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Abstract: The Green’s function (GF) directly eases the efficient computation for acoustic radiation
problems in shallow water with the use of the Helmholtz integral equation. The difficulty in solving
the GF in shallow water lies in the need to consider the boundary effects. In this paper, a rigorous
theoretical model of interactions between the spherical wave and the liquid boundary is established by
Fourier transform. The accurate and adaptive GF for the acoustic problems in the Pekeris waveguide
with lossy seabed is derived, which is based on the image source method (ISM) and wave acoustics.
First, the spherical wave is decomposed into plane waves in different incident angles. Second, each
plane wave is multiplied by the corresponding reflection coefficient to obtain the reflected sound
field, and the field is superposed to obtain the reflected sound field of the spherical wave. Then, the
sound field of all image sources and the physical source are summed to obtain the GF in the Pekeris
waveguide. The results computed by this method are compared with the standard wavenumber
integration method, which verifies the accuracy of the GF for the near- and far-field acoustic problems.
The influence of seabed attenuation on modal interference patterns is analyzed.

Keywords: Helmholtz integral equation; the Green’s function; image source method; spherical wave;
lossy seabed; modal interference

1. Introduction

The Green’s function (GF) is the fundamental element in the acoustic calculation,
which describes the sound field generated by a point source under certain boundary
conditions or initial conditions, that is, the acoustic transfer relationship between the
vibration source and the receiver is established. Therefore, the GF is widely used in the
acoustic computational method, such as the Helmholtz integral method, which is generally
a concise formulation of the partial differential equation for acoustic problems by using
the Gaussian theory and automatically meeting the boundary conditions, the radiated
sound field in different fluid environments (infinity field, half space, closed space, etc.)
can be investigated efficiently by adjusting the GF of the Helmholtz integral method [1–3].
Additionally, the GF provides us with a lot of convenience of an acoustic problem where
we can not only inverse the vibration characteristics of the source through the identified
acoustic characteristics but can also easily calculate the pressure level at any point according
to the configured radiator in the corresponding fluid [4]. Due to the GF having these
advantages in acoustic computation, it is very significant for acoustic holography [5–7],
beamforming [8], acoustic radiation and scattering [9–11], acoustic measurement [12], etc.
By introducing the GF into the Helmholtz integral equation, acoustic calculations become
simpler and more flexible. In the equation, boundary conditions on the surface of the source,
such as the sound pressure (Dirichlet condition), the normal velocity (Neumann condition),
and the boundary normal conductance (Robin condition), can be selectively given in the
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integral equation to match the elastic radiator for the acoustic radiation calculation [10],
and a suitable GF can be chosen to establish the transfer relationship between the source
on the structure surface and the sound field in the fluid environment. Thus, we can
solve the radiated sound field or invert the vibration characteristics of the radiator via
the scheme of combining the Helmholtz integral equation and the GF. Subsequently,
computational methods such as boundary elements [13], equivalent sources [14], and
hydroelasticity theory [15] have been extended to promote further developments in the
fields of acoustic cloaking design, near-field acoustic field measurements, and target
identification for underwater vehicles. However, when the integral method is utilized
for the structural radiation in shallow water, the universal acoustic problems of the near
and far field are inevitable. Consequently, the GF must be adjusted and adapt to such
problems [16].

Different from the GF in infinity field or half space, the solution of the GF in shallow
water involves different mathematical treatment and the corresponding applicable condi-
tions. Physically, the GF in shallow water is the solution to the inhomogeneous Helmholtz
equation for a point source, which satisfies the sound conditions of the upper and lower
boundaries, which leads to the fact that the difficulty in deriving the GF in shallow water
lies in establishing the interaction between the sound field and the boundaries, especially
for seabeds with different types. Currently, the most prominent models for solving the
GF in shallow water are the ray method [17], the normal mode (NM) method [18], the
wavenumber integration (WI) method [19], and the parabolic equation (PE) method [20].
The theoretical foundation of all sound propagation models is the acoustic wave equation;
it is only that the mathematical processing strategies used for nonhomogeneous wave
equations are different, in addition to the form of the solution [21]. Therefore, each model
has the applicable conditions that make it suitable for a practical problem.

