SUPPORTING INFORMATION

Self Assembled Multinuclear Complexes for Cobalt(II/III) Mediated Sensitized Solar Cells

Edoardo Marchini *1, Stefano Caramori *1, Rita Boaretto 1, Vito Cristino 1, Roberto Argazzi 2, Alessandro Niorettini 1 and Carlo Alberto Bignozzi 1

¹ Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy. E-mail: bar@unife.it, crsvti@unife.it, nrtlsn@unife.it, g4s@unife.it

² CNR-ISOF c/o Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy. E-mail: agr@unife.it

* Correspondence: E.M. mrcdrd@unife.it; S.C. cte@unife.it; Tel.: +39 0532455146

Table of contents:

Structure of the synthesized species	2
¹ H-NMR spectrum of the TMAM ligand	3
¹ H and ¹³ C NMR spectra of the complex 1 (Ru(TMAM))	3
ESI-MS spectrum of the complex 1 (Ru(TMAM))	4
¹ H and ¹³ C NMR spectra of the complex 2 ((Ru(TMAM))-Ag ⁺)	5
¹ H and ¹³ C NMR spectra of the complex 3 (2Z907-Ag ⁺)	6
¹ H and ¹³ C NMR spectra of the complex 4 (2Z907-Ag ⁺ -(Ru(TMAM)))	7
Spectroscopic features of the complexes	8
TCSPC decay on ZrO ₂	9
Cyclic voltammetry of the complexes loaded on TiO ₂	9
Charge separated state decay of 3 (2Z907-Ag⁺)	10
Integrated current density	10

Structure of the synthesized species

(a)

 $\begin{bmatrix} CH_3 \\ H_3C CH_3 \\ H_3C - N^+ - CH_2 \\ H_3C \\ H_3C \\ N^- N^+ - CH_2 \\ N^+ - CH_2 \\ N^- N^+ - CH_2 \\ N^+ -$

(c)

(b)

(d)

(e)

Figure S1: Structure of the chemical species reported in this work: (a) TMAM (4,4' - bis(trimethylaminomethyl)2,2'bipyridine), (b) [Ru(TMAM)₂Cl₂](PF₆)₄, (c) **1** (Ru(TMAM)), (d) **2** (Ru(TMAM))-Ag⁺), (e) **3** (2Z907-Ag⁺) and (f) **4** (2Z907-Ag⁺-(Ru(TMAM)))

¹H-NMR spectrum of the TMAM ligand

Figure S2: ¹H NMR (400 MHz, Acetonitrile- d_3 , δ ppm) of TMAM: 8.88 (dd, J = 5.0, 0.8 Hz, 2H), 8.62 (dd, J = 1.9, 0.8 Hz, 2H), 7.60 (dd, J = 5.0, 1.8 Hz, 2H), 4.55 (s, 4H), 3.13 (s, 18H)

¹H and ¹³C NMR spectra of the complex 1 (Ru(TMAM))

Figure S3: ¹H NMR (400 MHz, Acetone-d₆, δ ppm) of the complex **1** (Ru(TMAM)): 10.00 (d, J = 5.8 Hz, 2H), 8.87 (s, 2H), 8.83 (s, 2H) 8.13 (d, J = 5.7 Hz, 2H), 7.99 (d, J = 6.0 Hz, 2H), 7.65 (dd, J = 5.7, 1.7 Hz, 2H), 5.06 – 4.86 (m, 8H), 3.49 (s, 18H), 3.39 (s, 18H)

Figure S4: ¹³C NMR (400 MHz, Acetone-d₆, δ ppm) of the Complex **1** (Ru(TMAM)): 157.63, 157.69, 155.55, 151.18, 149.65, 136.85, 135.92, 130.30, 127.09, 126.66, 66.92, 66.61, 52.91, 52.80

ESI-MS spectrum of the complex 1 (Ru(TMAM))

Figure S5: (a) ESI-MS spectrum of the complex **1** (Ru(TMAM)), m/z 656.93 [M-2TFSI]²⁺, (b) Theoretical and experimental Ru distribution

Figure S6:¹H NMR (400 MHz, DMSO-d₆, δ ppm) of the complex **2** (Ru(TMAM)-Ag⁺): 9.63 (1H), 8.68 (1H), 8.61 (1H), 7.92 (1H), 7.82 (1H), 7.47 (1H), 4.74 (2H), 4.55 (2H), 3.23 (9H), 3.08 (9H)

