula

K±M = ∓2m
n

M
√

lg̃(±1), g̃(t) = −n
√

1− t2g(t)
2M

, (22)

where N—number of nodes in mechanical quadrature method,

g̃(1) =
1
N

N

∑
i=1

(−1)i+1 g̃(ti) cot
(

2i− 1
4N

π

)
,

g̃(−1) =
1
N

N

∑
i=1

(−1)i+N g̃(ti) tan
(

2i− 1
4N

π

)
,

ti = cos
(

2i− 1
2N

π

)
.

Figures 2–4 illustrate the graphical dependences of the reduced moment intensity

factor K =

∣∣∣∣ K−M
M
√

l

∣∣∣∣ for the inner crack tip on various geometrical and mechanical parameters,

where K−M is defined by (22). Python′s matplotlib library is used to visualize the data. Values
of the moment intensity factor for the outer crack tip are not shown because they are always
smaller than corresponding values for the inner crack tip. That is, crack propagation occurs
first towards each other.
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data. Values of the moment intensity factor for the outer crack tip are not shown because 
they are always smaller than corresponding values for the inner crack tip. That is, crack 
propagation occurs first towards each other. 

 
Figure 2. Dependence of the reduced moment intensity factor for inner crack tip on the layer thickness
ratio γ = h1/h at h/l = 2c/l = 1 and various values of shear modulus ratio β = G′2/G′1.
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Figure 4. Dependence of the reduced moment intensity factor for inner crack tip on the distance
between crack tips d = 2c/l at β = G′2/G′1 = 0.5, γ = h1/h = 0.8 and various values of plate-
thickness-to-crack-length ratio.

All the calculations are carried out with an absolute error not exceeding 0.0001. The
accuracy was checked by comparing the results for N and 2N nodes of the mechanical
quadrature method.

4. Conclusions

From Figures 3 and 4 it follows that the dependences of the bending moment inten-
sity factor on the geometrical parameters have the same character as for the single-layer
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plate [1,5]. Therefore, a layered plate with two coaxial cracks under pure bending is weaker
than the same plate with one crack.

Figure 2 indicates that the plates for which the shear modulus in transverse direction
of inner layer is greater than the one of outer layers, are stronger. It is also possible to
obtain the optimum ratio of layer thicknesses (in our calculated case it is h1 ≈ 0.7h), at
which the bending moment intensity factor is the lowest.

Note that in the partial cases (materials of all layers are the same, infinite distance
between the crack tips, infinitely thin plate) obtained values of the reduced bending
moment intensity factor are the same as in [1,5,15].

Built dependencies allow us to make recommendations on the optimum structure of
plate construction units and indicate the bending modes of their safe operation.
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