To meet the requirements of studying the structural acoustic radiations in shallow
water, in which the near- and far-field problem will be involved, a common strategy is to
apply a combination of the near- and far-field GFs to ensure high computational efficiency
and accuracy (e.g., the image source method (ISM) and the NM for the far- and near-
field sound fields, respectively) [15,16]. However, there are some limitations to such a
strategy. First, it will involve a distance connection problem of the near and far fields,
which is inconvenient to execute in the calculation program. Additionally, the near-field
ISM involves the problem of the difference between the symmetry of the incident spherical
wave and the form of the fluid–fluid interface. The classical ISM, in which a process that
uses the incident spherical wave multiplied directly by the constant reflection coefficient
of the plane wave to represent the reflected sound field is feasible for an ideal seabed
since the reflection coefficient is always constant (i.e., 1) at any angle, where each order
of plane wave in a spherical wave multiplied by a constant is equal to a spherical wave
multiplied directly by a constant. However, for the liquid seabed, for example, the Pekeris
waveguide, the reflection coefficient of a plane wave at the liquid–liquid interface is not
always constant, and when there is sound absorption in the seabed medium, there can be
no total reflection. It is inaccurate to represent the reflected sound field by the spherical
wave directly multiplied by a certain reflection coefficient. Therefore, the strategy of using
a combination of the ISM and NM cannot accurately solve the far- and near-field acoustic
problem, and a more adaptable GF needs to be explored.

In this paper, a rigorous ISM model of the interaction between the spherical wave and
the plane interface on the liquid–liquid boundary is established by combining classical ISM
with the wave acoustics, an accurate GF is derived for the near and far fields in the Pekeris
waveguide, and the sound attenuation in a homogeneous liquid seabed is introduced. This
theoretical model mainly consists of three parts. First, the spherical wave of a point source
is decomposed into plane waves in different directions based on the Fourier transform.
Then, we need to make the symmetry of the sound field waves unified with the form of
the plane interface, as we are more familiar with the theory of reflection and transmission
of plane waves. Thus, it is necessary to convert the spherical coordinates to Cartesian
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coordinates, then each plane wave is multiplied by the corresponding reflection coefficient
to obtain the reflected sound field. Finally, all of the plane wave components of the reflected
sound field are superimposed to obtain the spherical wave reflected by the liquid–liquid
interface. The results calculated by this rigorous ISM are compared with the standard WI to
verify the accuracy for the near- and far-field acoustic problem in the Pekeris waveguide.

2. Theoretical Model of the Rigorous ISM

The theoretical foundation of the classical ISM for deriving the GF in the Pekeris
waveguide is ray acoustics, where the sound field at any field point can be expressed
as a superposition summation of the direct wave radiated by the sound source and the
sound field reflected by the fluid–fluid interface [22]. As shown in Figure 1a, the point
source emits sound waves represented by the radiation rays, and then each ray follows
the Snell theorem of reflection and transmission on the upper and lower interfaces (i.e.,
each ray is multiplied by the reflection coefficient of the corresponding incident angle, and
the reflected sound field can be obtained at the certain field point, where the effects of the
upper and lower boundaries on the physical source are considered by the image sources).

Figure 1. Schematic diagram of the Green’s function (GF) in shallow water: (a) the principle of the rigorous image source
method (ISM); (b) sound reflection of spherical waves on the liquid–liquid interface.