Figure S7: ¹³C NMR (400 MHz, DMSO-d₆, δ ppm) of the complex **2** (Ru(TMAM)-Ag⁺): 156.97, 156.26, 155.47, 150.75, 138.08, 137.09, 131.01, 130.68, 127.59, 127.06, 118.55, 66.62, 66.43, 56.46, 53.14

Figure S8:¹H NMR (400 MHz, DMSO-*d*₆, δ ppm) of the complex **3** (2Z907-Ag⁺): 9.44 (1H), 9.06 (2H), 8.93 (1H), 8.67 (1H), 8.52 (1H), 8.19 (1H), 7.79 – 7.73 (2H), 7.60 (1H), 7.27 (1H), 7.06(1H), 2.85 (2H), 2.61 (2H), 1.75 (2H), 1.52 (2H), 1.32 – 1.15 (24H) 0.78 (6H)

FIGURE S9: ¹³C NMR (400 MHz, DMSO-*d*₆, δ ppm) of the complex **3** (2Z907-Ag⁺): 165.77, 165.39, 159.47, 158.06,157.87, 156.62, 153.90, 153.48,153.08, 152.06, 151.56,138.59, 137.84, 132.04, 131.15, 127.75, 126.56, 125.70, 124.18,124.02, 123.43,123.11, 35.14, 34.73, 31.76, 31.66, 30.28, 30.09, 29.42, 29.32, 29.28, 29.18, 29.14, 29.06, 22.57, 22.51, 14.43, 14.39

Figure S10: ¹H NMR (400 MHz, DMSO-d₆, δ ppm) of the complex **4** (2Z907-Ag⁺-Ru(TMAM)): 9.71 (1H), 9.42 (1H), 9.05 (2H), 8.93 (1H), 8.72 -8.63 (3H), 8.52 (1H), 8.21 (1H), 7.91 (1H), 7.82 (1H), 7.77 (2H), 7.60 (1H), 7.45 (1H), 7.28(1H), 7.05 (1H), 4.75 (2H), 4.57 (2H), 3.21 (3H), 2.98 (3H), 2.87 (2H), 2.61 (2H), 1.76 (2H), 1.52 (2H), 1.28 – 1.14 (24H), 0.8 (6H)

FIGURE S11: ¹³C NMR (400 MHz, DMSO-d₆, δ ppm) of the complex **4** (2Z907-Ag⁺-Ru(TMAM)): 165.87, 165.45, 159.51, 158.05, 157.91, 156.99, 156.48, 156.42, 155.51, 153.89, 153.41, 153.04, 152.00, 151.55, 150.66, 138.99, 138.03, 137.60, 136.50, 133.55, 132.53, 130.73, 130.46, 129.35 128.46, 127.75, 127.43, 126.95, 126.58, 125.67, 124.72, 124.16, 124.00, 123.37, 123.06, 66.68, 66.47, 53.12, 52.99, 35.13, 34.73, 31.75, 31.65, 30.22, 30.07, 29.42, 29.32, 29.26, 29.17, 29.12, 29.04, 22.56, 22.50, 14.41, 14.36

Spectroscopic features of the complexes

Figure S12: IR normal modes of NCS and CN groups in (a) **Z907** and of **3** (2Z907-Ag⁺), (b) **1** (Ru(TMAM) and **2** (Ru(TMAM)-Ag⁺) and (c) **2** (Ru(TMAM)-Ag⁺), **3** (2Z907-Ag⁺) and **4** (2Z907-Ag⁺-Ru(TMAM))

Figure S13: Comparison between calculated and experimental absorption spectra of the complex **4** (2Z907-Ag⁺-Ru(TMAM))

TCSPC decay on ZrO₂

Figure S14: Bi-exponential decay of the luminescence of 4 (2Z907-Ag⁺-Ru(TMAM)) loaded on ZrO_2 recorded at 640 nm (blue line)

Cyclic voltammetry of the complexes loaded on TiO₂

Figure S15: CVs of **Z907** (black line), **3** (2Z907-Ag⁺) (red line) and of **4** (2Z907-Ag⁺- Ru(TMAM)) (blue line) loaded on TiO₂ thin films

Charge separated state decay of 3 (2Z907-Ag⁺)

Figure S16: Bi-exponential decay of the transient absorption of the charge separated state of 3 $(2Z907-Ag^+)$ on TiO₂ at 770 nm

Integrated current density

Figure S17: Integrated current density for **Z907** (black line), **3** (2Z907-Ag⁺) (red line) and **4** (2Z907-Ag⁺-Ru(TMAM)) (blue line) extracted via integration of the photoaction spectrum.