However, the traditional ISM is generally applied when the distance between the
source and the receiver to the field is much larger than the wavelength (or far field), and
the reflection problem of spherical waves on the interface can be approximated by the
ISM. However, when the distance is comparable to the wavelength (i.e., the near field), the
results of the traditional ISM have some deviations from the practical sound field, and then
it is necessary to strictly observe the wave acoustics method to establish the interaction
mechanism of the near-field spherical wave and the interface. As shown in Figure 1b, when
the spherical wave radiated from the point source interacts with the liquid–liquid interface,
the spherical wave needs to be decomposed into plane waves in different directions, and
then the reflection theory of plane waves on the interface is used to obtain the reflected
sound field of plane waves. Finally, these reflected sound fields are superimposed to derive
the reflected sound field of the spherical wave on the plane liquid–liquid interface; these
describe the rigorous ISM.
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The traditional ISM of the propagation model is based on the ray theory, and the
upper and lower boundaries in the homogeneous waveguide are considered by the image
sources. Figure 1a shows a schematic diagram of the contributions from the physical source
and the first three image sources; the remaining terms are obtained by successive imaging
of these sources to yield the ray expansion for the total field [23]

G(r, z) = (V1V2(ϑi))
m ∞

∑
m=0

[
ejka Rm1

Rm1
+V2(ϑi)

ejka Rm2
Rm2

+

V1
ejka Rm3

Rm3
+ V1V2(ϑi)

ejka Rm4
Rm4

]
,

(1)

where V1 and V2 are the reflection coefficients of the plane wave for upper and lower
boundaries, respectively. It should be noted that V1 = −1 for the pressure-release surface,
however, the bottom of the Pekeris waveguide is not an ideal rigid surface; the reflection
coefficient V2 does not remain constant but relates to the angle ϑi, which is the incident
angle of each term plane wave decomposed by the spherical wave on the seabed surface.
ka is the sound wavenumber in the water, Rmn =

√
r2 + z2

mn and m is the number of
mirrored sources, and the value is m = 0, 1, 2, 3 . . . , ∞, n = 1, 2, 3, 4, zm1 = 2Hm + z− zs,
zm2 = 2Hm + z + zs, zm3 = 2H(m + 1) − z − zs, zm4 = 2H(m + 1) − z + zs. Generally,
when m reaches tens of terms, the total sound field will quickly stabilize at a certain value.

Equation (1) is fulfilled by the Helmholtz wave equation because it is composed of
multiple spherical waves, each of which satisfies the equation. Different from the processing
method in ideal shallow water conditions with a rigid seabed (i.e., the V2 is always 1),
the reflection coefficient V2 in the Pekeris waveguide depends on the incident angle and
incident waveform (i.e., plane wave), and it is more similar to the reflection coefficient of
the plane wave in the theoretical calculation. However, the sound field in Equation (1) is
the sound superposition of spherical waves reflected by physical source and the image
sources—it is essential to make the waveform and reflection coefficient consistent. In this
rigorous ISM, the solution to this problem requires the decomposition of spherical waves
into plane waves with various angles.

In the plane at z = 0, the sound field of a spherical wave can be expanded into a double
Fourier integral with x and y [24], as follows:

eikr

r
=

+∫
−

∞∫
∞

A(kx, ky)ei(kx x+kyy)dkxdky, (2)

where r is the distance vector from the point source to the receiver, i is the imaginary part
of the complex number, and the integral variables kx and ky are the vector projections of
the wavenumber k in the direction of the x and y axes, respectively, and the spectral density
of the wave, which is obtained by the inverse Fourier transform, as follows:

A(kx, ky) =
1

(2π)2

+∫
−

∞∫
∞

eikr

r
e−i(kx x+kyy)dkxdky, (3)

To obtain the value of A(kx, ky
)
, we now establish the transformation between polar

and Cartesian coordinates such that

x = r cos ψ, y = r sin ψ, dxdy = rdrdψ, (4)

kx = l cos ϕ, ky = l sin ϕ, l =
√

k2
x + k2

y, (5)

where l is the projection of the wave vector k on the xoy plane.
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By substituting Equation (4) and Equation (5) into Equation (3), we find

A(kx, ky) =
1

(2π)2

∫ 2π

0
dψ
∫ ∞

0
eir[k−l cos(ϕ−ψ)]dr (6)

The integral over r is elementary. Moreover, if we assume that there is some absorption
in the medium, no matter how small (i.e., that k has a positive imaginary part), then the
substitution of the upper limit yields zero, and finally, A(kx, ky

)
is solved by integration

operations and can be expressed as follows:

A(kx, ky) =
i

(2π)2

∫ 2π
0

1
k−l cos(ϕ−ψ)

dψ

= i
2π

1√
k2−l2

= i
2π

1√
k2−k2

x−k2
y
,

(7)

Thus
eikr

r
=

i
2π

+∫
−

∞∫
∞

ei(kx x+kyy)√
k2 − k2

x − k2
y

dkxdky, (8)

Here, we extend the sound field describing the xoy plane to the entire three-dimensional
(3D) space and with a general focus on the sound field in water (i.e., z ≥ 0). As a result,
Equation (8) can also be written in the following form:

eikR

R
=

i
2π

+∫
−

∞∫
∞

ei(kx x+kyy+kzz)

kz
dkxdky, (9)

As shown in Figure 2a, we perform the wavenumber domain conversion in this 3D
space and the components kx and ky of the wave vector k can be replaced by integration
over the angles ϑ and ϕ as follows:

kx = k sin ϑ cos ϕ, ky = k sin ϑ sin ϕ, kz = k cos ϑ =
√

k2 − k2
x − k2

y, (10)

Figure 2. Diagram of the interaction between plane wave and liquid–liquid interface: (a) decomposi-
tion of the wavenumber vector k in three-dimensional (3D) space; (b) sound reflection of plane waves
on the liquid–liquid interface.

The angle range of ϕ is (0, 2π). According to Equation (10), when kx = ky = 0,
kz = k is obtained. Additionally, kz = i∞ when ky → ±∞ , so that the angle range of ϑ
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can be expressed as (0, π/2−i∞). With the use of the variable transformation formula
dkxdky

kz
= ksinϑdϑdϕ, Equation (9) can also be written in the following form:

eikR

R
=

ik
2π

∫ (π/2)−i∞

0

∫ 2π

0
ei(kx x+kyy+kzz) sin ϑdϑdϕ, (11)

Up to this point, we know that different orders of plane waves are decomposed from
the spherical wave and reflecting at the fluid–fluid interface with different incident angles.
Each order of plane wave on the interface satisfies the Snell law for reflection and should
be multiplied by the corresponding reflection coefficient V(ϑ).

Assuming m = 0, as shown in Figure 2b, for the first time the spherical wave of
the sound source interacts with the interface, the physical source O01 is mirrored by the
interface to the first image source O02. In this case, the path of the sound field of the source

O02 is R02 =
√

r2 + z2
02.

Based on Equations (10) and (11), the sound field of the spherical wave radiated by
the image source O02 on the fluid–fluid interface can be found from the following equation

V2(ϑ)
eikR02

R02
=

ik
2π

∫ (π/2)−i∞

0

∫ 2π

0
eik(x sin ϑ cos ϕ+y sin ϑ sin ϕ+z02 cos ϑ)V2(ϑ) sin ϑdϑdϕ, (12)

On the xoy plane, let x = rcosϕ1, y = rsinϕ1, which results in the following:
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mn
mn

jkR i ikz
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mn

e ikV H kr e V d
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π ϑ

π
ϑ ϑ ϑ ϑ ϑ

− ∞

− + ∞
=   (18)

The reflected sound field of the spherical wave is decomposed into the plane wave 
by Equation (18). We consider the reflection at an interface separating two homogeneous 
fluid media with the reflection coefficients, which can be written in the form: 

ϑ

01R

iϑ
iϑ

iϑ

sz z

sz
r

( , , )rP x y z

02Rϕ

a , acρ
,b bcρ

02O

01O

x

y

z k

(13)

According to the definition of the nth order Bessel function

Jn(x) =
1

2πin

∫ 2π

0
eix cos θ cos(nθ)dθ, (14)

Here, we take n = 0, and the above equation can be rewritten as follows:∫ 2π

0
eik sin ϕ(x cos ϕ+y sin ϑ)dϕ = 2π J0(kr sin ϕ), (15)

According to Equation (15), Equation (12) can be expressed as follows:

V2(ϑ)
eikR02

R02
= ik

∫ (π/2)−i∞

0
eikz02 cos ϑ J0(kr sin ϑ)V2(ϑ) sin ϑdϑ, (16)

Similarly, we can obtain the reflected sound field of other image sources. The expres-
sion is also conveniently transformed by changing the limits of integration and replacing
the Bessel function by Hankel functions. For this, we note that

J0(x) = (1/2)
[

H(1)
0 (x) + H(2)

0 (x)
]

= (1/2)
[

H(1)
0 (x)− H(1)

0 (−x)
]
,

(17)

We apply the relation to each image source. The spherical waves are decomposed into
plane waves with various orders by using the double Fourier integration as follows:

ejkRmn

Rmn
V2(ϑ) =

ik
2

∫ (π/2)−i∞

−(π/2)+i∞
H(1)

0 (kr sin ϑ)eikzmn cos ϑV2(ϑ) sin ϑdϑ (18)
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The reflected sound field of the spherical wave is decomposed into the plane wave by
Equation (18). We consider the reflection at an interface separating two homogeneous fluid
media with the reflection coefficients, which can be written in the form:

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 12 
 

2 2

2 2
2

cos sin
, sin

( ) ,cos sin
1 , sin

V
ϑ β ϑ ϑ β

ϑ ϑ β ϑ
ϑ β

 − −
≤= + −


>



  (19)

where b aρ ρ= , a bc cβ = , ϑ  represent the incident angle of the plane wave. 
The seabed surface of shallow water is covered with a layer of non-condensable solid 

material, which is deposited by several rivers, so it is reasonable to simulate the seabed 
sediment as a liquid. Further, the attenuation also becomes a significant loss factor for 
waterborne energy. Hence, in this case, it is crucial for realistic modeling of the propaga-
tion characteristics that bottom attenuation is taken into account to improve the accuracy 
of the sound propagation model. Here, we describe the sound attenuation effect with the 
complex sound speed as follow: 

~

1 j
2

b
b

b

c
c α=

+
 (20)

where 𝛼  is the absorption coefficient in the fluid seabed. The absorption coefficient of 
sound in the seabed is measured in a wavelength, which is given by the expression 𝛼 (dB/λ)  =  27.3𝛼  [25]. 

By substituting Equation (18) into Equation (1), we can obtain the GF in an explicit 
form 

( )

( / 2) cos ( ) cos ( ) cos (2 )(1)
0 2 1( / 2)

cos (2 ) 2 cos
1 2 1 2

0

( , ) ( sin ) ( )
2

( ) ( ) sin ,

s s s

s

i ik z z ik z z ik H z z
ii

mik H z z m ik H
i i

m

ikG r z H kr e V e V e

VV e VV e d

π ϑ ϑ ϑ

π

ϑ ϑ

ϑ ϑ

ϑ ϑ ϑ ϑ

− ∞ − + − −

− + ∞

∞
− + ⋅ ⋅

=

= ⋅ + +

+ 




 

(21)

By combining with the Simpson algorithm for complex integrals [26], the GF can be 
solved efficiently. Additionally, the sound field of the radiator generally focuses on the 
sound pressure level (SPL), which is defined as follows: 

20 log10 (dB)
ref

pSPL
p

= ×  (22)

where  =  1 × 10  Pa is the reference sound pressure in water.  

3. Theoretical Model Verification 
A typical sound propagation model in the Pekeris waveguide is established to verify 

the Green functions described by the ISM, as shown in Figure 3, which consists of a point 
source that is 30 m in depth, where the upper surface is the pressure released, the depth 
of homogeneous water is 100 m, and the density and the sound speed are 𝜌  = 1024 kg/m3 
and 𝑐  = 1500 m/s, respectively. The seabed in the Pekeris waveguide is regarded as an 
infinite half-space liquid with the density and the sound speed of 𝜌  = 2000 kg/m3 and 𝑐  = 1800 m/s, respectively, and the sound absorption in the seabed is also considered. The 
depth of each receiver is 𝑧  and the horizontal interval is 1 m. 

From the configuration of the Pekeris waveguide shown in Figure 3, it is clear that 
the upper boundary is the Dirichlet boundary (i.e., the reflection coefficient is V = −1). 
The seabed is an infinite liquid half space, and the interaction between the sound field and 
the fluid–fluid interface can be described by using the reflection coefficient. As shown in 
Figure 4, Equation (19) is utilized to calculate the reflection coefficient of the plane wave 
at the interface versus the incident angle for different absorption coefficients of the seabed. 

(19)

where l = ρb/ρa, β = ca/cb, ϑ represent the incident angle of the plane wave.
The seabed surface of shallow water is covered with a layer of non-condensable solid

material, which is deposited by several rivers, so it is reasonable to simulate the seabed
sediment as a liquid. Further, the attenuation also becomes a significant loss factor for
waterborne energy. Hence, in this case, it is crucial for realistic modeling of the propagation
characteristics that bottom attenuation is taken into account to improve the accuracy of
the sound propagation model. Here, we describe the sound attenuation effect with the
complex sound speed as follow:

∼
cb =

cb

1 + j αb
2

(20)

where αb is the absorption coefficient in the fluid seabed. The absorption coefficient
of sound in the seabed is measured in a wavelength, which is given by the expression
αλ(dB/λ) = 27.3αb [25].

By substituting Equation (18) into Equation (1), we can obtain the GF in an explicit
form

G(r, z) = ik
2

∫ (π/2)−i∞
−(π/2)+i∞ H(1)

0 (kr sin ϑ) ·
[
eik cos ϑ(z−zs) + V2(ϑi)eik cos ϑ(z+zs) + V1eik cos ϑ(2H−z−zs)

+V1V2(ϑi)eik cos ϑ(2H−z+zs)
] ∞

∑
m=0

(V1V2(ϑi))
me2m·ik cos ϑ·H sin ϑdϑ,

(21)

By combining with the Simpson algorithm for complex integrals [26], the GF can be
solved efficiently. Additionally, the sound field of the radiator generally focuses on the
sound pressure level (SPL), which is defined as follows:

SPL = 20× log 10
p

pre f
(dB) (22)

where = 1× 10−6 Pa is the reference sound pressure in water.

3. Theoretical Model Verification

A typical sound propagation model in the Pekeris waveguide is established to verify
the Green functions described by the ISM, as shown in Figure 3, which consists of a point
source that is 30 m in depth, where the upper surface is the pressure released, the depth of
homogeneous water is 100 m, and the density and the sound speed are ρa = 1024 kg/m3

and ca = 1500 m/s, respectively. The seabed in the Pekeris waveguide is regarded as an
infinite half-space liquid with the density and the sound speed of ρb = 2000 kg/m3 and
cb = 1800 m/s, respectively, and the sound absorption in the seabed is also considered. The
depth of each receiver is zi and the horizontal interval is 1 m.
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Figure 3. Schematic diagram of the configuration of the Pekeris waveguide.

From the configuration of the Pekeris waveguide shown in Figure 3, it is clear that
the upper boundary is the Dirichlet boundary (i.e., the reflection coefficient is V1 = −1).
The seabed is an infinite liquid half space, and the interaction between the sound field and
the fluid–fluid interface can be described by using the reflection coefficient. As shown in
Figure 4, Equation (19) is utilized to calculate the reflection coefficient of the plane wave at
the interface versus the incident angle for different absorption coefficients of the seabed.

Figure 4. Curves of plane wave reflection coefficients versus angle of incidence for different absorptions.

It can be observed that the reflection coefficient is positively related to the incident
angle ϑ. When the liquid seabed does not contain sound absorption, there is an inci-
dent angle (i.e., the critical angle) so that the sound field on the interface appears to
be a total reflection, the reflection coefficient is constant at 1, and the critical angle is
ϑ = arc sin(ca/cb) ≈ 56◦. In contrast, when the medium contains acoustic absorption
with αλ = 0.5 dB/ λ, αλ = 1.0 dB/ λ, and αλ = 2.0 dB/ λ, the reflection coefficient is a
value that varies with the angle of incidence, and total reflection no longer occurs. The
reflection coefficients are approximately the same for angles less than the critical angle
(i.e., 56◦). For angles above the critical angle, the reflection coefficients corresponding
to different absorptions vary considerably. Therefore, the spherical waves carry plane
waves in different directions and incident angles on the fluid–fluid interface with the sound
absorption. The reflection coefficients of the plane waves are different in each direction.
Although in the range of 0–10◦ the reflection coefficient can all be approximated as 0.41 (i.e.,
it is reasonable that the reflected sound field at the receiver in the range of r ≤ 0.18(zs + z)
can be calculated using Equation (1)), the distance of the receiver is too close to be used to
accurately describe the reflected sound field in the Pekeris waveguide. Therefore, to make
the ISM more accurate for sound field calculations over the whole distance, it is necessary
to decompose the spherical wave into plane waves with different incident angles. The
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reflected sound field of the spherical wave from the point source is solved according to
Equation (18), and finally, the reflected sound field of a physical source and image sources
are summed by Equation (1). Thus, the sound field of a point source (i.e., the GF) in the
Pekeris waveguide at any field point is obtained by this rigorous ISM.

The cutoff effect will occur in the sound propagation due to the limitation of the upper
and lower boundaries of the shallow water (i.e., the sound field below the cutoff frequency
cannot propagate in long distances), and the sound propagation frequencies of the order
normal modes in the Pekeris waveguide can be above the cutoff frequency fn given by [22]

fn =
(2n− 1)cacb

4H
√

c2
b − c2

a

, (23)

The propagation frequencies corresponding to the first 6-order normal modes are
presented in Table 1. When the propagation frequency is lower than the first-order propaga-
tion frequency (e.g., f1 = 6.78 Hz) the sound field will decay rapidly with the propagation
distance and cannot travel far away. To fully compare the calculation accuracy of the ISM
for the sound field in the near and far fields, the selected frequencies are 25 Hz, 50 Hz, 100
Hz, and 200 Hz, and the αλ = 0.5 dB/λ.

Table 1. The propagation frequencies of first 6-order normal modes.

n 1 2 3 4 5 6

fn/Hz 6.78 20.35 33.92 47.49 61.06 74.62

As shown in Figure 5, the SPLs of the point source in this waveguide are calculated by
adopting the rigorous ISM, and these results are compared with the theoretical solutions
calculated accurately by the mature Scooter calculation program based on WI techniques;
the depth of each receiver is half of the water depth (i.e., zi = 50 m). It can be seen that the
results between the ISM and theoretical solutions are in good agreement in the near and
far fields. The ISM considers the upper and lower boundaries through the image sources
generated by mirror reflection, and the total sound field is expressed by the physical source
and the various image sources. Further, on the fluid–fluid interaction surface, the spherical
wave is decomposed into plane waves with various orders through Equation (18), and
then the identified reflection coefficient of the plane wave is used to describe the reflection
effect on the sound field. Thus, the ISM is an exact solution and simpler than WI, which
can handle the near-to-far field problem well.

As shown in Figure 6, where the SPL in the xor plane is provided as a comparison
value for the results calculated by the presented method and WI, the frequencies are chosen
to be 25 Hz and 100 Hz. The modal interference patterns of the sound field calculated by
the two methods are identical over the entire calculated distance. For example, when the
frequency is 25 Hz, which is more than the cutoff frequency, there are two modes, as shown
in Table 1. Thus, two normal modes appear in the depth direction of the radiated sound
field in Figure 6a,b. Additionally, there are more orders of modal interference patterns
when the frequency increases to 200 Hz, as shown in Figure 6c,d.
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Figure 5. Sound field comparison between near- to far-field model and theoretical solution:
(a) f = 25 Hz; (b) f = 50 Hz; (c) f = 100 Hz; (d) f = 200 Hz. SPL: sound pressure level; WI: wavenumber
integration method.

Figure 6. The SPL comparison of the GF with different frequencies: (a) f = 25 Hz, WI; (b) f = 25 Hz, the presented method;
(c) f = 100 Hz, WI; (d) f = 100 Hz, the presented method.

Sound propagation in the Pekeris waveguide is generally concerned with the far
field, where the sound field will interact with the seabed tens to thousands of times, and
the sound losses of multiple sound paths will sum to significant levels, so the effect of
seabed absorption on sound field propagation must be taken into account. As shown in
Figure 7, the SPL is calculated using this method for different cases with three absorption
coefficients, where all receivers are 50 m and the selected frequency is 20 Hz. It can be seen
that at a short distance, for example, in the 0–700 m range, the variation in SPL for different
absorption coefficients is minor. Because there are a small number of interactions between
the sound field and the lossy seabed, there is not a significant effect on the whole sound
propagation, which is dominated by geometrical spreading loss. However, the sound
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propagation loss from multiple contacts with the seabed accumulates to a considerable
level as the propagation distance increases, resulting in differences in the SPL curves with
different coefficients becoming gradually visible. Thus, it is concluded that the sound
loss increases more rapidly with increased ranges for the lossy seabed, and the modal
interference length is slightly different for the different seabed absorption coefficients.

Figure 7. Comparison of sound field propagation with different sound absorption coefficients.

4. Conclusions and Future Work

The sound field of a point source (i.e., GF) directly satisfies the boundary conditions on
the free surface and the horizontal parts of the seabed boundary and establishes the sound
transfer relationship between the vibration source and the receiver, which can be utilized to
provide a concise mathematical expression and eases the efficient computation for acoustic
radiation problems in shallow water with the aid of the Helmholtz integral equation.

In this paper, an efficient GF for acoustic problems in shallow water was developed
by the rigorous ISM model, in which the interaction between the spherical wave sound
field and the liquid seabed of the Pekeris waveguide was established based on the classical
ray theory and wave acoustics, and the sound loss due to multiple interactions with a
lossy seabed was also taken into account. Taking the source field of a point source in the
Pekeris waveguide as an example, the SPL and the sound modal interference calculated by
this method were compared with those presented by the standard WI. After verifying the
accuracy of the GF for calculating the sound field over the whole distance, the influence of
lossy seabed on the sound field of a point source was investigated, and it was found that
sound loss increased more rapidly with an increase in range for the lossy seabed, due to the
sound absorption of the seabed, and the modal interference length was slightly different
for the lossy seabed.

This paper proposes a GF that is more adaptable to near- and far-field acoustic prob-
lems. In the future, on one hand, for a simple point source, investigations on sound
propagation, long-range localization, and geoacoustic inversion in shallow water can be
conducted efficiently. On the other hand, for large elastic radiators, computational methods
such as the Helmholtz integral equation, the boundary element method, the equivalent
source method, and the hydroelasticity theory can be combined to further promote the
development of acoustic cloaking design, near-field acoustic field measurement, and target
identification for underwater vehicles.
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